744 research outputs found

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    BSCSML: Design of an Efficient Bioinspired Security &Privacy Model for Cyber Physical System using Machine Learning

    Get PDF
    With the increasing prevalence of Smart Grid Cyber Physical Systems with Advanced Metering Infrastructure (SG CPS AMI), securing their internal components has become one of the paramount concerns. Traditional security mechanisms have proven to be insufficient in defending against sophisticated attacks. Bioinspired security and privacy models have emerged as promising solutions due to their stochastic solutions. This paper proposes a novel bio-inspired security and privacy model for SG CPS AMI that utilizes machine learning to strengthen their security levels. The proposed model is inspired by the hybrid Grey Wolf Teacher Learner based Optimizer (GWTLbO) Method’s ability to detect and respond to threats in real-time deployments. The GWTLbO Model also ensures higher privacy by selecting optimal methods between k-privacy, t-closeness & l-diversity depending upon contextual requirements. This study improves system accuracy and efficiency under diverse attacks using machine learning techniques. The method uses supervised learning to teach the model to recognize known attack trends and uncontrolled learning to spot unknown attacks. Our model was tested using real-time IoT device data samples. The model identified Zero-Day Attacks, Meter Bypass, Flash Image Manipulation, and Buffer-level attacks. The proposed model detects and responds to attacks with high accuracy and low false-positive rates. In real-time operations, the proposed model can handle huge volumes of data efficiently. The bioinspired security and privacy model secures CPS efficiently and is scalable for various cases. Machine learning techniques can improve the security and secrecy of these systems and revolutionize defense against different attacks

    Gelişmiş Ölçüm Altyapısı İçin Güvenlik Uygulamaları

    Get PDF
    Elektrik tüketimi ölçüm araçları, manuel olarak ölçüm yapılan analog sayaçlardan, elektrik tüketimi ile ilgili bilgileri toplayan ve elektrik dağıtım firmalarına ileten yeni akıllı sayaçlara doğru evrilmektedir. Sayaç verisinin okunmasını sağlayan tek yönlü otomatik sayaç okuma sistemlerinin (AMR) çıkışıyla sayaçlar akıllı şebeke yatırımlarının önemli bir kısmını oluşturmuştur. Otomatik sayaç okuma sistemleri ilk uygulamalar için cazip olmasına rağmen, çözülmesi gereken önemli bir husus olan talep tarafı yönetiminin AMR ile sağlanamadığı fark edilmiştir. AMR teknolojisinin kabiliyetlerinin tek yönlü sayaç verisi okuma ile sınırlı olması nedeniyle, sayaçlardan toplanan veriler üzerinden düzeltici önlemler alınmasına ve tüketicinin enerjiyi daha verimli akıllı kullanmasına yönelik özeliklere izin vermemektedir. Gelişmiş Ölçüm Altyapısı (AMI) ise akıllı sayaçlar ve dağıtım şirketleri arasında çift yönlü iletişim kurarak dağıtım şirketlerine sayaçlar üzerindeki parametreleri dinamik olarak değiştirme imkanı tanır. Bu nedenle, bu çalışmada AMI güvenliği üzerine odaklanılacaktır. Akıllı sayaç sistemlerinin yaygınlaşması ile birlikte, güvenlik bu sistemlerin gerekli ve kaçınılmaz bir ihtiyacı haline gelmektedir. Diğer taraftan, AMI sadece akıllı sayaçların fiziksel olarak dağıtımı manasına gelmemekte, ayrıca sayaç verilerinin yönetimi için gerekli olan karmaşık bir iletişim ağı ve bilgi teknolojileri altyapısını da içermektedir. Dolayısıyla güvenlik çözümlerini ele alırken geniş bir perspektifle yaklaşmak gerekmektedir. Bu nedenle de, sistemin kritik varlıkları belirlenmeli, tehditler iyi analiz edilmeli ve daha sonra güvenlik gereksinimleri iyi tanımlanmış olmalıdır. Bu çalışma AMI sisteminin temel güvenlik gereksinimleri, tehditlere karşı sistem kısıtlarını düşünerek olası çözümleri üzerine, şu anki güvenlik çözümlerini de resmederek, genel bir bakış sunmaktadır. Bu çalışmada, AMI sisteminin güvenlik gereksinimleri analiz edilecek, kısıtlar belirlenecek ve olası güvenlik tehditlerine karşı olası karşı önlemler belirlenecektir. Metering utilities have been replacing from analog meters that are read manually with new, smart meters that gather information about electricity consumption and transmit it back to electric companies. The metering has been the important part of the Smart Grid investments so far, with the initial introduction of one-way automated meter reading (AMR) systems to read meter data. Even though AMR technology proved to be initially enticing, utility companies have realized that AMR does not address demand-side management which is the major issue they need to solve. Since AMR’s capability is restricted to reading meter data due to its one-way communication system, it does not let utilities take corrective action based on the information gathered from the meters and does not assist customers in using energy intelligently. Advanced Metering Infrastructure (AMI) creates a two-way communication network between smart meters and utility systems and provides utilities the ability to modify service-level parameters dynamically. Therefore in this work we will also focus on AMI security practices. While smart metering systems are become widespread security is going to be the one of its essential and inevitable needs. On the other hand, AMI does not only mean the physical deployment of smart meters, but it also includes meter data management system which is a complicated communication network and IT infrastructure. Hence a broad perspective has to be adopted when security solutions are considered. Therefore, assets of the system must be identified, threats must be well analyzed and then security requirements must be well defined. This paper presents an overview on the main security requirements of the AMI, on the threats possible solutions considering the system constraints by picturing the current security solutions. In this work, the security requirements for AMI systems will be analyzed, constraints will be determined and possible countermeasures against security threats will be given

    Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    Full text link
    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.Comment: To be published in IEEE Communications Surveys and Tutorial

    Smart Grid Technologies in Europe: An Overview

    Get PDF
    The old electricity network infrastructure has proven to be inadequate, with respect to modern challenges such as alternative energy sources, electricity demand and energy saving policies. Moreover, Information and Communication Technologies (ICT) seem to have reached an adequate level of reliability and flexibility in order to support a new concept of electricity network—the smart grid. In this work, we will analyse the state-of-the-art of smart grids, in their technical, management, security, and optimization aspects. We will also provide a brief overview of the regulatory aspects involved in the development of a smart grid, mainly from the viewpoint of the European Unio

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Advanced Metering Infrastructure Based on Smart Meters in Smart Grid

    Get PDF
    Due to lack of situational awareness, automated analysis, poor visibility, and mechanical switches, today\u27s electric power grid has been aging and ill‐suited to the demand for electricity, which has gradually increased, in the twenty‐first century. Besides, the global climate change and the greenhouse gas emissions on the Earth caused by the electricity industries, the growing population, one‐way communication, equipment failures, energy storage problems, the capacity limitations of electricity generation, decrease in fossil fuels, and resilience problems put more stress on the existing power grid. Consequently, the smart grid (SG) has emerged to address these challenges. To realize the SG, an advanced metering infrastructure (AMI) based on smart meters is the most important key

    Key Management Systems for Smart Grid Advanced Metering Infrastructure: A Survey

    Full text link
    Smart Grids are evolving as the next generation power systems that involve changes in the traditional ways of generation, transmission and distribution of power. Advanced Metering Infrastructure (AMI) is one of the key components in smart grids. An AMI comprises of systems and networks, that collects and analyzes data received from smart meters. In addition, AMI also provides intelligent management of various power-related applications and services based on the data collected from smart meters. Thus, AMI plays a significant role in the smooth functioning of smart grids. AMI is a privileged target for security attacks as it is made up of systems that are highly vulnerable to such attacks. Providing security to AMI is necessary as adversaries can cause potential damage against infrastructures and privacy in smart grid. One of the most effective and challenging topic's identified, is the Key Management System (KMS), for sustaining the security concerns in AMI. Therefore, KMS seeks to be a promising research area for future development of AMI. This survey work highlights the key security issues of advanced metering infrastructures and focuses on how key management techniques can be utilized for safeguarding AMI. First of all, we explore the main features of advanced metering infrastructures and identify the relationship between smart grid and AMI. Then, we introduce the security issues and challenges of AMI. We also provide a classification of the existing works in literature that deal with secure key management system in AMI. Finally, we identify possible future research directions of KMS in AMI
    corecore