3 research outputs found

    Demand Side Management In Smart Grid Optimization Using Artificial Fish Swarm Algorithm

    Get PDF
    The demand side management and their response including peak shaving approaches and motivations with shiftable load scheduling strategies advantages are the main focus of this paper. A recent real-time pricing model for regulating energy demand is proposed after a survey of literature-based demand side management techniques. Lack of user’s resources needed to change their energy consumption for the system's overall benefit. The recommended strategy involves modern system identification and administration that would enable user side load control. This might assist in balancing the demand and supply sides more effectively while also lowering peak demand and enhancing system efficiency. The AFSA and BFO algorithms are combined in this study to handle the optimization of difficult problems in a range of industries. Although the BFO will be used to exploit the search space and converge to the optimum solution, the AFSA will be used to explore the search space and retain variation. In terms of reduction of peak demand, energy consumption, and user satisfaction, the AFSA-BFO hybrid algorithm outperforms previous techniques in the field of demand side management in a smart grid context, using an AFSA. According to simulation results, the genetic algorithm successfully reduces PAR and power consumption expenses

    Hybridization of enhanced ant colony system and Tabu search algorithm for packet routing in wireless sensor network

    Get PDF
    In Wireless Sensor Network (WSN), high transmission time occurs when search agent focuses on the same sensor nodes, while local optima problem happens when agent gets trapped in a blind alley during searching. Swarm intelligence algorithms have been applied in solving these problems including the Ant Colony System (ACS) which is one of the ant colony optimization variants. However, ACS suffers from local optima and stagnation problems in medium and large sized environments due to an ineffective exploration mechanism. This research proposes a hybridization of Enhanced ACS and Tabu Search (EACS(TS)) algorithm for packet routing in WSN. The EACS(TS) selects sensor nodes with high pheromone values which are calculated based on the residual energy and current pheromone value of each sensor node. Local optima is prevented by marking the node that has no potential neighbour node as a Tabu node and storing it in the Tabu list. Local pheromone update is performed to encourage exploration to other potential sensor nodes while global pheromone update is applied to encourage the exploitation of optimal sensor nodes. Experiments were performed in a simulated WSN environment supported by a Routing Modelling Application Simulation Environment (RMASE) framework to evaluate the performance of EACS(TS). A total of 6 datasets were deployed to evaluate the effectiveness of the proposed algorithm. Results showed that EACS(TS) outperformed in terms of success rate, packet loss, latency, and energy efficiency when compared with single swarm intelligence routing algorithms which are Energy-Efficient Ant-Based Routing (EEABR), BeeSensor and Termite-hill. Better performances were also achieved for success rate, throughput, and latency when compared to other hybrid routing algorithms such as Fish Swarm Ant Colony Optimization (FSACO), Cuckoo Search-based Clustering Algorithm (ICSCA), and BeeSensor-C. The outcome of this research contributes an optimized routing algorithm for WSN. This will lead to a better quality of service and minimum energy utilization
    corecore