5 research outputs found

    COMPACT FORMULATION OF MULTICOMMODITY NETWORK FLOWS WITH APPLICATIONS TO THE BACKHAUL PROFIT MAXIMIZATION PROBLEM AND FIXED CHARGE NETWORK FLOW PROBLEM

    Get PDF
    The triples formulation is a compact formulation of multicommodity network flow problems that provides a different representation of flow than the traditional and widely used node-arc and arc-path approaches. In the literature, the triples formulation has been applied successfully to the maximum concurrent flow problem and to a network optimization problem with piecewise linear convex costs. This dissertation applies the triples formulation to the backhaul profit maximization problem (BPMP) and the fixed charge network flow problem (FCNF). It is shown that the triples representation of multicommodity flow significantly reduces the number of variables and constraints in the mixed integer programming formulations of the BPMP and FCNF. For the BPMP, this results in significantly faster solution times. For dense problem instances, the triples-based formulation of FCNF is found to produce better solutions than the node-arc formulation early in the branch-and-bound process. This observation leads to an effective hybrid method which combines the respective advantages of the smaller size of the triples formulation and the stronger linear programming relaxation of the node-arc formulation. In addition to empirical studies, the dissertation presents new theoretical results supporting the equivalence of the triples formulation to the node-arc and arc-path formulations. The dissertation also proposes a multi-criteria Composite Index Method (CIM) to compare the performance of alternative integer programming formulations of an optimization problem. Using the CIM, the decision maker assigns weights to problem instance sizes and multiple performance measures based on their relative importance for the given application. The weighting scheme is used to produce a single number that measures the relative improvement of one alternative over the other and provides a method to select the most effective approach when neither one dominates the other when tested on different sizes of problem instances. The dissertation demonstrates a successful application of the CIM to evaluate a series of eleven techniques for improving the node-arc and triples formulations of the BPMP previously proposed in the literature

    DYNAMIC DECISION MAKING FOR LESS-THAN-TRUCKLOAD TRUCKING OPERATIONS

    Get PDF
    On a typical day, more than 53 million tons of goods valued at about $36 million are moved on the US multimodal transportation network. An efficient freight transportation industry is the key in facilitating the required movement of raw materials and finished products. Among different modes of transportation, trucking remains the shipping choice for many businesses and is increasing its market share. Less-than-truckload (LTL) trucking companies provide a transportation service in which several customers are served simultaneously by using the same truck and shipments need to be consolidated at some terminals to build economical loads. Intelligent transportation system (ITS) technologies increase the flow of available data, and offer opportunities to control the transportation operations in real-time. Some research efforts have considered real-time acceptance/rejection of shipping requests, but they are mostly focused on truckload trucking operations. This study tries to use real-time information in decision making for LTL carriers in a dynamically changing environment. The dissertation begins with an introduction of LTL trucking operations and different levels of planning for this type of motor carriers, followed by the review of literature that are related to tactical and operational planning. Following a brief discussion on multi commodity network flow problems and their solution algorithm, a mathematical model is proposed to deal with the combined shipment and routing problem. Furthermore, a decision making procedure as well as a decision support application are developed and are presented in this dissertation. The main step in the decision making procedure is to solve the proposed mathematical problem. Three heuristic solution algorithms are proposed and the quality of the solutions is evaluated using a set of benchmark solutions. Three levels of numerical experiments are conducted considering an auto carrier that operates on a hub-and-spoke network. The accuracy of the mathematical model and the behavior of the system under different demand/supply situations are examined. Also, the performance of the solutions provided by the proposed heuristic algorithms is compared and the best solution method is selected. The study suggests that significant reductions in operational costs are expected as the result of using the proposed decision making procedure

    Um modelo de fluxo em rede para solução de problemas de distribuição de produtos compostos

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Engenharia de Produção.Neste trabalho é proposto um modelo linear de Fluxo em Redes para o problema de minimização de custos de produção e distribuição de Múltiplos Produtos Compostos. Neste modelo, restrições de acoplamento são consideradas para tratar a proporcionalidade existente entre os diversos fluxos que formam o produto composto, bem como as restrições de capacidade dos arcos pelos quais estes fluxos percorrem. A metodologia utilizada para solucionar o problema é baseada na estratégia de particionamento da matriz básica, e na implementação de uma especialização do método simplex dual para solucionar o problema particionado primal. Como solução inicial, é utilizada uma base construída por meio de um método heurístico que aloca fluxos em caminhos de custo mínimo. Para realização das operações de troca de base, a matriz ciclo é armazenada na forma produto da inversa, de modo a manter a esparsidade e a dimensão. Testes computacionais, contendo em torno de 200.000 restrições e 370.000 variáveis, aplicados à distribuição de produtos compostos de uma indústria do setor petroquímico, foram realizados com sucesso. Os resultados obtidos demonstram a eficiência computacional do algoritmo desenvolvido e a aplicabilidade do modelo formulado. Finalmente, recomendações são apresentadas para desenvolvimento de trabalhos futuros

    Nodal distribution strategies for designing an overlay network for long-term growth

    Get PDF
    Scope and Method of Study:This research looked at nodal distribution design issues associated with building an overlay network on top of an existing legacy network with overlay network switches and links not necessarily matching the switch and link locations of the underlying network. A mathematical model with two basic components, switch costs and link costs, was developed for defining the total cost of a network overlay. The nature of the underlying legacy topology determines the dominant factor, link or switch costs to the total cost function as well as the unit cost for switches and links.Findings and Conclusions:The three design heuristics presented first, locate overlay switches at nodes in the center of the legacy network as opposed to the periphery; second, locate overlay switches at legacy nodes with high connectivity; and third, locate overlay switches at legacy nodes with high traffic flow demands, can be used to help point to the direction of keeping costs under control when design changes are required. Applying the concept of efficient frontiers to the world of network design and building a suite of best designs gives the network designer greater insight into how to design the best network in the face of changing real-world constraints. For the cost model and the case studies evaluated using the design strategies in this study, distributed approaches generally tend to be a good choice when the link costs dominate the total cost function because total path distances and therefore link costs need to be minimized in preference over switch costs. A distributed overlay tends to have lower link costs because there is usually a greater probability that total path distances can be minimized because of greater connectivity. More connections set up the potential for more traffic flow path choices allowing each traffic flow to be sent along shorter paths. In legacy network topology designs that have many nodes with high connectivity, the overlay link costs can be relatively similar between designs and the switch costs can have a large impact upon total cost
    corecore