
Southern Methodist University Southern Methodist University

SMU Scholar SMU Scholar

Operations Research and Engineering
Management Theses and Dissertations

Operations Research and Engineering
Management

Fall 12-17-2022

COMPACT FORMULATION OF MULTICOMMODITY NETWORK COMPACT FORMULATION OF MULTICOMMODITY NETWORK

FLOWS WITH APPLICATIONS TO THE BACKHAUL PROFIT FLOWS WITH APPLICATIONS TO THE BACKHAUL PROFIT

MAXIMIZATION PROBLEM AND FIXED CHARGE NETWORK FLOW MAXIMIZATION PROBLEM AND FIXED CHARGE NETWORK FLOW

PROBLEM PROBLEM

Yulan Bai
yulanb@smu.edu

Follow this and additional works at: https://scholar.smu.edu/engineering_managment_etds

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons

Recommended Citation Recommended Citation
Bai, Yulan, "COMPACT FORMULATION OF MULTICOMMODITY NETWORK FLOWS WITH APPLICATIONS
TO THE BACKHAUL PROFIT MAXIMIZATION PROBLEM AND FIXED CHARGE NETWORK FLOW PROBLEM"
(2022). Operations Research and Engineering Management Theses and Dissertations. 15.
https://scholar.smu.edu/engineering_managment_etds/15

This Dissertation is brought to you for free and open access by the Operations Research and Engineering
Management at SMU Scholar. It has been accepted for inclusion in Operations Research and Engineering
Management Theses and Dissertations by an authorized administrator of SMU Scholar. For more information,
please visit http://digitalrepository.smu.edu.

https://scholar.smu.edu/
https://scholar.smu.edu/engineering_managment_etds
https://scholar.smu.edu/engineering_managment_etds
https://scholar.smu.edu/engineering_management
https://scholar.smu.edu/engineering_management
https://scholar.smu.edu/engineering_managment_etds?utm_source=scholar.smu.edu%2Fengineering_managment_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=scholar.smu.edu%2Fengineering_managment_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/engineering_managment_etds/15?utm_source=scholar.smu.edu%2Fengineering_managment_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/

COMPACT FORMULATION OF MULTICOMMODITY NETWORK FLOWS

WITH APPLICATIONS TO THE BACKHAUL PROFIT MAXIMIZATION PROBLEM AND

FIXED CHARGE NETWORK FLOW PROBLEM

Approved by:

Dr. Eli V. Olinick

Associate Professor of OREM

Dr. Ronald L. Rardin

Professor of Industrial Engineering

 University of Arkansas

Dr. Richard S. Barr

 Associate Professor of OREM

Dr. Halit Uster

Professor of OREM

Dr. Aurelie Thiele

 Associate Professor of OREM

COMPACT FORMULATION OF MULTICOMMODITY NETWORK FLOWS

WITH APPLICATIONS TO THE BACKHAUL PROFIT MAXIMIZATION PROBLEM AND

FIXED CHARGE NETWORK FLOW PROBLEM

A Dissertation Presented to the Graduate Faculty of the

Lyle School of Engineering

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Doctor of Philosophy

with a

Major in Operations Research

by

Yulan Bai

(B.S., North China Electric Power University)

(M.E., Tsinghua University)

(M.S., Southern Methodist University)

December 17, 2022

iii

Copyright (2022)

Yulan Bai

All Rights Reserved

iv

ACKNOWLEDGMENTS

 I would like to express my sincere gratitude to my advisor, Dr. Eli Olinick for his continuous

meticulous and rigorous advising, guidance, wisdom, patience and tremendous support. I am

extremely thankful to Dr. Richard Barr for his consistent encouragement, advice, kindness and

great support. I am especially grateful to Dr. Ronald Rardin for his exemplary advising, inspiration,

guide and support. My sincere thanks to Dr. Halit Uster and Dr. Aurelie Thiele for serving on my

supervisory committee and for their advice. I also would like to thank Dr. Sila Cetinkaya for her

encouragement and great support. Last but not least, I would like to thank my family for supporting

me in this unusual journey.

v

Bai, Yulan M.S., OR, Southern Methodist University

 M.E., EE, Tsinghua University

 B.S., North China Electric Power University

Compact Formulation Of Multicommodity Network Flows With Applications

To The Backhaul Profit Maximization Problem And

 Fixed Charge Network Flow Problem

 Advisor: Professor Eli V. Olinick

Dissertation completed Date: December 1, 2022

PhD conferral date: December 17, 2022

 The triples formulation is a compact formulation of multicommodity network flow problems

that provides a different representation of flow than the traditional and widely used node-arc and

arc-path approaches. In the literature, the triples formulation has been applied successfully to the

maximum concurrent flow problem and to a network optimization problem with piecewise linear

convex costs. This dissertation applies the triples formulation to the backhaul profit maximization

problem (BPMP) and the fixed charge network flow problem (FCNF). It is shown that the triples

representation of multicommodity flow significantly reduces the number of variables and

constraints in the mixed integer programming formulations of the BPMP and FCNF. For the

BPMP, this results in significantly faster solution times. For dense problem instances, the triples-

based formulation of FCNF is found to produce better solutions than the node-arc formulation

early in the branch-and-bound process. This observation leads to an effective hybrid method which

vi

combines the respective advantages of the smaller size of the triples formulation and the stronger

linear programming relaxation of the node-arc formulation. In addition to empirical studies, the

dissertation presents new theoretical results supporting the equivalence of the triples formulation

to the node-arc and arc-path formulations.

 The dissertation also proposes a multi-criteria Composite Index Method (CIM) to compare the

performance of alternative integer programming formulations of an optimization problem. Using

the CIM, the decision maker assigns weights to problem instance sizes and multiple performance

measures based on their relative importance for the given application. The weighting scheme is

used to produce a single number that measures the relative improvement of one alternative over

the other and provides a method to select the most effective approach when neither one dominates

the other when tested on different sizes of problem instances. The dissertation demonstrates a

successful application of the CIM to evaluate a series of eleven techniques for improving the node-

arc and triples formulations of the BPMP previously proposed in the literature.

vii

TABLE OF CONTENTS

LIST OF TABLES ... ix

LIST OF FIGURES ... xvi

CHAPTER 1

MULTICOMMODITY NETWORK FLOWS ... 1

1.1 Multicommodity Network Flow Problem Description and Formulations.................... 1

1.2 Literature Review ... 5

1.3 The Triples Formulation ... 9

CHAPTER 2

BACKHAUL PROFIT MAXIMIZATION PROBLEM .. 15

2.1 Introduction ... 15

2.2 Original Formulations of BPMP ... 19

2.3 Design and Analysis Methods of BPMP Experiments ... 24

2.4 Enhancing the Node-Arc Formulation .. 33

2.5 Enhancing the Triples Formulation .. 64

2.6 Best Node-Arc vs. Best Triples Comparison .. 95

2.7 Conclusions ... 96

CHAPTER 3

FIXED CHARGE NETWORK FLOW PROBLEM .. 98

viii

3.1 Introduction ... 98

3.2 FCNF Formulations from the Literature ... 98

3.3 Triples Formulations of FCNF.. 105

3.4 Conclusions ... 119

CHAPTER 4

EXPERIMENTAL STUDY OF THE MULTICOMMODITY FCNF 120

4.1 Computing Environment ... 120

4.2 Data Sources of multicommodity FCNF .. 120

4.3 Experimental Study of Multicommodity FCNF ... 120

4.4 Conclusions ... 138

CHAPTER 5

CONTRIBUTIONS AND FUTURE WORK ... 139

ix

LIST OF TABLES

Table 1. 1 Major multicommodity network flow surveys .. 6

Table 1. 2 Computational results of linear multicommodity network flow problems 7

Table 1. 3 Computational results of mixed integer multicommodity network flow problems 8

Table 2. 1. Computer Hardware Specifications .. 26

Table 2. 2. Weights for Time Speedup ... 28

Table 2. 3. Composite Index Calculation Process for 10 Instances of Size n 30

Table 2. 4. Weight Parameters for the Node-Arc Model .. 31

Table 2. 5. Weight Parameters for the Triples Model... 32

Table 2. 6 Test Results of Original Node-Arc Model for n =10. .. 34

Table 2. 7 Test Results of Original Node-Arc Model for n = 20. ... 35

Table 2. 8 Test Results of Incremental Effect of Conditional Arc-Flow for n =10. 37

Table 2. 9 Test Results of Incremental Effect of Conditional Arc-Flow for n = 20. 37

Table 2. 10 Test Results of Incremental Effect of Conditional Arc-Flow for n = 30. 38

Table 2. 11 Summary of Incremental Effect of Conditional Arc Flow Constraints 38

Table 2. 12 CI and GCI of Conditional Arc-Flow Constraints ... 38

Table 2. 13 Test Results of Incremental Effect of Relax Node-Degree for n = 10. 40

Table 2. 14 Test Results of Incremental Effect of Relax Node-Degree for n = 20. 40

Table 2. 15 Test Results of Incremental Effect of Relax Node-Degree for n = 30. 41

Table 2. 16 Summary of Incremental Effect of Relax Node-Degree Constraints 41

Table 2. 17 CI and GCI of Relax Node-Degree Constraints .. 41

Table 2. 18 Test Results of Incremental Effect of Single-Node Demand Cuts for n = 10. 42

Table 2. 19 Test Results of Incremental Effect of Single-Node Demand Cuts for n = 20. 43

x

Table 2. 20 Test Results of Incremental Effect of Single-Node Demand Cuts for n = 30. 43

Table 2. 21 Summary of Incremental Effect of Single-Node Demand Cuts 44

Table 2. 22 CI and GCI of Single-Node Demand Cuts .. 44

Table 2. 23 Test Results of Incremental Effect of Relax x-z Linking for n = 10. 45

Table 2. 24 Test Results of Incremental Effect of Relax x-z Linking for n = 20. 45

Table 2. 25 Test Results of Incremental Effect of Relax x-z Linking for n = 30. 46

Table 2. 26 Summary of Incremental Effect of Relax x-z Linking Constraints 46

Table 2. 27 CI and GCI of Relax x-z Linking Constraints .. 46

Table 2. 28 Test Results of Incremental Effect of Branching Priority for n =10. 47

Table 2. 29 Test Results of Incremental Effect of Branching Priority for n =20. 48

Table 2. 30 Test Results of Incremental Effect of Branching Priority for n = 30. 48

Table 2. 31 Summary of Incremental Effect of Branching Priority Constraints 49

Table 2. 32 CI and GCI of Branching Priority Constraints .. 49

Table 2. 33 Test Results of Incremental Effect of Lifted MTZ for n= 10. 50

Table 2. 34 Test Results of Incremental Effect of Lifted MTZ for n = 20. 51

Table 2. 35 Test Results of Incremental Effect of Lifted MTZ for n = 30. 51

Table 2. 36 Summary of Incremental Effect of Lifted MTZ Constraints 52

Table 2. 37. CI and GCI of Lifted MTZ Constraints .. 52

Table 2. 38 Test Results of Incremental Effect of MTZ Upper Bound for n = 10. 53

Table 2. 39 Test Results of Incremental Effect of MTZ Upper Bound for n =2 0. 53

Table 2. 40 Test Results of Incremental Effect of MTZ Upper Bound for n = 30. 54

Table 2. 41 Summary of Incremental Effect of MTZ upper bound Constraints........................... 54

Table 2. 42 CI and GCI of MTZ upper bound Constraints ... 55

xi

Table 2. 43 Test Results of Incremental Effect of Cover Cuts for n =10. 56

Table 2. 44 Test Results of Incremental Effect of Cover Cuts for n = 20. 56

Table 2. 45 Test Results of Incremental Effect of Cover Cuts for n = 30. 57

Table 2. 46 Summary of Incremental Effect of Cover Cuts Constraints 57

Table 2. 47 CI and GCI of Cover Cuts ... 58

Table 2. 48 Test Results of Incremental Effect of Pairwise Demand Cuts for n = 10. 59

Table 2. 49 Test Results of Incremental Effect of Pairwise Demand Cuts for n = 20. 59

Table 2. 50 Test Results of Incremental Effect of Pairwise Demand Cuts for n =30. 60

Table 2. 51 Summary of Incremental Effect of Pairwise Demand Cuts 60

Table 2. 52 CI and GCI of Pairwise Demand Cuts ... 61

Table 2. 53 CPU Times for Enhanced Node-Arc Model for n = 40. .. 62

Table 2. 54 Real Times for Enhanced Node-Arc Model for n = 40. .. 63

Table 2. 55 LP Upper Bounds and Ticks for Enhanced Node-Arc Model for n = 40. 63

Table 2. 56 Test Results of Original Triples Model for n = 10. ... 64

Table 2. 57 Test Results of Original Triples Model for n = 20. ... 64

Table 2. 58 Test Results of Original Triples Model for n = 30. ... 65

Table 2. 59 Test Results of Original Triples Model for n = 40. ... 65

Table 2. 60 Test Results of Original Triples Model for n = 50. ... 66

Table 2. 61 Test Results of Incremental Effect of Relaxing Linking Constraints for n =10. 67

Table 2. 62 Test Results of Incremental Effect of Relaxing Linking Constraints for n = 20. 67

Table 2. 63 Test Results of Incremental Effect of Relaxing Linking Constraints for n = 30. 68

Table 2. 64 Test Results of Incremental Effect of Relaxing Linking Constraints for n = 40. 68

Table 2. 65 Test Results of Incremental Effect of Triples Linking Constraints for n = 50. 69

xii

Table 2. 66 Summary of Incremental Effect of Relaxing Triples Linking Constraints 69

Table 2. 67 CI and GCI of Relaxing Triples Linking Constraints .. 70

Table 2. 68 Test Results of Incremental Effect of Enforcing Node-Degree for n =10. 70

Table 2. 69 Test Results of Incremental Effect of Enforcing Node-Degree for n = 20. 71

Table 2. 70 Test Results of Incremental Effect of Enforcing Node-Degree for n = 30. 71

Table 2. 71 Test Results of Incremental Effect of Enforcing Node-Degree for = 40. 72

Table 2. 72 Test Results of Incremental Effect of Enforcing Node-Degree for = 50. 72

Table 2. 73 Summary of Incremental Effect of Enforcing Node-Degree Constraints 73

Table 2. 74 CI and GCI of Enforcing Node-Degree Constraints .. 73

Table 2. 75 Incremental Effect Single-Node Demand Cuts for Triples Model n =10. 74

Table 2. 76 Incremental Effect Single-Node Demand Cuts for Triples Model n = 20. 74

Table 2. 77 Incremental Effect Single-Node Demand Cuts for Triples Model n = 30. 75

Table 2. 78 Incremental Effect Single-Node Demand Cuts for Triples Model n = 40. 75

Table 2. 79 Incremental Effect Single-Node Demand Cuts for Triples Model n = 50. 76

Table 2. 80 Summary of Incremental Effect Single-Node Demand Cuts for Triples Model 76

Table 2. 81 CI and GCI of Incremental Effect Single-Node Demand Cuts for Triples Model 77

Table 2. 82 Incremental Effect of Branching Priority for Triples Model n = 10. 77

Table 2. 83 Incremental Effect of Branching Priority for Triples Model n = 20. 78

Table 2. 84 Incremental Effect of Branching Priority for Triples Model n = 30. 78

Table 2. 85 Incremental Effect of Branching Priority for Triples Model n = 40. 79

Table 2. 86 Incremental Effect of Branching Priority for Triples Model for n = 50. 79

Table 2. 87 Summary of Incremental Effect of Branching Priority for Triples Model 80

Table 2. 88 CI and GCI of Incremental Effect of Branching Priority for Triples Model 80

xiii

Table 2. 89 Incremental Effect of Lifted MTZ in Triples Model for n =10. 81

Table 2. 90 Incremental Effect of Lifted MTZ in Triples Model for n =20. 81

Table 2. 91 Incremental Effect of Lifted MTZ in Triples Model for n = 30. 82

Table 2. 92 Incremental Effect of Lifted MTZ in Triples Model for n = 40. 82

Table 2. 93 Incremental Effect of Lifted MTZ in Triples Model for n = 50. 83

Table 2. 94 Summary of Incremental Effect of Lifted MTZ Constraints on Triples Model 83

Table 2. 95 CI and GCI of Lifted MTZ in Triples Model .. 84

Table 2. 96 Incremental Effect of MTZ upper bound in Triples Model for n =10. 84

Table 2. 97 Incremental Effect of MTZ upper bound in Triples Model for n =20. 85

Table 2. 98 Incremental Effect of MTZ upper bound in Triples Model for n = 30. 85

Table 2. 99 Incremental Effect of MTZ upper bound in Triples Model for n = 40. 86

Table 2. 100 Incremental Effect of MTZ upper bound in Triples Model for n = 50. 86

Table 2. 101 Summary of Incremental Effect of MTZ upper bound Constraints 87

Table 2. 102 CI and GCI of MTZ Upper Bound in Triples Model .. 87

Table 2. 103 Incremental Effect of Pairwise Demand Cuts in Triples Model for n = 10. 88

Table 2. 104 Incremental Effect of Pairwise Demand Cuts in Triples Model for n = 20. 88

Table 2. 105 Incremental Effect of Pairwise Demand Cuts in Triples Model for n = 30. 89

Table 2. 106 Incremental Effect of Pairwise Demand Cuts in Triples Model for n = 40. 89

Table 2. 107 Incremental Effect of Pairwise Demand Cuts in Triples Model for n = 50. 90

Table 2. 108 Summary of Incremental Effect of Pairwise Demand Cuts in Triples Model 90

Table 2. 109 CI and GCI of Pairwise Demand Cuts Constraints.. 91

Table 2. 110 Incremental Effect of Cover Cuts in Triples Model for n =10. 91

Table 2. 111 Incremental Effect of Cover Cuts in Triples Model for n = 20. 92

xiv

Table 2. 112 Incremental Effect of Cover Cuts in Triples Model for n = 30. 92

Table 2. 113 Incremental Effect of Cover Cuts in Triples Model for n = 40. 93

Table 2. 114 Incremental Effect of Cover Cuts in Triples Model for n = 50. 93

Table 2. 115 Summary of Incremental Effect of Cover Cuts in the Triples Model 94

Table 2. 116 CI and GCI of Cover cut Constraints ... 94

Table 2. 117 Best Node-Arc vs. Best Triples ... 96

Table 3. 1 Comparison of Variable Counts .. 118

Table 3. 2 Comparison of Constraint Counts.. 119

Table 4. 1 Computer Hardware Specifications ... 120

Table 4. 2 Summary of the 9 easy instances using Node-Arc WO ... 122

Table 4. 3 Summary of the 9 easy instances using Node-Arc W ... 122

Table 4. 4 Summary of the 9 easy instances using Straightforward Triples 123

Table 4. 5 Summary of the 9 easy instances using Hybrid procedure .. 123

Table 4. 6 Comparison of the 9 easy instances using Node-Arc models W vs. WO 124

Table 4. 7 Comparison of the 9 easy instances using Triples vs. Node-Arc WO 125

Table 4. 8 Comparison of the 9 easy instances using Triples vs. Node-Arc W 125

Table 4. 9 Size comparison of the three formulations of multicommodity FCNF 126

Table 4. 10 Comparison of the 9 easy instances using Hybrid vs. Node-Arc W........................ 127

Table 4. 11 Comparison of the 9 easy instances using Hybrid vs. Node-Arc WO 128

Table 4. 12 Comparison of Hybrid vs. Triples ... 128

Table 4. 13 Comparison of Hybrid vs. Node-Arc W/ WO/Triples for Hard Instances (I) 133

Table 4. 14 Comparison of Hybrid vs. Node-Arc W/ WO/Triples for Hard Instances (II) 134

xv

Table 4. 15 Cost Comparison of Triples vs. Hybrid/Node-Arc W/ Node-Arc WO (1800s) 136

Table 4. 17 Cost Comparison of Triples vs. Hybrid/Node-Arc W/ Node-Arc WO (7200s) 137

xvi

LIST OF FIGURES

Figure 1 Four Scenarios for Flow on arc 𝑖, 𝑗 with Triples Variables. ... 12

Figure 2 BPMP example. .. 15

Figure 3 BPMP location-generation diagram. ... 25

Figure 4 7-node original network .. 109

Figure 5 7-node network with added singletons .. 109

Figure 6 Example optimal triples solution ... 114

Figure 7 MIP value versus solution time for instance C46 .. 129

Figure 8 MIP value versus solution time for instance C54 .. 130

Figure 9 MIP value versus solution time for instance C56 .. 130

Figure 10 MIP value versus solution time for instance C61 ... 131

Figure 11 MIP value versus solution time for instance C62 ... 131

Figure 12 MIP value versus solution time for instance C63 ... 132

Figure 13 MIP objective value versus solution time for instance C64 132

1

CHAPTER 1

MULTICOMMODITY NETWORK FLOWS

Introduction

 Multicommodity network flows are flows consisting of more than one commodity. While one

commodity flow, also best known as single commodity flow, has been studied widely in the

literature, multicommodity flows leave more space to be explored due to being relatively more

complex. An interesting niche lies in the formulation. Apart from the two well-known standard

multicommodity formulations, the node-arc formulation and the arc-path formulation, there is a

little-known formulation, called the triples formulation. The triples formulation originated about

thirty years ago [1], but first appeared in a refereed journal publication about five years ago [2] (it

appeared as the “overflow model” about ten plus years ago [3]). We think that, like a raw jade, the

beauty of triples formulation was neglected and should be mined more profoundly. That is the

major theme of this dissertation: to find more applicable and favorable scenarios for the triples

formulation in multicommodity network flow problems.

1.1 Multicommodity Network Flow Problem Description and Formulations

1.1.1 Problem Description

 The multicommodity network flow problem is defined as seeking optimal flow in a network

while satisfying multicommodity demands and not violating the arc capacity constraints and

possible other side constraints. In the real world, the commodities can be physical goods, such as

parcels, packages, vehicles, etc.; they can also be intangible entities such as telecommunication

2

signals, data, etc. These commodities need to be transmitted via a common network from their

source nodes to their sink nodes. Most of the time, these commodities have to interact with each

other in some way, such as not exceeding the total arc capacity limit when appearing on the same

arc at the same time, with the objective of minimizing the total cost or maximizing the total profit.

1.1.2 Problem Formulations

 There are two standard multicommodity formulations, node-arc formulation and arc-path

formulation.

1.1.2.1 Notation Common to Both formulations

Sets and parameters

𝐺 = (𝑁, 𝐴) The network

𝑁 The set of all nodes in 𝐺

𝐴 The set of all arcs in 𝐺

𝐻 The set of all commodities

𝑠ℎ The source or origin of commodity ℎ ∈ 𝐻

𝑡ℎ The terminal or destination of commodity ℎ ∈ 𝐻

𝑐𝑖𝑗
ℎ Per unit flow cost on arc (𝑖, 𝑗) of commodity ℎ ∈ 𝐻

 𝑑ℎ The total demand units of commodity ℎ ∈ 𝐻

𝑏𝑖
ℎ The supply/demand at node 𝑖 of commodity ℎ

 (𝑏𝑖
ℎ  =  𝑑ℎ if 𝑖  =  𝑠ℎ, 𝑏𝑖

ℎ  =   − 𝑑ℎ if 𝑖  =  𝑡ℎ, and 𝑏𝑖
ℎ  =  0 otherwise).

𝑢𝑖𝑗 The arc capacity on arc (𝑖, 𝑗)

3

1.1.2.2 Node-Arc Formulation

Decision variables

𝑥𝑖𝑗
ℎ The flow on arc (𝑖, 𝑗) of commodity ℎ

Objective

 min ∑ ∑ 𝑐𝑖𝑗
ℎ 𝑥𝑖𝑗

ℎ
(𝑖,𝑗)∈𝐴ℎ∈𝐻 (1.1)

Subject to

∑ 𝑥𝑖𝑗
ℎ

(𝑖, 𝑗)∈𝐴 − ∑ 𝑥𝑗𝑖
ℎ =  𝑏𝑖

ℎ
(𝑗, 𝑖)∈𝐴 ∀ 𝑖 ∈ 𝑁, ∀ ℎ ∈ 𝐻 (1.2)

∑ 𝑥𝑖𝑗
ℎ

ℎ∈𝐻 ≤ 𝑢𝑖𝑗 ∀ (𝑖, 𝑗) ∈ 𝐴 (1.3)

𝑥𝑖𝑗
ℎ ≥ 0 ∀ (𝑖, 𝑗) ∈ 𝐴 , ∀ ℎ ∈ 𝐻 (1.4)

Formulation explanation

 The objective function (1.1) minimizes the total cost, which is equal to the summation of the

cost incurred by each commodity traversing each arc. Constraints (1.2) are node balance

constraints ensuring that for each node and each commodity the total outgoing flow minus the total

incoming flow is equal to the supply/demand of that node for that commodity; it is worthwhile to

note that the supply/demand is zero if 𝑖 is not equal to 𝑠ℎ or 𝑡ℎ, and 𝑏𝑠ℎ
ℎ = −𝑏𝑡ℎ

ℎ = 𝑑ℎ. Constraints

(1.3) state that for each arc the total flow for all commodities should be less than or equal to the

arc capacity. Constraints (1.4) are to ensure non-negative arc flows.

4

1.1.2.3 Arc-Path formulation

Sets and parameters

𝑃ℎ The set of all directed paths from source node 𝑠ℎ to sink node 𝑡ℎ of commodity ℎ

𝛿𝑖𝑗(𝑝) Arc-path indicator, equals 1 if arc (𝑖, 𝑗) is contained in path 𝑝 and 0 otherwise

𝑐ℎ(𝑝) Per unit cost of flow on path 𝑝 for commodity ℎ

Decision variables

𝑓(𝑝) The units of flow on path 𝑝 ∈ 𝑃ℎ of commodity ℎ

Objective

min ∑ ∑ 𝑐ℎ(𝑝) 𝑓(𝑝) 𝑝∈𝑃ℎℎ∈𝐻 (1.5)

Subject to

∑ ∑ 𝛿𝑖𝑗(𝑝)𝑓(𝑝) 𝑝∈𝑃ℎℎ∈𝐻 ≤ 𝑢𝑖𝑗  
  ∀ (𝑖, 𝑗) ∈ 𝐴 (1.6)

∑ 𝑓(𝑝)𝑝∈𝑃𝑘 = 𝑑ℎ   ∀ ℎ ∈ 𝐻 (1.7)

𝑓(𝑝)  ≥ 0  ∀ ℎ ∈ 𝐻, ∀ 𝑝 ∈ 𝑃ℎ (1.8)

Formulation explanation

 The objective function (1.5) minimizes the total cost, which is equal to the summation of the

cost incurred by the flow on each commodity path. Constraints (1.6) state that for each arc the total

flow for all commodity paths should be less than or equal to the arc capacity. Constraints (1.7) are

demand constraints for each commodity. Constraints (1.8) are to ensure non-negative path flows.

5

1.1.2.4 Comparison of Node-Arc and Arc-Path formulations

 Problem size comparison [4]: The node-arc formulation has |𝐻||𝐴| variables and |𝑁||𝐻| + |𝐴|

nontrivial constraints; while the arc-path formulation has ∑ |𝑃ℎ|ℎ∈𝐻 variables and |𝐻| + |𝐴|

nontrivial constraints. Many applications regard origin-destination (OD) pairs as commodities; so

the number of commodities |𝐻| can be as large as |𝑁|2 − |𝑁 | in the worst case. Under such

circumstances, the node-arc formulation will have 𝑂(|𝑁|3) constraints. Even in the worst case,

the arc-path formulation has 𝑂(|𝑁|2) constraints. Therefore, the node-arc formulation is suitable

for problems of smaller size, whereas the arc-path formulation with column generation techniques

can deal with large-scale problems.

1.2 Literature Review

 Since the introduction of the multicommodity network flow problems about 70 years ago by

Ford and Fulkerson [5] and Hu [6], great progress has been made both in identifying a diversity of

applications and effective solving methods. Applications can be categorized into network routing

problems and network design problems [4] [7]; and network routing problems can be further

divided into message routing in telecommunication, scheduling and routing in logistics and

transportation, production scheduling and planning, and other routing problems. Solution methods

include basis partitioning methods, resource-directive methods, price-directive methods, primal-

dual methods, approximation methods, interior-point methods, and convex programming methods,

etc. [8].

 Table 1.1 summarizes four major surveys [4] [8] [9] [10] covering over 500 papers published in

the past 70 years. Table 1.2 is a representative summary of computational results of linear cost

multicommodity network flow problems based on the Kennington’s [9] survey table I. Table 1.3

6

is a representative summary of computational results of mixed integer multicommodity network

flow problems.

Table 1. 1 Major multicommodity network flow surveys

Survey Number of Papers Years Spanning

Kennington (1978) [9] 86 1952 1977

Wang I (2018) [4] 65 1980 2018

Wang II (2018) [8] 140 1978 2005

Salimifard & Bigharaz (2020) [10] 266 2000 2020

Total 557 1952 2020

7

Table 1. 2 Some computational results of linear multicommodity network flow problems

No. Reference Problem type
Solution

technique
|N|/|A|/|K|

Problem size for

corresponding LP
Machine

Time

(sec)

No. of

Rows

No. of

Columns

1
Tomlin

(1966) [11]
Minimal cost

price-directive

decomposition
NR

3,226

4,788
CDC3600 144

2
Swoveland

(1971) [12]

distribution

problem

price-directive

decomposition
NR

3,011

4,704
IBM 360/67 608

3
Grigoriadis

(1972) [13]

multicommodity

transportation

partitioning (dual

simplex)
NR

309

1,078
IBM 360 NR

4
Swoveland

(1973) [14]

distribution

problem

price-directive

decomposition
15/48/210

3,438

10,080
IBM 360/67 383

5
Chen

(1974) [15]
maximal flow

price-directive

decomposition
50/200/20

1,200

4,000
CDC 6400 190

6
Held
(1974) [16]

maximal flow
resource-directive
decomposition

30/870/10

1,170

8,700
NR NR

7
Kennington

(1977) [17]

multicommodity

transportation

partitioning

(primal simplex)
13/13/13

507

2,704
CDC Cyber 72 1,536

8
Kennington

(1977) [18]

multicommodity

transportation

resource-directive

heuristic
12/12/2,012

432

2,160
CDC Cyber 72 370

9
Castro

(2000) [19]

Minimal cost of

multicommodity
flow problem

specialized

interior-point
algorithm

13,366/49,742/11 2.E+05 7.E+05 Sun/Ultra2 2200 17,222

10
Babonneau

(2006) [20]

linear

multicommodity
flow problem

partial Lagrangian

relaxation

13,389/40,003/

1,151,166
2.E+10 5.E+10

Pentium 4, 2.8

GHz, 2 Gb
619

11
Alvelos
(2007) [21]

planar

multicommodity

flow problem

column generation
algorithm

600/2,400/1,800 1.E+06 4.E+06
Pentium 4, 2
GHz, 1 GB

34

12
Dong

(2015) [2]

Maximum
Concurrent

Flow Problem

dual simplex

method and

interior point
method

120/1,012/1,801 1.E+05 7.E+03
Dell R710,

3.4GHz , 96GB
159

13
Dai (2015)
[22]

Multi-

commodity flow

problems

column

generation;
Lagrangian

relaxation

183/2,995/4,552 8.E+05 1.E+07 NR 4,481

8

Table 1. 3 Some computational results of mixed integer multicommodity network flow problems

No

.
Reference

Problem

type

Solution

technique
|N|/|A|/|K|

Problem size for

corresponding LP

Machine

Sof

twa

re

Heurist

ic gap

(%)

Time

(sec)
No. of

Rows

No. of

Colum

ns

1
Barnhart

(2000) [23]

OD integer
multicommo

dity flow

column-

generation,br

anch-and-
price-and-cut

50/130/585 69 5830
IBM

RS6000/590

MINT

O 2.1
and

CPLE

X 3.0.

- 3600

2
Gamst

(2010) [24]

minimum
cost

multicommo

dity k-
splittable

flow

branch-and-

price

150/850/223

9
NR NR

 2.66 GHz
Intel Xeon 8

GB

CPLE
X

10.2

NR NR

3
Gendron

(2014) [25]

multicommo
dity

capacitated

fixed-charge
network

design

branch-and-

price-and-cut
100/700/400 NR NR

 Intel Xeon
X5660 2.80

GHz

CPLE
X

12.3

NR NR

4
Chouman

(2016) [26]

multicommo
dity

capacitated

fixed-charge
network

design

cut-set-based

inequalities

in a cutting-
plane

30/700/400 NR NR

Dual-Core

AMD Opteron

(single thread)
8 GB

CPLE

X 12
17.67 7.8

5
Gendron

(2016) [27]

Piecewise

Linear
Integer

Multicommo

dity Network

Flow

discretization 25/150/100 NR NR

Intel Xeon
X5675, 3.07

GHz, single-

thread

CPLE
X

12.5.1

.0

1 353

6

Balakrishna

n (2017)

[28]

Minimal cost

of network

design

polyhedral 80/320/240 2.E+05 8.E+04
Intel Core i5

4 GB

CPLE
X

12.5.1

2.4 166

7

Mohammad

i (2017)

[29]

hazardous

material
transportatio

n

integration

of chance-
constrained

programing

with a
possibilistic

programing

70/NA/NA NR NR NR
GAM

S
NR 3723

8
Oğuz

(2018) [30]

restricted
continuous

facility

location

Benders

decompositio
n

NR/NR/72 1.E+09 1.E+06

 IRIDIS 4 dual

2.6 GHz Intel
64 GB

CPLE

X
12.5

0 119.6

9
Bartolini

(2018) [31]

capacitated

truck-and-

trailer
routing

 branch-and-

cut
31/NR/2 NR NR

Intel Core i7-

3770, 3.40

GHz 16 GB

CPLE

X

12.7

0 NR

10
Barr (2021)

[32]
fixed-charge
network flow

 Ghost Image

with Tabu

search

5000/100000
/1

1.E+05 1.E+05

Dell R720

Dual Six Core

Intel Xeon @
3.5 GHz ,252

GB,single-

thread

CPLE

X

12.8

NR 23.56

11
Barr (2021)

[33]

Origin-
destination

integer

multicommo
dity flow

 Invisible-

Hand

Heuristic

1920/23040/
106338

2.E+08
2.5E+0

9

Dell R720

Dual Six Core

Intel Xeon @
3.5 GHz ,252

GB,single-

thread

CPLE

X
12.6.0

.0

NR 3200

9

 From Table 1.2, we can see that the scale of multicommodity flow LP’s that researchers

attempt to solve has grown by multiple orders of magnitude since the 1970s. The number of nodes,

arcs, and commodities in the tested LP instances grew from the tens to tens of thousands, and in

the case of arcs, to more than 1 million. From Table 1-3, we can see that the scale of

multicommodity-flow-based MIPs has grown from tens of arcs, and hundreds of nodes and

commodities in 2000 [23] to thousands of nodes and arcs, and hundreds of thousands of

commodities in recent years. Our hope is that by adopting the triples formulation we can achieve

an even greater increase in scale.

1.3 The Triples Formulation

1.3.1 The History of Triples

 In 1986, the triples concept was first introduced in a formulation of the maximum concurrent

flow problem (MCFP) by Matula in an unpublished manuscript [1]. In 1997, Ketabi applied the

same concept to multicommodity flow in complete and undirected graphs, but called it “overflow”

in her Ph.D. thesis [34]. In 2006, Ketabi published the first peer-reviewed paper employing the

triples concept [3]. Ketabi’s computational study showed that the revised simplex method solved

the triples model at an average of about three times faster than the arc-path model. In 2015, it was

rigorously proved by Dong et al. that the triples formulation was equivalent to the traditional edge-

path and node-edge formulation for the maximum concurrent problem [2]. This was an important

contribution because it provided the first proof of equivalence between the triples and standard

formulations. Dong et al. found that CPLEX solved nearly 90% of the MCFP instances in their

study faster with the triples formulation than with either the node-arc or arc-path formulations, and

solved dense instances up to 10 times faster with the triples than with the traditional formulations.

10

In March 2020, Dong et al. posted a computational study comparing a node-arc and triples-based

formulation of the backhaul profit maximization problem (BPMP) on arXiv [35]. The study was

subsequently accepted for publication in the INFORMS Journal On Optimization and published

online on July 28, 2022 [36] . In summer 2020, Rardin, Bai and Olinick applied the triples concept

to the fixed charge network flow problems (FCNF) and achieved some promising results. It should

be noted that Powell and Sheffi [37] described an optimization problem involving the fundamental

triples concept 1983. But as described in the next section, Matula’s 1986 manuscript appears to be

the first to use that concept to derive a formulation for multicommodity flow.

1.3.2 The Essence of Triples

 In the node-arc and arc-path formulations, the primary decision variables represent the amount

of flow of a particular commodity on a given arc or on an entire path, respectively. In the triples

formulation, the primary decision variables are defined for node triples (i, j, k) where i, j, and k are

distinct nodes and (i, k) is an arc in A, and 𝑗 is a destination node, that represent the total amount

of flow sent from node 𝑖 destined to node 𝑗 along the set of paths composed of direct arc (i, k)

followed by a path from node k to node j. Note that the triples formulation of the multicommodity

flow problem use the notation in 1.1.2 and the following additional notations:

Sets and parameters

𝐴̅ = {(𝑖, 𝑗): 𝑖 ≠ 𝑗, 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, (𝑖, 𝑗) ∉ 𝐴} The set of virtual arcs

𝜃𝑖𝑗 The total flow on arc (𝑖, 𝑗)

𝐷 = {𝑡ℎ: ℎ ∈ 𝐻} The set of all terminal/destination nodes

𝑑𝑖𝑗 The demand from node 𝑖 to node 𝑗 (i.e., 𝑑𝑠ℎ𝑡ℎ
=  𝑑ℎ for commodity ℎ ∈  𝐻)

𝑇 = {(𝑖, 𝑗, 𝑘): 𝑖 ∈ 𝑁, 𝑗 ∈ 𝐷\{𝑖}, 𝑘 ∈ 𝑁\{ 𝑖, 𝑗}, (𝑖, 𝑘) ∈ 𝐴} The set of node triples

11

Decision variables

𝑧𝑖𝑗
𝑘 ≥ 0 ∀(𝑖, 𝑗, 𝑘) ∈ 𝑇 Triples variables

For convenience, we define 𝑢𝑖𝑗 = 0 for (𝑖, 𝑗) ∈ 𝐴̅. Also, we use the term arc to refer to the

ordered node pair (𝑖, 𝑗) even when (𝑖, 𝑗) is a virtual arc.

Representing flow with Triples

 The triples formulation is based on a description of flow where triples variable 𝑧𝑖𝑗
𝑘 for node triple

(𝑖, 𝑗, 𝑘) represents the total flow on all paths from node 𝑖 to node 𝑗 with arc (𝑖, 𝑘) as the first arc.

When 𝑧𝑖𝑗
𝑘 is positive, we say that 𝑧𝑖𝑗

𝑘 units of flow from node 𝑖 to node 𝑗 are diverted through node

𝑘. It is important to note that variable 𝑧𝑖𝑗
𝑘 does not specify how the flow travels from node 𝑘 to

node 𝑗, and that flow that is not diverted (i.e., direct flow) is represented implicitly; that is, there

is no variable in the triples formulation that explicitly represents the amount of flow from node 𝑖

to node 𝑗 sent on arc (𝑖, 𝑗). Nodes 𝑖, 𝑗, and 𝑘 in triple (𝑖, 𝑗, 𝑘) ∈ 𝑇 correspond to the “from”, “to”,

and “via” nodes, respectively.

 Figure 3 illustrates the calculation of the total flow on arc (𝑖, 𝑗), which can be derived from the

triples variables as follows:

(1) Demand from node 𝑖 to node 𝑗 puts 𝑑𝑖𝑗 units of flow on arc (or virtual arc) (𝑖, 𝑗).

(2) 𝑧𝑖𝑘
𝑗

 units of flow are diverted off arc (𝑖, 𝑘) onto arc (𝑖, 𝑗) (and paths from 𝑗 to 𝑘).

(3) 𝑧𝑘𝑗
𝑖  units of flow are diverted off arc (𝑘, 𝑗) onto arc (𝑘, 𝑖) and paths from 𝑖 to 𝑗, including arc

(𝑖, 𝑗) itself as a single-arc path.

(4) 𝑧𝑖𝑗
𝑘 units of flow are diverted off arc (𝑖, 𝑗) onto arc (𝑖, 𝑘) and paths from node 𝑘 to node 𝑗.

Therefore, the total flow on arc (𝑖, 𝑗) is:

𝜃𝑖𝑗 = 𝑑𝑖𝑗 + ∑ 𝑧𝑖𝑘
𝑗

{𝑘∈𝑁:(𝑖,𝑘,𝑗)∈𝑇} + ∑ 𝑧𝑘𝑗
𝑖

{𝑘∈𝑁:(𝑘,𝑗,𝑖)∈𝑇} − ∑ 𝑧𝑖𝑗
𝑘

{𝑘∈𝑁:(𝑖,𝑗,𝑘)∈𝑇}  . (1.9)

12

Figure 1 Four Scenarios for Flow on arc (𝑖, 𝑗) with Triples Variables.

Arc (𝑖, 𝑗) is represented in solid black. Flow diversions contributing to the net flow on (𝑖, 𝑗) are

represented in red with dashed arcs representing flow along paths between the end points.

The triples formulation of multicommodity flow (for the special case where the cost per unit

flow on arc (𝑖, 𝑗) is the same for all commodities) is:

Objective

min ∑  𝑐𝑖𝑗 𝜃𝑖𝑗(𝑖, 𝑗) ∈𝐴 (1.10)

Subject to

𝜃𝑖𝑗 = 𝑑𝑖𝑗 + ∑ 𝑧𝑖𝑘
𝑗

{𝑘∈𝑁:(𝑖,𝑘,𝑗)∈𝑇} + ∑ 𝑧𝑘𝑗
𝑖

{𝑘∈𝑁:(𝑘,𝑗,𝑖)∈𝑇} − ∑ 𝑧𝑖𝑗
𝑘

{𝑘∈𝑁:(𝑖,𝑗,𝑘)∈𝑇}    ∀(𝑖, 𝑗) ∈ 𝐴  ∪ 𝐴̅ (1.11)

𝜃𝑖𝑗 ≤ 𝑢𝑖𝑗     ∀(𝑖, 𝑗) ∈ 𝐴  ∪ 𝐴̅ (1.12)

𝜃𝑖𝑗 ≥ 0       ∀(𝑖, 𝑗) ∈ 𝐴 ∪ 𝐴̅ (1.13)

𝑧𝑖𝑗
𝑘 ≥ 0 ∀ (𝑖, 𝑗, 𝑘) ∈ 𝑇 (1.14)

The objective function (1.10) minimizes the total cost, which is equal to the summation of the

cost incurred by the total flow on each arc. Constraints (1.11) state the relationship between arc

flow, node pair demand, and triples. Constraints (1.12) state that for each arc the total arc flow

should be less than or equal to the arc capacity. Constraints (1.13) are to ensure non-negative arc

flows. Constraints (1.14) are to ensure non-negative triples flows.

13

It should be noted that the concept of flow diversion in the derivation of the triples formulation

models a routing policy of using load plans in freight consolidation. As described in [38] [39] [40]

[37], a load plan is essentially a binary triples variable that indicates whether or not flow from

source node 𝑖 to sink node 𝑗 is diverted through intermediate node 𝑘. Typically, models in the

node-plan literature constrain ∑ 𝑧𝑖𝑗
𝑘

𝑘 = 1 so that all flow from 𝑖 to 𝑗 is diverted through the same

𝑘. This results in a routing plan in which all flow destined to a given source node 𝑗 is routed along

an in-tree with node 𝑗 as the root, which is a practice used to simplify operations in the freight

consolidation industry. In the context of this dissertation, this way of using triples is a heuristic for

solving a particular type of multicommodity flow problem.

Proof of node balance in the triples formulation

 For the maximum concurrent flow problem, Dong et al. [2] describe algorithms that derive an

equivalent solution to the arc-path formulation from the triples formulation, and vice versa. Here

we show that the triples constraints imply that the total flow at node 𝑖 is balanced. That is,

∑ θ𝑖𝑗𝑗∈𝑁∖{𝑖} −   ∑ θ𝑗𝑖𝑗∈𝑁∖{𝑖} = ∑ 𝑑𝑖𝑗𝑗∈𝑁∖{𝑖}   −   ∑ 𝑑𝑗𝑖𝑗∈𝑁∖{𝑖} .

Observe that for all (𝑖, 𝑗, 𝑘)  ∈  𝑇, triples variable zij
k appears in exactly three triples constraints: it

has coefficient +1 in the constraints for (𝑖, 𝑘) and (𝑘, 𝑗) and coefficient -1 in the constraint for

(𝑖, 𝑗). Now, consider the total flow going out of node 𝑖, ∑ 𝜃𝑖𝑗𝑗∈𝑁∖{𝑖} . From the observation above,

triples variable 𝑧𝑖𝑗
𝑘 appears twice in the summation of the triples constraints corresponding to

∑ 𝜃𝑖𝑗𝑗∈𝑁∖{𝑖} : the triples constraint for arc (𝑖, 𝑗) contributes −𝑧𝑖𝑗
𝑘 to the summation and the triples

constraint for arc (𝑖, 𝑘) contributes 𝑧𝑖𝑗
𝑘 . Likewise, arc (𝑖, 𝑗) contributes 𝑧𝑖𝑘

𝑗
 to the summation and

the triples constraint for arc (𝑖, 𝑘) contributes −𝑧𝑖𝑘
𝑗

 . Thus, all triples variables of the form 𝑧𝑖𝑗
𝑘 or

14

𝑧𝑖𝑘
𝑗

 are cancelled out in the summation. This implies that the total flow going out of node 𝑖 is given

by ∑ θ𝑖𝑗𝑗∈𝑁∖{𝑖} = ∑ 𝑑𝑖𝑗𝑗∈𝑁∖{𝑖} + ∑ ∑ 𝑧𝑖
𝑣1𝑣2𝑣2∈𝑁∖{𝑖,𝑣1}𝑣1∈𝑁∖{𝑖} .

By a similar argument, the total flow going into node 𝑖 is given by

 ∑ θ𝑗𝑖𝑗∈𝑁∖{𝑖} = ∑ 𝑑𝑗𝑖𝑗∈𝑁∖{𝑖} + ∑ ∑ 𝑧𝑣1𝑣2
𝑖

𝑣2∈𝑁∖{𝑖,𝑣1}𝑣1∈𝑁∖{𝑖} .

Therefore ∑ θ𝑖𝑗𝑗∈𝑁∖{𝑖} −   ∑ θ𝑗𝑖𝑗∈𝑁∖{𝑖} = ∑ 𝑑𝑖𝑗𝑗∈𝑁∖{𝑖}   −   ∑ 𝑑𝑗𝑖𝑗∈𝑁∖{𝑖}  as required for flow balance

at node 𝑖.

 The rest of this dissertation is structured as follows. In Chapter 2, we give a complete description

of the BPMP results summarized in [35], and propose a new framework for multi-criteria

performance evaluation of competing approaches to solving mixed integer programming

problems, the Composite Index Method (CIM) [41]. In Chapter 3 we propose two triples-based

formulations of the fixed charge network flow problem (FCNF). Chapter 4 summarizes a

computational experiment comparing the triples formulation of FCNF to the node-arc formulation,

and hybrid solution procedure that uses both formulations. Chapter 5 summarizes the contributions

of the dissertation and gives directions for future research with the triples formulation.

15

CHAPTER 2

BACKHAUL PROFIT MAXIMIZATION PROBLEM

2.1 Introduction

 The Backhaul Profit Maximization Problem (BPMP) requires simultaneously solving two

problems: (1) determining how to route an empty delivery vehicle back from its current location

to its depot by a scheduled arrival time, and (2) selecting a profit-maximizing subset of delivery

requests between various locations on the route subject to the vehicle's capacity. Figure 1 illustrates

a BPMP instance and solution.

Figure 2 BPMP example.

 Figure 1 shows a network representation of the problem with an empty vehicle at a location

represented by node 1. The vehicle weighs 1 ton and has a carrying capacity of Q = 2 tons of cargo.

16

The vehicle needs to return to its depot, represented by node 6, within a fixed period of time. The

vehicle’s average traveling speed limits the route to node 6 to a maximum distance of 7 miles.

The vehicle can make extra money by accepting delivery requests to pick up cargo at the locations

represented by nodes 1 through 5, destined for locations represented by nodes 2 through 6 as long

as it can get back to the depot on time. The tuple (dij, wij)
1 indicates the distance (in miles) and the

size of the delivery request (in tons) from node i to node j. The solution indicated in Figure 1 routes

the vehicle on the path represented by the arc sequence (1, 3), (3, 5), (5, 6). The dashed, red arcs

in the figure indicate that vehicle makes the following pickups and dropoffs:

 Node 1: pick up 0.2 tons destined for node 3, 0.5 tons destined for node 5, and 0.3 tons destined

for node 6. Carry one ton of cargo to one mile to Node 3.

 Node 3: drop off 0.2 tons from node 1; pick up 0.6 tons destined for node 5 and another 0.6

tons destined for node 6. Carry two tons of cargo three miles to Node 5.

 Node 5: drop off 0.5 and 0.6 tons from nodes 1 and 3, respectively; Pick up 0.8 tons destined

for node 6. Carry 1.7 tons of cargo 2.5 miles to Node 6.

 Node 6: drop off 0.3, 0.6, and 0.8 tons from nodes 1, 3, and 5, respectively.

 The net profit for the solution indicated in Figure 1 is the revenue generated from the accepted

delivery requests minus the transportation costs. In the literature, the revenue for delivering wij

truckloads from location i to location j is assumed to be proportional to the direct distance, dij, and

the transportation cost is assumed to be function of the total distance traveled (6.5 miles in the

Figure 1 example), and the total ton-miles carried (e.g., 11.25 ton-miles in Figure 1). The time

1 For convenience this chapter uses the notation from [35] and [41]. The notation in this chapter should be

considered separately from the notation in Chapters 1, 3, and 4.

17

constraint is treated as a distance constraint by assuming a given average driving speed for the

vehicle, in our example the limit is a maximum distance of 7 miles.

 To the best of our knowledge, BPMP was first introduced by Dong et al. (2006) [42] who

presented a heuristic for a special case where wij = Q , for all delivery requests. Yu and Dong (2013)

[43] considered the general case in which wij  Q ; the delivery requests are allowed to be equal to

or less than the vehicle capacity (less than truck load, LTL). They proposed a genetic algorithm

and a mixed integer programming formulation based on the traditional node-arc model of

multicommodity flow that we refer to as the node-arc formulation of BPMP. In her dissertation,

Dong (2015) [44] proposed an alternative mixed integer programming formulation of BPMP called

the triples formulation based on a compact formulation of multicommodity flow originally

proposed by Matula (1986) [1] for the maximum concurrent flow problem. Thus, there are two

kinds of BPMP mixed integer programming formulations (also called models, used

interchangeably hereinafter): node-arc and triples. Dong (2015) [44] showed that the triples

formulation has a significantly smaller constraint matrix and stronger linear programming (LP)

relaxation than the node-arc formulation, and presented computational results in which CPLEX

solved problem instances with up to 20 locations 90 to 2,000 times faster with the triples

formulation. Dong (2015) [44]was unable to solve larger problems with the node-arc formulation,

but solved problems with up to 40 locations in an average of 90 minutes of CPU time using the

triples formulation.

 In this study we enhance both models by adapting techniques from the literature on related

problems and applying our own insights into BPMP, and present results from an extensive

empirical study in order to make a more comprehensive comparison of the two models and

strengthen the case for the triples model. We review the models in Section 2 and describe the

18

design and analysis of our experiments in Section 3. Sections 4 and 5 describe the development

of our enhanced node-arc and triples formulations, respectively. In Section 6 we compare the

performance of CPLEX with the two enhanced formulations.

 Our study makes the following contributions to the BPMP literature:

1. We solve larger problems than previously solved in the literature with our enhanced

formulations: 40 vs. 20 locations and 50 vs. 40 locations for the node-arc and triples models,

respectively.

2. We show that our enhanced models require significantly less time to solve than the original

models proposed in the literature.

3. We develop a multi-criteria Composite Index Method (CIM) to compare the effectiveness

of two models for the same problem.

4. We strengthen the case made by Dong (2015) [44] and Dong et al. (2015) [2] for using the

triples representation of multicommodity flow in other appropriate applications besides

BPMP.

19

2.2 Original Formulations of BPMP

 The following presentation of the node-arc and triples formulations is adapted from Yu and

Dong (2013) [43] and Dong (2015) [44].

2.2.1 Notation Common to Both Models

Sets and parameters

𝑉 A set of locations (nodes) including the origin (1) and destination (𝑛), {1,2, ⋯ , 𝑛}

𝐴 A set of arcs, {(𝑖, 𝑗): 𝑖 ≠ 𝑗, 𝑖 ∈ 𝑉\{𝑛}, 𝑗 ∈ 𝑉\{1}}

𝑝 Unit price charged to accept delivery request, dollars/mile/ton

 𝑐 Unit travel cost incurred, dollars/mile/ton

Q The capacity of the vehicle, tons

𝑣 The weight of the vehicle, tons

D The maximum distance the vehicle can travel, miles

𝑤𝑘𝑙 The weight of a customer’s delivery request from 𝑘 to 𝑙, tons

𝑑𝑘𝑙 The Euclidean distance from 𝑘 to 𝑙, miles

Common decision variables for both models

𝑥𝑖𝑗 ∈ {0,1}： 1, if the vehicle travels directly from 𝑖 to 𝑗 on arc (𝑖, 𝑗) ∈ 𝐴; 0 otherwise

𝑦𝑘𝑙 ∈ {0,1}: 1, if the delivery request from 𝑘 to 𝑙 is accepted; 0 otherwise

𝜃𝑖𝑗: total flow on arc (𝑖, 𝑗) ∈ 𝐴 , tons (i.e., the load carried by the vehicle directly from i to j)

20

𝑠𝑖: sequence number for location i∈ V

2.2.2 Original Node-Arc Formulation

Node-arc decision variables

𝑧𝑘𝑙,𝑖𝑗 1, if the delivery from 𝑘 to 𝑙 is performed via arc (𝑖, 𝑗) ∈ 𝐴; 0 otherwise

Objective

Maximize 𝑝 [∑ 𝑑𝑘𝑙𝑤𝑘𝑙𝑦𝑘𝑙(𝑘, 𝑙)∈𝐴] − 𝑐 ∑ 𝑑𝑖𝑗𝜃𝑖𝑗(𝑖, 𝑗)∈A − 𝑐𝑣 ∑ 𝑑𝑖𝑗𝑥𝑖𝑗(𝑖, 𝑗)∈𝐴 (2.1)

Subject to

∑ 𝑧𝑘𝑙,𝑘𝑗 = 𝑦𝑘𝑙 ∀(𝑘, 𝑙) ∈ 𝐴𝑗∈𝑉 (2.2)

∑ 𝑧𝑘𝑙,𝑖𝑙 = 𝑦𝑘𝑙 ∀(𝑘, 𝑙) ∈ 𝐴𝑖∈𝑉 (2.3)

∑ 𝑧𝑘𝑙,𝑖𝑎𝑖∈𝑉, (𝑖, 𝑎)∈𝐴 = ∑ 𝑧𝑘𝑙,𝑎𝑗𝑗∈𝑉, (𝑎, 𝑗)∈𝐴 ∀(𝑘, 𝑙) ∈ 𝐴, 𝑎 ∈ 𝑉\{𝑘, 𝑙} (2.4)

∑ 𝑧𝑘𝑙,𝑖𝑗(𝑘, 𝑙)∈𝐴 ≤ 𝑀𝑥𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴 (2.5)

∑ 𝑥1,𝑗(1,𝑗)∈𝐴 = 1 (2.6)

∑ 𝑥𝑖,𝑛(𝑖,𝑛)∈𝐴 = 1 (2.7)

∑ 𝑥𝑖𝑘𝑖∈𝑉\{𝑘, 𝑛} = ∑ 𝑥𝑘𝑗𝑗∈𝑉\{1, 𝑘} ∀𝑘 ∈ 𝑉\{1, 𝑛} (2.8)

∑ 𝑥𝑖𝑘𝑖∈𝑉\{𝑘, 𝑛} ≤ 1 ∀𝑘 ∈ 𝑉\{1, 𝑛} (2.9)

∑ 𝑑𝑖𝑗𝑥𝑖𝑗(𝑖, 𝑗)∈𝐴 ≤ 𝐷 (2.10)

𝜃𝑖𝑗 = ∑ 𝑤𝑘𝑙𝑧𝑘𝑙,𝑖𝑗(𝑘,𝑙)∈𝐴 ∀(𝑖, 𝑗) ∈ 𝐴 (2.11)

𝜃𝑖𝑗 ≤ 𝑄 ∀(𝑖, 𝑗) ∈ 𝐴 (2.12)

𝑠𝑖 − 𝑠𝑗 + (𝑛 + 1)𝑥𝑖𝑗 ≤ 𝑛 ∀(𝑖, 𝑗) ∈ 𝐴 (2.13)

𝑥𝑖𝑗 ∈ {0, 1} ∀ (𝑖, 𝑗) ∈ 𝐴 (2.14)

𝑦𝑘𝑙 ∈ {0, 1} ∀(𝑘, 𝑙) ∈ 𝐴 (2.15)

𝑧𝑘𝑙,𝑖𝑗 ∈ {0, 1} ∀(𝑘, 𝑙) ∈ 𝐴, (𝑖, 𝑗) ∈ 𝐴 (2.16)

Formulation Explanation

21

Objective (2.1): to maximize net total profit, which is equal to revenue from accepted delivery

requests minus travel costs related to delivery requests (cargo-carrying costs) and the vehicle-

related travel cost.

Constraints:

Constraints (2.2) and (2.3) define the relation between 𝑦𝑘𝑙 and 𝑧𝑘𝑙 ,𝑖𝑗. Constraints (2.2) and (2.3)

are to ensure that if the request from 𝑘 to 𝑙 is satisfied, then the vehicle must stop at both location

𝑘 and location 𝑙. Constraint (2.4) states that the inbound and outbound traffic flows of a location

for the delivery from k to l should be equal. Constraint (2.5) defines the relation between 𝑥𝑖𝑗 and

𝑧𝑘𝑙,𝑖𝑗. Constraints (2.6) and (2.7) make sure that the vehicle will start from location 1 and end at

location 𝑛. Constraint (2.8) states that the inbound and outbound traffic flows of a location should

be equal (i.e., if the vehicle stops at location 𝑘 ∈ 𝑉 ∖ {1, 𝑛}, then it must leave that location)

Constraint (2.9) states that each location can be visited once at most. Constraint (2.10) states that

the total length of backhaul trip must not exceed D, the maximum allowed distance. Constraint

(2.11) gives the total load of the vehicle traveling on the arc (𝑖, 𝑗). Constraint (2.12) enforces the

vehicle capacity limit. Constraint (2.13) is the so-called MTZ subtour elimination constraint

proposed by Miller, Tucker, and Zemlin (1960) [45].

22

2.2.3 Original Triples Formulation

Notation for Triples formulation

𝑇: set of node triples, {(𝑖, 𝑗, 𝑘): 𝑖 ∈ 𝑉\{𝑛}, 𝑗 ∈ 𝑉\{1, 𝑖}, 𝑘 ∈ 𝑉\{1, 𝑛, 𝑖, 𝑗}}

Triples decision Variables:

𝑢𝑖𝑗
𝑘 ≥ 0, (𝑖, 𝑗, 𝑘) ∈ 𝑇: denotes the tons of cargo transported from node 𝑖 to node 𝑗 through node 𝑘

(i.e., the flow from 𝑖 to 𝑗 diverted through 𝑘) followed by a path from 𝑘 to 𝑗. Note that the triples

formulation given below shares the objective function, and some of the same variables and

constraints with the node-arc formulation (those with labels used before). The constraints with new

labels are unique to the triples formulation.

Objective

Maximize 𝑝 [∑ 𝑑𝑘𝑙𝑤𝑘𝑙𝑦𝑘𝑙(𝑘, 𝑙)∈𝐴] − 𝑐 ∑ 𝑑𝑖𝑗𝜃𝑖𝑗(𝑖, 𝑗)∈A − 𝑐𝑣 ∑ 𝑑𝑖𝑗𝑥𝑖𝑗(𝑖, 𝑗)∈𝐴 (2.1)

Subject to

∑ 𝑥1,𝑗(1,𝑗)∈𝐴 = 1 (2.6)

∑ 𝑥𝑖,𝑛(𝑖,𝑛)∈𝐴 = 1 (2.7)

∑ 𝑥𝑖𝑘𝑖∈𝑉\{𝑘, 𝑛} = ∑ 𝑥𝑘𝑗𝑗∈𝑉\{1, 𝑘} , ∀𝑘 ∈ 𝑉\{1, 𝑛} (2.8)

∑ 𝑑𝑖𝑗𝑥𝑖𝑗(𝑖, 𝑗)∈𝐴 ≤ 𝐷 (2.10)

𝑠𝑖 − 𝑠𝑗 + (𝑛 + 1)𝑥𝑖𝑗 ≤ 𝑛 ∀ (𝑖, 𝑗) ∈ A (2.13)

𝜃𝑖𝑗 = 𝑤𝑖𝑗𝑦𝑖𝑗 + ∑ 𝑢𝑖𝑘
𝑗

(𝑖, 𝑘, 𝑗)∈𝑇 + ∑ 𝑢𝑘𝑗
𝑖

(𝑘, 𝑗, 𝑖)∈𝑇 − ∑ 𝑢𝑖𝑗
𝑘

(𝑖, 𝑗, 𝑘)∈𝑇 , ∀(𝑖, 𝑗) ∈ 𝐴

(2.17)

𝜃𝑖𝑗 ≤ 𝑄𝑥𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴 (2.18)

𝑢𝑖𝑗
𝑘 ≤ 𝑄𝑥𝑖𝑘 ∀(𝑖, 𝑗, 𝑘) ∈ 𝑇 (2.19)

𝑢𝑖𝑗
𝑘 ≥ 0 ∀ (𝑖, 𝑗, 𝑘) ∈ 𝑇 (2.20)

𝑥𝑖𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐴 (2.14)

𝑦𝑘𝑙 ∈ {0, 1} ∀(𝑘, 𝑙) ∈ 𝐴 (2.15)

23

Formulation explanation

The Objective function is the same as that of the node-arc formulation.

Constraints unique to the Triples formulation:

 Constraint (2.17) gives the total load of the vehicle traveling on arc (𝑖, 𝑗). Constraint (2.18)

defines the relationship between the arc flow and 𝑥𝑖𝑗 variables. Constraint (2.19) is the linking

constraint in order to force (i, k) to be an arc on the vehicle's route if variable 𝑢𝑖𝑗
𝑘 is positive.

Constraint (2.20) states that the triples flow must be nonnegative.

2.2.4 Example Solutions

 Recall that in the example solution in Figure 1, the vehicle follows the route corresponding to

 𝑥13 = 𝑥35 = 𝑥56 = 1 , and accepts the delivery requests corresponding to 𝑦13 = 𝑦15 = 𝑦16 =

𝑦35 = 𝑦36 = 𝑦56 = 1 . The following subsections show how each formulation represents the

movement of cargo along the route as multicommodity flow.

2.2.4.1 Node-Arc Representation of Solution in Figure 1

𝑧13,13 = 1,

𝑧15,13 = 𝑧15,35 = 1,

𝑧16,13 = 𝑧16,35 = 𝑧16,56 = 1,

𝑧35,35 = 1,

𝑧36,35 = 𝑧36,56 = 1,

𝑧56,56 = 1.

𝜃13 = 𝑤13𝑧13,13 + 𝑤15𝑧15,13 + 𝑤16𝑧16,13 = 0.2 + 0.5 + 0.3 = 1 ton,

𝜃35 = 𝑤15𝑧15,35 + 𝑤16𝑧16,35 + 𝑤35𝑧35,35 + 𝑤36𝑧36,35 = 0.5 + 0.3 + 0.6 + 0.6 = 2 tons,

𝜃56 = 𝑤16𝑧16,56 + 𝑤36𝑧36,56 + 𝑤56𝑧56,56 = 0.3 + 0.6 + 0.8 = 1.7 tons.

24

2.2.4.2 Triples Representation of Solution in Figure 1

𝑢15
3 = 𝑤15 = 0.5 tons,

𝑢16
3 = 𝑤16 = 0.3 tons,

𝑢36
5 = 𝑤16 + 𝑤36 = 0.3 + 0.6 = 0.9 tons.

Note that the delivery requests from 1 to 3, 3 to 5, and 5 to 6 are sent as “direct flow” and therefore

not represented by triples variables. The resulting arc flows are

𝜃13 = 𝑤13 + 𝑢15
3 + 𝑢16

3 = 0.2 + 0.5 + 0.3 = 1 ton,

𝜃35 = 𝑤35 + 𝑢15
3 + 𝑢36

5 = 0.6 + 0.5 + 0.9 = 2 tons,

𝜃56 = 𝑤56 + 𝑢36
5 = 0.8 + 0.9 = 1.7 tons.

2.3 Design and Analysis Methods of BPMP Experiments

 In this section we summarize the process of how we design our experiments and develop a multi-

criteria Composite Index Method (CIM) to evaluate the results.

 2.3.1 Data Generation

 For our study we generate ten problem instances for each value of n = 10, 20, 30, 40, and 50.

Following Yu and Dong (2013) [43] and Dong (2015) [44] , we assume that the price for delivery

service is p = $1.20 per mile per ton. The travel cost is c = $1.00 per mile per ton. The maximum

time allowed for the backhaul trip is 20 hours and the capacity of the vehicle is Q = 50 tons. The

average traveling speed of the vehicle is 50 miles per hour and so the time constraint of 20 hours

is equivalent to a distance constraint of D = 1,000 miles. The weight of vehicle itself is 𝑣 = 5 tons.

The remainder of this subsection describes the process for randomly generating the location-to-

25

location distance and weight parameters, dij and wij. This process was related to us by Dong (2019)

[46]; it was not provided in Yu and Dong (2013) [43] and Dong (2015) [44].

 The delivery request between two different nodes (in tons) is generated by multiplying Q by a

uniform random variable on the range [0, 1] and rounding the result to one decimal place. In this

way we can ensure that the demands are randomly and uniformly distributed between zero and the

vehicle capacity.

 To ensure that all of the randomly generated locations are reachable without violating the

distance constraint, we select points inside an ellipse that has nodes 1 and n as its foci. Specifically,

we place node 1 and node n at points (500, 250), and (500, 750) in the X-Y plane, respectively as

shown in Figure 2. We then select n-2 points at random from inside the ellipse to represent the

subset of potential intermediate locations on the vehicle’s route from its starting location to its

depot.

Figure 3 BPMP location-generation diagram.

 By construction (i.e., d1j + djn  1,000), the vehicle can potentially visit any point j on or inside

the ellipse within the time limit and cannot visit any point outside the ellipse. To generate a random

Y

X

26

point inside the ellipse we start by selecting a y value at random from the range [0, 1,000]. It

follows that for the given Y value the points (X1, Y) and (X2, Y) are on the ellipse where

 𝑋1 = 500 − 250√3 −
3∗(𝑌−500)

5002

2
 and 𝑋2 = 500 + 250√3 −

3∗(𝑌−500)

5002

2

 [Open Math Reference

2019]. Thus, we randomly sample the uniform distribution on (X1, X2) to generate the X coordinate

corresponding to Y. After randomly generating n-2 points inside the ellipse, we let dij be the

Euclidean distance between the corresponding points i and j rounded to three decimal places.

 2.3.2 Computing Environment

 The computations reported in Sections 2.4, 2.5, and 2.6 were performed on the SMU Lyle

School’s general use Linux machines with the specifications listed below. The formulations were

implemented in AMPL 10.00 and solved with CPLEX 12.6.0.0. We used the default settings for

AMPL and CPLEX except where specified.

Table 2. 1. Computer Hardware Specifications

Make/Model Dell R730

Processor Dual 12 Core Intel Xeon@2.6GHz

RAM 320GB

 2.3.3 Performance Evaluation Using Composite Index Method (CIM)

 Following the long-standing standard practice in the literature, the plan for this study was to

use solution time as the performance measure for comparing the node-arc and triples formulations

of BPMP. However, now that computing environments like ours that support multiple users, and

take advantage of multiple processors and multiple threads have become commonplace, measuring

solution time is no longer straight-forward. Furthermore, as is typically the case, we found that

27

there is often a “crossover point” in problem instance size below which one approach is generally

“faster” than another, but above which the second approach is faster. In this situation the second

approach would usually be favored because the emphasis in the literature is on solution time as a

function of problem instance size. In this study, however, we consider the practical question of

making a recommendation to a user who frequently solves problems that range in size around the

crossover point, and propose a multi-criteria approach to comparing competing solution

approaches. In this section, we develop a Composite Index Method (CIM), which considers

several weighted performance measure factors and calculates a single real number (a composite

index) to measure the relative performance of two competing solution approaches.

2.3.3.1 Composite Index for a Given Problem Size

 There are three kinds of “solution time” in the CPLEX output: “CPU time”, “real time”, and

“ticks”. CPU time is a measure of the total time used by CPLEX to find an optimal solution; it is

the total time used by all threads. Real time (also called wall clock time) is the time that elapsed

during the CPLEX run. Both measures can vary noticeably between runs with identical input on

identical hardware. Therefore, we solve each problem instance three times in each experiment and

report the average CPU and real time over the three runs. The tick metric, also called deterministic

time, is a proprietary measure of computation effort based on counting the number of instructions

executed by the CPLEX solver and therefore shows no variation between multiple runs with the

same inputs on a given hardware configuration.

 For each of the time measures describe above, we report speedup to compare the solution time

of two models, model 1 versus model 2. Speedup is defined as the ratio

Speedup = Model 1 solution time/Model 2 solution time

28

 If “Speedup”>1, model 2 is solved “Speedup” times faster than model 1; if “Speedup”=1, model

2 has the same solution time as model 1, and if “Speedup”<1, model 1 is solved “1/Speedup”

times faster than model 2 (i.e., “Speedup” times slower than model 2)..

 Due to the fact that CPU and real time are not completely reproducible, we suggest that neither

one should be the sole basis for comparing solution approaches. Typically, ticks and real time are

positively correlated (as are ticks and CPU time), however there doesn’t appear to be a fixed

relationship between ticks and the two time measures. For this reason, we cannot use ticks as the

single index to compare two models either.

 In our experience, customers who use a model to solve a real world problem are much more

concerned about real time as a performance measure than CPU time, and are often unaware of the

tick measure. For our purposes, however, the reproducibility of the tick metric is quite important.

Therefore, we adopt the following weights to each type of time speedup.

Table 2. 2. Weights for Time Speedup

CPU c 6

Real Time r 8

Ticks t 8

 For a given problem size (i.e., number of nodes, n) and timing measure (CPU time, real time, or

ticks), we calculate a composite index based on a weighted combination of the minimum, median,

mean, and maximum speedups among 10 instances. Thus, we obtain three composite indices:

CIn(C), CIn(R), CIn(t) for CPU time, real time, and ticks, respectively. To calculate these indices

we denote the minimum, mean, median, and maximum speedups in CPU time by Cmin, Cmean,

Cmedian, and Cmax, respectively, and define Rmin, Rmean, Rmedian, Rmax, tmin, tmean, tmedian, and tmax as

the corresponding speedups for real time and ticks. Additionally, we define min, mean, median,

29

and max for different weighting of minimum, mean, median and maximum statistics. Using this

notation, the three composite indices are calculated as follows:

CIn(C) = (min*Cmin+mea*Cmean +med*Cmedian +max*Cmax)/(min+mea +med +max),

CIn(R) = (min*Rmin+mea*Rmean +med*Rmedian +max*Rmax)/(min+mea +med +max),

CIn(t) = (min*tmin+mea*tmean +med*tmedian +max*tmax)/(min+mea +med +max).

 Next, we calculate a composite index, CIn, for problem size n as a weighted combination of

indices CIn(C), CIn(R), and CIn(t):

CIn = (c * CIn(C) + r * CIn(R) + t * CIn(t))/(c+ r + t).

Table 2.3 summarizes the process of calculating CIn for an experiment with 10 problem instances.

30

Table 2. 3. Composite Index Calculation Process for 10 Instances of Size n

Problem

Instance

Speedup

CPU Time Real Time Ticks

1 C1 R1 t1

2 C2 R2 t2

3 C3 R3 t3

4 C4 R4 t4

5 C5 R5 t5

6 C6 R6 t6

7 C7 R7 t7

8 C8 R8 t8

9 C9 R9 t9

10 C10 R10 t10

Min
Cmin =

 min(C1, C2…, C10)

Rmin =

min(R1,R2 …, R10)
tmin = min(t1, …, t10)

Mean
Cmean=

 average(C1, C2…, C10)

Rmean=

average(R1, R2…, R10)

tmean=

average(t1, t2…, t10)

Median
Cmedian=

median(C1, C2…, C10)

Rmedian=

median(R1, R2…, R10)

tmedian=

median(t1, t2…, t10)

Max
Cmax=

max(C1, C2…, C10)

Rmax=

max(R1, R2…, R10)
tmax= max(t1, t2…, t10)

Composite

Index

CIn(C)=

(min*Cmin+ mea*Cmean

+med*Cmedian+max*Cmax

)/(min +meamed

+max)

CIn(R)=

(min*Rmin+ mea*Rmean

+med*Rmedian+max*Rmax

)/(min +meamed

+max)

CIn(t)=

(min*tmin+ mea*tmean

+med*tmedian+max*tmax)/(

min +meamed +max)

CIn=(c*CIn(C)+r*CIn(R)+tCIn(t))/(c+r+t)

2.3.3.2 Grand Composite Index for an Experiment with Multiple Problem Sizes

 We solve ten BPMP instances for each of the five problem size n = 10, 20, 30, 40, 50. So we

report five composite indices of speedups: CI10, CI20, CI30, CI40, and CI50, which are then

transformed into the Grand Composite Index (GCI) using problem-size weights n. GCI is the

final index we use to compare two models, and is defined as a weighted average of the CIn values

for all sizes of the problem:

GCI = (10*CI10 + 20*CI20 + 30*CI30 + 40*CI40 + 50*CI50)/(10 + 20 + 30 + 40 + 50).

31

 In our experiments, we use the weight parameters in Table 2.4 for the node-arc formulation and

those in Table 2.5 for triples formulation, respectively. The difference in the problem-size weights

is due to the fact that solving problem instances with more than 30 nodes using the node-arc model

turned out to be impractical, while we could easily solve 50-node instances with the triples model.

The selection principle of the weight parameter values is to try to match the results with our

intuitive judgement of a relative ranking to apply techniques to a hypothetical logistics company’s

model as best as possible.

Table 2. 4. Weight Parameters for the Node-Arc Model

Node-Arc Weight

Parameters

Min min 0.5

Median med 40

Max max 0.5

Mean mea 10

CPU c 6

Ticks t 8

Real Time r 8

10-node 10 1

20-node 20 10

30-node 30 12

32

Table 2. 5. Weight Parameters for the Triples Model

Triples Weight Parameters

Min min 0.5

Median med 40

Max max 0.5

Mean mea 10

CPU c 6

Ticks t 8

Real Time r 8

10-node 10 6

20-node 20 10

30-node 30 13

40-node 40 14

50-node 50 16

2.3.3.3 Using GCI to Compare Models and Evaluate Techniques

 In Sections 2.4 and 2.5 we use the GCI to evaluate the efficacy of various techniques (cuts,

branching rules, etc.) designed to improve CPLEX’s performance using the node-arc and triples

models given in Section 2. Using “model 1” to refer to a baseline solution approach and “model

2” to refer to the application of a particular technique to model 1. We recommend adopting the

technique if GCI > 1 and say, for convenience, that the model 2 is “GCI times faster” than model

1. We recommend not adopting the technique if GCI ≤ 1.

2.3.3.4 Using LP upper bound improvement to compare the strength of models

 We denote the upper bounds on profit obtained from the LP relaxations of model 1 and model 2

mentioned above as LP1 and LP2, and define LP improvement as (LP1-LP2)/LP1. Since the

BPMP is a maximization problem, the smaller the LP upper bound, the stronger the model. Thus,

a positive LP improvement indicates that the technique applied in model 2 makes model 1 stronger.

33

2.4 Enhancing the Node-Arc Formulation

 In this section we present experimental results with nine techniques for enhancing the node-arc

formulation. These techniques were selected and informally ranked by effectiveness from a larger

set of candidates after preliminary experiments that we performed prior to developing the CIM.

Before applying the first of the nine techniques, we establish an “incumbent” enhanced node-arc

formulation by determining a tight Big-M value for the x-z linking constraint set (2.5). We then

apply the techniques sequentially according to the ranking from our preliminary experiments. If a

particular technique in the sequence is found to improve performance based on the CIM, the

combination of the incumbent with the technique becomes the new incumbent. Otherwise, the

technique is not adopted and the incumbent remains as it is. Note that CPU and real time are

reported in seconds, and LP bounds are scaled by $2,500 throughout this report.

2.4.1 Tightening the Big-M Value

 Before running the node-arc model experiments, first we need to decide the value of M in (2.5)

of Section 2.2, ∑ 𝑧𝑘𝑙,𝑖𝑗(𝑘, 𝑙)∈𝐴 ≤ 𝑀𝑥𝑖𝑗 (𝑖, 𝑗) ∈ 𝐴. Yu and Dong (2013) [43] did not discuss the

value of M. Here we prove that a value of M =
𝑛2−𝑛

2
, where n is the total number of nodes in the

network, is sufficient.

Proof

Observe that the left-hand side of (2.5) is less than or equal to the total number of accepted delivery

requests, ∑ 𝑦𝑘𝑙(𝑘,𝑙)∈𝐴 .

∑ 𝑧𝑘𝑙,𝑖𝑗

(𝑘, 𝑙)∈𝐴

≤ 𝑀𝑥𝑖𝑗 (𝑖, 𝑗) ∈ 𝐴

34

 Due to constraints (2.9) and (2.13), the vehicle can stop at most once at each node. Suppose that

the vehicle visits every node and, without loss of generality, follows the route 1, 2, 3, …, n. At

most, the vehicle can accept n-1 requests from node 1, n-2 from node 2, etc. Thus, the maximum

number of requests that the vehicle can accept is

∑(𝑛 − 𝑘)

𝑛

𝑘=1

= ∑ 𝑘

𝑛−1

𝑘=1

=
(𝑛 − 1)(𝑛)

2
=

𝑛2 − 𝑛

2
.

2.4.2 Initial Incumbent Formulation

 In this section we present the results for our initial incumbent, the original node-arc model with

the tightened Big-M value. The model was solved three times for each problem instance. The

results are shown in Table 2.6 and Table 2.7

Table 2. 6 Test Results of Original Node-Arc Model for n =10.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 5.22 3.54 2.88 3.88 1.09 0.89 1.03 1.00 58.64 345.86

02 4.39 4.75 4.08 4.40 1.16 0.93 1.28 1.12 61.42 225.56

03 3.83 4.29 4.05 4.06 0.94 0.76 0.85 0.85 57.95 291.53

04 2.95 2.86 4.47 3.42 1.00 0.80 1.02 0.94 68.63 252.59

05 3.54 2.23 2.84 2.87 0.82 0.66 0.81 0.76 77.40 237.66

06 6.42 6.18 6.75 6.45 2.62 2.18 2.87 2.56 63.48 645.50

07 6.99 4.97 3.79 5.25 1.42 1.22 1.43 1.36 63.24 496.25

08 4.20 4.68 4.88 4.59 1.53 1.27 1.55 1.45 62.24 499.80

09 6.61 3.88 3.12 4.54 1.06 0.83 1.03 0.97 66.86 214.21

10 3.02 1.64 2.17 2.28 0.52 0.37 0.61 0.50 67.96 120.06

Min 2.95 1.64 2.17 2.28 0.52 0.37 0.61 0.50 57.95 120.06

Mean 4.72 3.90 3.90 4.17 1.22 0.99 1.25 1.15 64.78 332.90

Median 4.30 4.08 3.92 4.23 1.08 0.86 1.03 0.99 63.36 272.06

Max 6.99 6.18 6.75 6.45 2.62 2.18 2.87 2.56 77.40 645.50

35

Table 2. 7 Test Results of Original Node-Arc Model for n = 20.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 12,654 12,310 12,172 12,379 1,937 1,896 1,734 1,856 316 1,244,880

02 1,745 1,757 1,716 1,739 355 372 344 357 330 272,703

03 2,457 2,544 2,393 2,465 497 536 467 500 291 382,350

04 24,954 26,053 27,313 26,106 1,891 2,044 1,943 1,960 293 1,211,197

05 2,964 3,036 2,981 2,994 632 681 628 647 323 583,158

06 32,635 35,586 34,566 34,262 1,720 1,859 1,778 1,786 277 1,005,079

07 2,760 2,770 2,615 2,715 502 512 482 499 300 422,516

08 5,873 5,888 5,738 5,833 845 857 806 836 272 674,853

09 28,620 32,115 28,746 29,827 2,007 2,226 1,967 2,067 299 1,318,085

10 17,096 17,745 18,202 17,681 1,571 1,749 1,606 1,642 340 1,091,225

Min 1,745 1,757 1,716 1,739 355 372 344 357 272 272,703

Mean 13,176 13,980 13,644 13,600 1,196 1,273 1,175 1,215 304 820,605

Median 9,263 9,099 8,955 9,106 1,208 1,303 1,206 1,239 300 839,966

Max 32,635 35,586 34,566 34,262 2,007 2,226 1,967 2,067 340 1,318,085

 As shown in Tables 2.6 and 2.7, we were only able to solve 10-node and 20-node instances with

the original node-arc model. Therefore, we list the results only for 10 and 20-node instances, and

there are no speedups yet (no techniques applied yet). We can see that the median average real

time for the 10-node instances was about 1 second, and the median average real time for the 20-

node instances was about 20 minutes.

36

2.4.3 Technique 1: Conditional Arc-Flow

 The original node-arc model (Yu and Dong 2013) [43] uses constraint (2.12), 𝜃𝑖𝑗 ≤ 𝑄, to ensure

that the total amount of flow, 𝜃𝑖𝑗 , on arc (i, j) is less than or equal to the vehicle capacity, Q. Notice

that if the vehicle does not travel on arc (i, j), there should be no flow on the arc (i.e., if xij = 0,

then 𝜃𝑖𝑗 = 0). If the vehicle does travel on arc (i, j), the maximum flow on the arc is Q, (i.e., if xij

=1, then 𝜃𝑖𝑗 ≤ 𝑄). Therefore, the arc flow constraints (2.12) can be replaced by the following

constraint set which we call conditional arc-flow

𝜃𝑖𝑗 ≤ 𝑄𝑥𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴 (2.21).

 Yu and Dong (2013) [43] were unable to solve 30-node instances with the original node-arc

model. We had a similar experience in our preliminary tests. After applying conditional arc-flow

we can solve 30-node instances easily, but it is difficult to solve 40-node instances. Therefore, we

tested this technique only on 10-, 20-, and 30-node instances. Table 2.8, 2.9 and 2.10 give detailed

test results of three runs after applying the new technique on 10-, 20-, and 30-node instances. The

complete speedup summary is given in Table 2.11. Table 2.12 gives the CI and GCI. Speedups in

bold are greater than 1.

37

Table 2. 8 Test Results of Incremental Effect of Conditional Arc-Flow for n =10.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 1.42 1.33 1.46 1.40 0.61 0.57 0.63 0.60 2.00 235.67

02 3.47 3.79 1.90 3.05 0.62 0.59 0.58 0.60 2.00 248.86

03 2.43 3.13 5.15 3.57 0.71 0.79 0.82 0.77 2.94 278.19

04 4.06 2.14 2.13 2.78 0.63 0.61 0.62 0.62 5.01 188.38

05 0.87 0.93 0.92 0.90 0.43 0.45 0.43 0.44 6.50 184.29

06 3.23 4.94 4.93 4.37 1.00 0.94 0.93 0.96 8.29 247.70

07 2.90 2.36 4.09 3.12 0.92 0.86 0.90 0.89 3.47 384.78

08 3.39 4.64 6.44 4.82 0.92 0.90 1.02 0.95 3.87 366.32

09 2.70 2.61 2.64 2.65 0.55 0.52 0.46 0.51 6.29 164.87

10 1.51 1.59 2.37 1.83 0.22 0.26 0.31 0.26 9.72 74.61

Min 0.87 0.93 0.92 0.90 0.22 0.26 0.31 0.26 2.00 74.61

Mean 2.60 2.75 3.20 2.85 0.66 0.65 0.67 0.66 5.01 237.37

Median 2.80 2.49 2.50 2.91 0.63 0.60 0.63 0.61 4.44 241.69

Max 4.06 4.94 6.44 4.82 1.00 0.94 1.02 0.96 9.72 384.78

Table 2. 9 Test Results of Incremental Effect of Conditional Arc-Flow for n = 20.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 1,306 1,258 1,266 1,276 96 100 97 98 16 54,992

02 720 701 702 708 63 63 64 63 17 37,316

03 1,974 1,689 1,729 1,797 143 146 134 141 22 81,335

04 4,945 3,848 3,836 4,210 358 362 318 346 18 202,725

05 450 409 408 422 94 94 92 93 22 70,847

06 2,152 1,752 1,764 1,890 196 200 182 193 15 119,363

07 1,243 1,105 1,120 1,156 81 81 77 80 18 39,778

08 1,189 1,080 1,010 1,093 74 76 68 73 13 35,113

09 673 630 620 641 127 130 125 128 19 96,582

10 811 759 740 770 123 125 119 122 24 85,867

Min 450 409 408 422 63 63 64 63 13 35,113

Mean 1,546 1,323 1,320 1,396 136 138 128 134 19 82,392

Median 1,216 1,093 1,065 1,125 110 112 108 110 18 76,091

Max 4,945 3,848 3,836 4,210 358 362 318 346 24 202,725

38

Table 2. 10 Test Results of Incremental Effect of Conditional Arc-Flow for n = 30.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 236,367 237,258 212,689 228,771 12,301 12,474 11,552 12,109 33 3,442,157

02 97,710 92,781 81,972 90,821 5,958 5,780 5,382 5,707 32 2,203,579

03 155,158 156,250 137,272 149,560 8,349 8,451 7,660 8,153 32 2,738,406

04 174,107 171,060 152,215 165,794 9,580 9,439 8,757 9,259 45 3,274,659

05 78,981 77,249 68,914 75,048 5,301 5,241 4,941 5,161 24 2,074,290

06 195,855 195,754 176,959 189,523 10,264 10,146 9,557 9,989 41 3,389,669

07 57,534 56,502 50,478 54,838 4,506 4,485 4,271 4,421 27 2,104,806

08 324,709 332,816 298,199 318,575 17,912 18,534 17,041 17,829 22 5,072,975

09 99,423 106,375 87,302 97,700 5,697 6,221 5,228 5,716 22 2,177,300

10 153,816 154,163 131,121 146,367 7,287 7,562 6,499 7,116 32 2,383,682

Min 57,534 56,502 50,478 54,838 4,506 4,485 4,271 4,421 22 2,074,290

Mean 157,366 158,021 139,712 151,700 8,716 8,833 8,089 8,546 31 2,886,152

Median 154,487 155,207 134,197 147,963 7,818 8,006 7,079 7,635 32 2,561,044

Max 324,709 332,816 298,199 318,575 17,912 18,534 17,041 17,829 45 5,072,975

Table 2. 11 Summary of Incremental Effect of Conditional Arc Flow Constraints

 Speedup LP Upper

Bound

Improvement
Ave. CPU Time Ticks Ave. Real Time

n = 10

Min 0.95 0.91 1.10 85.69%

Mean 1.68 1.42 1.74 92.41%

Median 1.46 1.32 1.71 93.24%

Max 3.17 2.61 2.67 96.74%

n = 20

Min 1.37 4.70 3.55 93.32%

Mean 12.21 11.35 9.74 93.94%

Median 6.65 9.52 8.10 93.95%

Max 46.52 22.64 19.01 95.08%

Table 2. 12 CI and GCI of Conditional Arc-Flow Constraints

n CPU Ticks Real Time CI GCI

10 1.52 1.35 1.72 1.53 8.24

20 8.08 9.96 8.48 8.91

30 n/a n/a n/a n/a

 Conclusion: After applying technique 1, conditional arc-flow, the grand composite index of

speedups (GCI) was 8.24, which means, on average, the model with conditional arc-flow was

39

solved 8.24 times faster than the original model. Therefore, we adopted technique 1, replacing

constraint set (2.12) with the conditional arc-flow constraints (2.21).

2.4.4 Technique 2： Relax Node-Degree Constraints

 Yu and Dong (2013) [43] used the following node-degree cuts to ensure that the vehicle visits

each location at most once:

∑ 𝑥𝑖𝑘

𝑖∈𝑉\{𝑘, 𝑛}

≤ 1 𝑘 ∈ 𝑉\{1, 𝑛} (2.9)

At the same time the MTZ subtour elimination constraints (2.13) also ensure that vehicle visits

each node at most once in an integer solution. Therefore, we can relax the node-degree constraints

without losing validity of the integer model (the node-degree cuts can be violated in solutions to

the LP relaxations). Table 2.13, 2.14 and 2.15 give detailed test results of three runs after applying

the new technique (dropping/relaxing (2.9)) on 10-, 20-, and 30-node instances. Table 2.16 shows

the effect of the relaxing the node-degree cuts on all of the 10-, 20-, and 30-node problem instances.

Table 2.17 gives the CI and GCI. Speedups greater than 1 are in bold.

40

Table 2. 13 Test Results of Incremental Effect of Relax Node-Degree for n = 10.

Instance CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 1.10 1.17 1.16 1.15 0.49 0.53 0.51 0.51 2.00 197.98

02 2.20 2.89 6.01 3.70 0.44 0.42 0.56 0.47 2.00 153.40

03 7.34 4.71 4.72 5.59 1.51 0.85 1.24 1.20 2.94 251.73

04 4.87 2.79 2.04 3.23 0.69 0.78 0.76 0.74 5.01 195.15

05 7.40 3.65 6.28 5.78 0.60 0.47 0.52 0.53 6.50 133.75

06 8.66 3.00 7.26 6.31 1.26 0.98 1.19 1.14 8.60 334.68

07 4.86 2.52 7.60 4.99 0.97 0.79 1.04 0.93 3.47 187.98

08 8.81 2.05 7.84 6.23 1.09 0.75 1.05 0.96 3.92 313.69

09 2.35 1.89 3.59 2.61 0.51 0.43 0.53 0.49 6.29 158.90

10 6.53 1.92 1.51 3.32 0.40 0.51 0.35 0.42 9.84 66.23

Min 1.10 1.17 1.16 1.15 0.40 0.42 0.35 0.42 2.00 66.23

Mean 5.41 2.66 4.80 4.29 0.80 0.65 0.78 0.74 5.06 199.35

Median 5.70 2.65 5.37 4.35 0.65 0.64 0.66 0.64 4.46 191.57

Max 8.81 4.71 7.84 6.31 1.51 0.98 1.24 1.20 9.84 334.68

Table 2. 14 Test Results of Incremental Effect of Relax Node-Degree for n = 20.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 1,354 1,373 1,368 1,365 82 83 82 82 18 42,788

02 743 732 732 736 78 77 77 77 19 49,490

03 1,203 1,123 1,145 1,157 76 73 75 75 22 38,808

04 7,230 6,503 6,763 6,832 404 376 379 386 20 197,501

05 379 334 350 355 42 40 41 41 24 28,931

06 2,589 2,271 2,339 2,400 189 179 179 182 15 118,673

07 1,055 1,118 1,009 1,061 67 71 64 67 18 32,021

08 901 920 826 882 59 62 56 59 14 29,653

09 1,591 1,498 1,462 1,517 186 198 184 189 19 134,464

10 674 668 644 662 69 72 68 70 24 45,904

Min 379 334 350 355 42 40 41 41 14 28,931

Mean 1,772 1,654 1,664 1,697 125 123 120 123 19 71,823

Median 1,129 1,121 1,077 1,109 77 75 76 76 19 44,346

Max 7,230 6,503 6,763 6,832 404 376 379 386 24 197,501

41

Table 2. 15 Test Results of Incremental Effect of Relax Node-Degree for n = 30.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 150,867 160,878 157,288 156,344 8,626 9,369 8,760 8,919 35 2,927,573

02 315,832 340,140 341,062 332,345 12,468 13,185 13,096 12,917 34 3,904,553

03 51,365 52,736 53,121 52,407 2,959 3,190 3,043 3,064 32 1,504,484

04 114,123 116,978 118,709 116,603 5,349 5,658 5,525 5,511 45 2,141,250

05 107,272 109,664 110,180 109,039 5,080 5,285 5,173 5,179 24 2,082,700

06 176,095 180,395 179,597 178,696 9,602 10,218 9,734 9,851 41 3,083,977

07 118,167 120,838 123,134 120,713 5,163 5,416 5,316 5,298 27 1,889,653

08 103,211 109,225 106,275 106,237 5,308 5,885 5,467 5,553 23 1,874,691

09 42,476 43,265 43,337 43,026 2,301 2,405 2,317 2,341 23 1,142,160

10 102,503 103,896 105,209 103,869 4,576 4,791 4,697 4,688 32 1,836,292

Min 42,476 43,265 43,337 43,026 2,301 2,405 2,317 2,341 23 1,142,160

Mean 128,191 133,802 133,791 131,928 6,143 6,540 6,313 6,332 32 2,238,733

Median 110,698 113,321 114,445 112,821 5,235 5,537 5,391 5,404 32 1,986,176

Max 315,832 340,140 341,062 332,345 12,468 13,185 13,096 12,917 45 3,904,553

Table 2. 16 Summary of Incremental Effect of Relax Node-Degree Constraints

 Speedup LP Upper

Bound

Improvement
Ave. CPU Time Ticks Ave. Real Time

n = 10

Min 0.16 0.74 0.63 -3.74%

Mean 0.74 1.24 0.92 -0.63%

Median 0.73 1.15 0.90 0.00%

Max 1.23 2.05 1.26 0.00%

n = 20

Min 0.42 0.72 0.67 -11.18%

Mean 1.00 1.36 1.30 -4.34%

Median 1.03 1.21 1.19 -3.08%

Max 1.55 2.45 2.25 0.00%

n = 30

Min 0.27 0.56 0.44 -5.45%

Mean 1.49 1.42 1.62 -2.05%

Median 1.42 1.24 1.44 -0.55%

Max 3.00 2.71 3.21 0.00%

Table 2. 17 CI and GCI of Relax Node-Degree Constraints

n CPU Ticks Real Time CI GCI

10 0.73 1.17 0.90 0.95

1.28 20 1.02 1.25 1.22 1.17

30 1.43 1.28 1.48 1.40

 Conclusion: After applying technique 2, relax node-degree constraints, the grand composite

index of speedups (GCI) was 1.28, which means, on average, the model relaxing the constraints

42

was solved 1.28 times faster than the incumbent model. Therefore, we adopted technique 2 and

dropped constraint set (2.9) from the incumbent.

2.4.5 Technique 3：Single-Node Demand Cuts

 The single-node demand cuts state that the total weight of the delivery requests accepted from

node i, or into node j, is at most the vehicle capacity, Q.

∑ 𝑤𝑖𝑗𝑦𝑖𝑗𝑗∈𝑉∖{1,𝑖} ≤ 𝑄 ∀𝑖 ∈ 𝑉 ∖ {𝑛}(2.22)

∑ 𝑤𝑖𝑗𝑦𝑖𝑗𝑖∈𝑉∖{𝑗,𝑛} ≤ 𝑄 ∀𝑗 ∈ 𝑉 ∖ {1}(2.23)

The above are valid inequalities that are satisfied by any feasible solution because the vehicle

cannot simultaneously hold cargoes with total weights more than its capacity Q. This condition is

not necessarily enforced by solutions to the LP relaxation because of the fractional y values. Tables

2.18, 2.19, and 2.20 give the results from applying single-node demand cuts to the incumbent

model.

Table 2. 18 Test Results of Incremental Effect of Single-Node Demand Cuts for n = 10.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 3.28 1.78 7.33 4.13 0.62 0.6 0.76 0.66 2.00 205.75

02 5.71 3.71 2.79 4.07 0.54 0.49 0.42 0.48 2.00 162.91

03 2.33 2.60 3.40 2.78 0.84 0.93 0.88 0.88 2.94 279.41

04 6.21 2.67 4.60 4.49 0.73 0.59 0.68 0.67 5.01 218.26

05 0.47 0.54 0.47 0.49 0.26 0.29 0.26 0.27 6.50 129.68

06 8.78 4.57 5.05 6.13 1.13 0.87 0.97 0.99 8.60 287.70

07 9.31 5.98 4.95 6.74 0.85 0.69 0.68 0.74 3.47 184.64

08 1.91 1.75 1.60 1.75 0.78 0.71 0.68 0.72 3.92 287.99

09 9.28 3.83 1.49 4.87 0.77 0.55 0.42 0.58 6.29 164.44

10 5.55 3.96 0.68 3.40 0.37 0.32 0.19 0.29 9.84 95.58

Min 0.47 0.54 0.47 0.49 0.26 0.29 0.19 0.27 2.00 95.58

Mean 5.28 3.14 3.24 3.89 0.69 0.60 0.59 0.63 5.06 201.64

Median 5.63 3.19 3.09 4.10 0.75 0.60 0.68 0.66 4.46 195.20

Max 9.31 5.98 7.33 6.74 1.13 0.93 0.97 0.99 9.84 287.99

43

Table 2. 19 Test Results of Incremental Effect of Single-Node Demand Cuts for n = 20.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 1,501 1,579 1,532 1,537 86 89 88 88 18 39,814

02 775 765 756 765 59 57 57 58 19 29,614

03 2,074 2,136 2,167 2,126 149 153 152 151 22 79,696

04 7,891 8,132 8,443 8,155 501 508 504 504 20 243,567

05 385 394 414 397 55 54 56 55 24 38,703

06 2,148 2,292 2,436 2,292 136 142 148 142 15 77,267

07 1,249 1,283 1,290 1,274 89 91 89 89 18 44,079

08 1,070 1,053 1,077 1,067 72 70 70 70 14 34,261

09 2,042 2,127 2,204 2,124 210 208 209 209 19 135,340

10 625 630 638 631 75 74 75 75 24 49,812

Min 385 394 414 397 55 54 56 55 14 29,614

Mean 1,976 2,039 2,096 2,037 143 145 145 144 19 77,215

Median 1,375 1,431 1,411 1,405 87 90 89 88 19 46,945

Max 7,891 8,132 8,443 8,155 501 508 504 504 24 243,567

Table 2. 20 Test Results of Incremental Effect of Single-Node Demand Cuts for n = 30.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 131,326 133,475 129,676 131,492 11,016 10,934 10,484 10,811 35 4,211,599

02 115,556 123,189 120,357 119,701 5,608 5,863 5,790 5,753 34 2,244,072

03 53,661 56,906 56,559 55,708 3,308 3,356 3,296 3,320 32 1,625,743

04 128,082 136,079 133,987 132,716 5,853 6,123 6,034 6,004 45 2,077,826

05 93,717 99,684 98,291 97,231 4,617 4,835 4,760 4,737 24 1,806,019

06 392,279 396,132 393,380 393,930 20,620 20,981 20,295 20,632 41 5,753,277

07 124,600 131,991 129,916 130,954 5,563 5,832 5,668 5,750 27 1,967,062

08 235,304 240,596 232,432 236,514 11,921 12,057 11,407 11,732 23 3,309,807

09 41,558 43,813 43,397 42,923 2,703 2,750 2,727 2,727 23 1,386,778

10 87,632 93,870 90,754 90,752 4,238 4,428 4,266 4,311 32 1,649,855

Min 41,558 43,813 43,397 42,923 2,703 2,750 2,727 2,727 23 1,386,778

Mean 140,371 145,573 142,875 143,192 7,545 7,716 7,473 7,578 32 2,603,204

Median 120,078 127,590 125,017 125,327 5,585 5,847 5,729 5,752 32 2,022,444

Max 392,279 396,132 393,380 393,930 20,620 20,981 20,295 20,632 45 5,753,277

44

Table 2. 21 Summary of Incremental Effect of Single-Node Demand Cuts

 Speedup LP Upper

Bound

Improvement
Ave. CPU Time Ticks Ave. Real Time

n = 10

Min 0.28 0.69 0.77 0.00%

Mean 2.25 0.97 1.22 0.00%

Median 0.94 0.96 1.21 0.00%

Max 11.76 1.16 1.96 0.00%

n = 20

Min 0.54 0.49 0.49 0.00%

Mean 0.86 0.98 0.90 0.18%

Median 0.86 0.89 0.87 0.00%

Max 1.05 1.67 1.34 1.83%

n = 30

Min 0.45 0.54 0.47 0.00%

Mean 1.09 0.95 0.98 0.00%

Median 0.97 0.94 0.92 0.00%

Max 2.78 1.74 2.25 0.00%

Table 2. 22 CI and GCI of Single-Node Demand Cuts

n CPU Ticks Real Time CI GCI

10 1.30 0.96 1.21 1.15

0.94 20 0.86 0.91 0.88 0.89

30 1.01 0.95 0.94 0.96

 Conclusion: After applying technique 3, single-node demand cuts, the grand composite index

of speedups (GCI) was 0.94, which means that solving the incumbent model was faster. Therefore,

we did not adopt technique 3.

2.4.6 Technique 4：Relax x-z Linking Constraints

 Since 𝜃𝑖𝑗 = ∑ 𝑤𝑘𝑙𝑧𝑘𝑙,𝑖𝑗(𝑘,𝑙)∈𝐴 , adopting the conditional arc-flow cuts, 𝜃𝑖𝑗 ≤ 𝑄𝑥𝑖𝑗 , makes the

constrains (2.5) linking the x and z variables, ∑ 𝑧𝑘𝑙,𝑖𝑗(𝑘,𝑙)∈𝐴 ≤ 𝑀𝑥𝑖𝑗, redundant. Tables 2.23, 2.24,

and 2.25 give the results from relaxing constraint set (2.5) in the incumbent node-arc model.

45

Table 2. 23 Test Results of Incremental Effect of Relax x-z Linking for n = 10.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 2.43 1.28 2.28 2.00 0.67 0.64 0.62 0.64 2.00 250.43

02 3.30 3.45 7.08 4.61 0.82 0.78 0.72 0.77 2.00 96.32

03 3.07 1.73 4.79 3.19 0.73 0.69 0.61 0.68 2.94 190.38

04 4.19 2.48 5.53 4.07 0.76 0.59 0.95 0.77 5.01 199.94

05 0.92 0.90 0.93 0.92 0.39 0.41 0.38 0.39 6.50 109.72

06 4.00 2.03 1.87 2.64 0.98 0.95 0.80 0.91 8.60 326.40

07 4.27 2.44 8.25 4.99 0.88 0.83 0.96 0.89 3.47 272.16

08 3.48 2.30 3.20 2.99 0.71 0.63 0.66 0.67 3.92 229.48

09 4.49 2.74 7.79 5.01 0.65 0.64 0.85 0.71 6.29 163.54

10 2.13 1.41 2.05 1.86 0.25 0.23 0.25 0.24 9.84 41.91

Min 0.92 0.90 0.93 0.92 0.25 0.23 0.25 0.24 2.00 41.91

Mean 3.23 2.08 4.38 3.23 0.68 0.64 0.68 0.67 5.06 188.03

Median 3.39 2.17 3.99 3.09 0.72 0.64 0.69 0.70 4.46 195.16

Max 4.49 3.45 8.25 5.01 0.98 0.95 0.96 0.91 9.84 326.40

Table 2. 24 Test Results of Incremental Effect of Relax x-z Linking for n = 20.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 1,036 1,070 1,059 1,055 71 71 70 70 18 37,045

02 769 802 779 783 52 54 53 53 19 27,438

03 1,687 1,735 1,767 1,730 130 133 132 131 22 74,716

04 6,526 6,560 6,983 6,690 368 374 382 375 20 178,757

05 202 208 213 208 40 40 40 40 24 29,129

06 1,858 1,903 1,980 1,914 137 140 141 139 15 88,623

07 1,064 1,121 1,078 1,088 77 80 78 79 18 41,022

08 780 823 795 799 52 54 52 53 14 26,163

09 1,136 1,126 1,218 1,160 119 121 122 121 19 80,477

10 1,470 1,493 1,545 1,503 94 92 94 93 24 51,420

Min 202 208 213 208 40 40 40 40 14 26,163

Mean 1,653 1,684 1,742 1,693 114 116 116 115 19 63,479

Median 1,100 1,123 1,148 1,124 85 86 86 86 19 46,221

Max 6,526 6,560 6,983 6,690 368 374 382 375 24 178,757

46

Table 2. 25 Test Results of Incremental Effect of Relax x-z Linking for n = 30.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run

1

Real

Time

Run

2

Real

Time

Run

3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 120,138 117,252 118,408 118,599 7,915 7,821 7,772 7,836 35 2,902,468

02 205,899 196,957 199,742 198,350 8,376 8,147 8,304 8,225 34 2,561,425

03 75,956 72,568 74,091 74,205 4,131 3,969 4,128 4,076 32 1,590,695

04 152,491 145,197 146,619 148,102 6,978 6,755 6,812 6,848 45 2,235,008

05 41,576 39,272 40,190 40,346 2,184 2,151 2,140 2,159 24 895,895

06 114,124 111,409 112,341 112,625 6,437 6,593 6,392 6,474 41 2,041,673

07 41,915 41,252 41,678 41,615 2,601 2,561 2,578 2,580 27 1,209,631

08 107,115 103,201 104,597 104,971 5,887 5,775 5,773 5,812 23 1,935,653

09 52,570 48,790 50,296 50,552 2,838 2,780 2,769 2,796 23 1,151,985

10 75,831 72,063 74,851 74,248 3,893 3,806 3,884 3,861 32 1,521,308

Min 41,576 39,272 40,190 40,346 2,184 2,151 2,140 2,159 23 895,895

Mean 98,761 94,796 96,281 96,361 5,124 5,036 5,055 5,067 32 1,804,574

Median 91,536 87,884 89,724 89,610 5,009 4,872 4,950 4,944 32 1,763,174

Max 205,899 196,957 199,742 198,350 8,376 8,147 8,304 8,225 45 2,902,468

Table 2. 26 Summary of Incremental Effect of Relax x-z Linking Constraints

 Speedup LP Upper

Bound

Improvement
Ave. CPU Time Ticks Ave. Real Time

n = 10

Min 0.52 0.69 0.61 0.00%

Mean 1.80 1.15 1.17 0.00%

Median 1.38 1.12 1.15 0.00%

Max 6.29 1.59 1.77 0.00%

n = 20

Min 0.44 0.52 0.57 0.00%

Mean 1.07 1.14 1.09 0.00%

Median 1.06 1.12 1.08 0.00%

Max 1.71 1.80 1.56 0.00%

n = 30

Min 0.71 0.95 0.75 0.00%

Mean 1.49 1.30 1.32 0.00%

Median 1.36 1.11 1.18 0.00%

Max 2.90 2.32 2.40 0.00%

Table 2. 27 CI and GCI of Relax x-z Linking Constraints

n CPU Ticks Real Time CI GCI

10 1.50 1.13 1.16 1.24

1.18 20 1.06 1.12 1.08 1.09

30 1.39 1.16 1.21 1.24

47

 Conclusion: After applying technique 4, Relax x-z Linking, the grand composite index of

speedups (GCI) was 1.18, which means, on average, solving the model relaxing x-z linking

constraints was 1.18 times faster than the incumbent model. Therefore, we adopted technique 4

and dropped constraint set (2.5) from the incumbent.

2.4.7 Technique 5：Branching Priority

 In the node-arc model, there are three types of binary variables: xij, ykl, and zkl,ij which indicate

whether the vehicle travels on arc (i, j), whether the delivery request from node k to node l is

accepted, and whether the accepted demand from node k to node l is realized via arc (i, j),

respectively. We suspected that prioritizing determining the vehicle’s route over deciding which

delivery requests to accept would lead to faster solution times. Therefore, we tested solving the

problem with a branching rule that stating that x variables are branched on before any other binary

variables. The results are given in Tables 2.28, 2.29, and 2.30.

Table 2. 28 Test Results of Incremental Effect of Branching Priority for n =10.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 1.45 3.80 4.95 3.40 0.64 0.77 0.73 0.71 2.00 250.44

02 3.28 5.19 9.40 5.95 0.73 0.62 0.67 0.67 2.00 96.33

03 2.19 3.74 8.23 4.72 0.61 0.56 0.81 0.66 2.94 190.38

04 3.85 3.41 10.57 5.94 0.58 0.64 0.92 0.71 5.01 199.95

05 0.86 0.83 0.64 0.78 0.36 0.34 0.28 0.33 6.50 109.73

06 4.42 5.55 4.78 4.92 0.99 0.87 0.87 0.91 8.60 326.41

07 4.22 4.88 8.21 5.77 0.97 1.00 0.92 0.96 3.47 272.17

08 3.92 5.36 6.52 5.27 0.71 0.79 0.82 0.77 3.92 229.49

09 1.83 6.42 7.47 5.24 0.50 0.68 0.66 0.61 6.29 163.54

10 1.07 2.26 1.37 1.57 0.18 0.27 0.19 0.21 9.84 41.91

Min 0.86 0.83 0.64 0.78 0.18 0.27 0.19 0.21 2.00 41.91

Mean 2.71 4.14 6.21 4.35 0.63 0.65 0.69 0.66 5.06 188.04

Median 2.73 4.34 6.99 5.08 0.63 0.66 0.77 0.69 4.47 195.17

Max 4.42 6.42 10.57 5.95 0.99 1.00 0.92 0.96 9.84 326.41

48

Table 2. 29 Test Results of Incremental Effect of Branching Priority for n =20.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 745 816 873 812 54 57 60 57 18 29,107

02 720 811 867 800 43 46 48 46 19 20,459

03 869 981 1,040 963 58 62 65 62 22 30,882

04 1,125 1,297 1,366 1,262 95 104 109 102 20 57,075

05 120 131 127 126 29 31 31 31 24 20,871

06 737 887 799 807 98 110 107 105 15 72,647

07 878 981 1,046 968 58 63 67 62 18 29,078

08 656 687 780 708 40 42 45 42 14 18,475

09 248 293 264 268 45 49 47 47 19 32,132

10 497 559 544 533 51 55 54 54 24 33,485

Min 497 131 127 126 29 31 31 31 14 18,475

Mean 497 744 771 725 57 62 63 61 19 34,421

Median 497 814 833 804 53 56 57 55 19 29,995

Max 497 1,297 1,366 1,262 98 110 109 105 24 72,647

Table 2. 30 Test Results of Incremental Effect of Branching Priority for n = 30.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run

1

Real

Time

Run

2

Real

Time

Run

3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 61,218 69,127 70,375 66,907 3,875 4,393 4,522 4,263 35 1,405,157

02 128,243 149,091 143,728 140,354 5,027 5,778 5,687 5,497 34 1,546,461

03 38,096 44,385 43,470 41,983 2,505 2,881 2,935 2,774 32 1,213,322

04 18,483 21,745 21,133 20,454 1,464 1,656 1,662 1,594 45 812,789

05 19,407 22,517 21,996 21,307 1,503 1,670 1,728 1,634 24 838,275

06 33,504 37,132 40,321 36,986 1,917 2,118 2,284 2,106 41 863,673

07 29,945 34,850 34,001 32,932 2,134 2,450 2,480 2,355 27 1,081,561

08 84,287 94,156 98,523 92,322 5,545 6,479 6,474 6,166 23 1,966,885

09 30,150 34,861 33,969 32,993 1,895 2,154 2,169 2,073 23 895,030

10 62,213 72,909 69,948 68,357 3,207 3,704 3,645 3,518 32 1,303,688

Min 18,483 21,745 21,133 20,454 1,464 1,656 1,662 1,594 23 812,789

Mean 50,555 58,077 57,746 55,459 2,907 3,328 3,359 3,198 32 1,192,684

Median 35,800 40,759 41,895 39,485 2,320 2,666 2,707 2,564 32 1,147,441

Max 128,243 149,091 143,728 140,354 5,545 6,479 6,474 6,166 45 1,966,885

49

Table 2. 31 Summary of Incremental Effect of Branching Priority Constraints

 Speedup LP Upper

Bound

Improvement
Ave. CPU Time Ticks Ave. Real Time

n = 10

Min 0.54 1.00 0.86 0.00%

Mean 0.80 1.00 1.04 0.00%

Median 0.73 1.00 1.05 0.00%

Max 1.19 1.00 1.20 0.00%

n = 20

Min 0.98 1.22 1.16 0.00%

Mean 2.28 1.76 1.76 0.00%

Median 1.72 1.41 1.31 0.00%

Max 5.30 3.13 3.67 0.00%

n = 30

Min 1.09 0.98 0.94 0.00%

Mean 2.22 1.58 1.80 0.00%

Median 1.65 1.30 1.41 0.00%

Max 7.24 2.75 4.30 0.00%

Table 2. 32 CI and GCI of Branching Priority Constraints

n CPU Ticks Real Time CI GCI

10 0.75 1.00 1.05 0.95

1.5264 20 1.86 1.50 1.42 1.57

30 1.81 1.36 1.51 1.54

 Conclusion: After applying technique 5, Branching Priority, the grand composite index of

speedups (GCI) was 1.5264, which means that using the branching rule was an improvement over

solving the incumbent model with CPLEX’s default settings. Therefore, we adopted the branching

priority on the x variables. Hereinafter we refer to the process of solving the incumbent model with

the branching rule as the “incumbent model”.

50

2.4.8 Technique 6：Lifted MTZ

 Desrochers and Laporte (1991) [47] proved that the MTZ subtour elimination constraints

 𝑠𝑖 − 𝑠𝑗 + (𝑛 + 1)𝑥𝑖𝑗 ≤ 𝑛 ∀ (𝑖, 𝑗) ∈ 𝐴 (2.13)

can be strengthened by lifting them to

 𝑠𝑖 − 𝑠𝑗 + (𝑛 − 1)𝑥𝑖𝑗 + (𝑛 − 3)𝑥𝑗𝑖 ≤ 𝑛 − 2 ∀ (𝑖, 𝑗) ∈ 𝐴: 𝑖 ≠ 1, 𝑗 ≠ 𝑛(2.24)

 Tables 2.33, 2.34, and 2.35 summarize the effect of lifting the MTZ constraints on the

incumbent model.

Table 2. 33 Test Results of Incremental Effect of Lifted MTZ for n= 10.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 1.02 1.05 1.04 1.04 0.60 0.57 0.54 0.57 2.00 258.33

02 1.82 5.84 4.40 4.02 0.54 0.51 0.64 0.56 2.00 81.92

03 1.44 2.29 3.19 2.31 0.55 0.66 0.61 0.61 2.57 183.24

04 2.59 1.99 2.16 2.25 0.69 0.69 0.68 0.69 4.04 207.22

05 0.68 0.84 0.73 0.75 0.30 0.34 0.33 0.32 5.34 106.03

06 4.99 2.87 2.30 3.39 0.68 0.75 0.61 0.68 6.32 196.30

07 5.03 2.64 6.07 4.58 0.82 0.83 0.92 0.86 3.09 279.09

08 1.63 1.94 1.72 1.76 0.63 0.73 0.65 0.67 3.29 230.68

09 1.11 1.14 0.87 1.04 0.48 0.50 0.42 0.47 4.36 144.46

10 1.73 1.60 1.80 1.71 0.26 0.27 0.26 0.26 6.58 43.37

Min 0.68 0.84 0.73 0.75 0.26 0.27 0.26 0.26 2.00 43.37

Mean 2.20 2.22 2.43 2.28 0.56 0.59 0.57 0.57 3.96 173.06

Median 1.68 1.96 1.98 2.00 0.58 0.62 0.61 0.59 3.67 189.77

Max 5.03 5.84 6.07 4.58 0.82 0.83 0.92 0.86 6.58 279.09

51

Table 2. 34 Test Results of Incremental Effect of Lifted MTZ for n = 20.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 865 827 875 856 59 56 59 58 15 30,043

02 812 768 800 793 50 47 49 49 14 22,898

03 1,028 987 1,042 1,019 64 61 65 63 14 30,069

04 996 968 1,005 990 97 94 96 96 14 59,331

05 87 88 93 89 31 30 31 30 18 22,892

06 950 923 980 951 105 104 109 106 13 71,063

07 1,038 998 1,026 1,021 62 60 61 61 13 27,165

08 740 705 734 726 42 39 41 41 10 16,731

09 326 321 337 328 43 41 42 42 14 29,293

10 406 390 397 398 76 74 74 75 19 57,101

Min 497 88 93 89 31 30 31 30 10 16,731

Mean 497 698 729 717 63 61 63 62 14 36,659

Median 497 798 838 825 61 58 60 60 14 29,668

Max 497 998 1,042 1,021 105 104 109 106 19 71,063

Table 2. 35 Test Results of Incremental Effect of Lifted MTZ for n = 30.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 109,652 143,250 114,980 122,627 7,342 8,538 7,606 7,829 28 2,434,610

02 80,272 136,244 78,560 98,359 4,311 6,188 4,200 4,900 27 1,745,495

03 27,701 45,590 27,481 33,591 2,636 3,401 2,625 2,888 25 1,436,603

04 23,347 34,822 22,780 26,983 1,953 2,385 1,917 2,085 32 1,061,262

05 10,405 13,412 10,256 11,358 1,924 1,956 1,871 1,917 20 1,380,103

06 38,604 41,558 36,964 39,042 2,895 2,890 2,804 2,863 34 1,250,096

07 27,540 33,841 27,711 29,697 2,354 2,544 2,321 2,406 22 1,340,991

08 82,520 87,352 83,047 84,306 5,915 5,958 6,051 5,975 18 2,219,737

09 17,824 19,097 17,794 18,238 1,704 1,685 1,719 1,702 19 1,016,520

10 24,576 25,996 24,567 25,046 2,399 2,381 2,373 2,384 26 1,424,402

Min 10,405 13,412 10,256 11,358 1,704 1,685 1,719 1,702 18 1,016,520

Mean 44,244 58,116 44,414 48,925 3,343 3,792 3,349 3,495 25 1,530,982

Median 27,620 38,190 27,596 31,644 2,518 2,717 2,499 2,635 25 1,402,253

Max 109,652 143,250 114,980 122,627 7,342 8,538 7,606 7,829 34 2,434,610

52

Table 2. 36 Summary of Incremental Effect of Lifted MTZ Constraints

 Speedup LP Upper

Bound

Improvement
Ave. CPU Time Ticks Ave. Real Time

n = 10

Min 0.92 0.96 0.81 0.00%

Mean 2.21 1.09 1.13 16.70%

Median 1.76 1.01 1.14 16.98%

Max 5.03 1.66 1.34 33.13%

n = 20

Min 0.82 0.59 0.72 15.05%

Mean 1.05 0.96 0.99 25.49%

Median 0.96 1.00 1.00 26.20%

Max 1.41 1.10 1.12 36.57%

n = 30

Min 0.55 0.58 0.54 14.32%

Mean 1.35 0.79 0.97 20.42%

Median 1.18 0.83 0.97 20.84%

Max 2.73 0.92 1.48 29.41%

Table 2. 37. CI and GCI of Lifted MTZ Constraints

n CPU Ticks Real Time CI GCI

10 1.88 1.04 1.14 1.30

0.9991 20 0.98 0.99 0.99 0.99

30 1.22 0.82 0.97 0.98

 Conclusion: After applying technique 6, Lifted MTZ, the grand composite index of speedups

(GCI) was 0.9991, which means that the incumbent model was solved faster. Therefore, we did

not adopt technique 6.

2.4.9 Technique 7：MTZ upper bound

In the original MTZ subtour elimination constraint by Miller et al. (1960) [45], there is no upper

limit for the sequence variable si. As result any given tour has essentially an infinite number of

representations in terms of the sequence variables. This type of symmetry can needlessly slow

down the branch-and-bound process by causing it “to explore and eliminate such alternative

53

symmetric solutions” (Sherali and Smith (2001) [48]) . Desrochers and Laporte (1991) [47]

proved that constraining 1 ≤ 𝑠𝑖 ≤ 𝑛 − 1 ∀𝑖 ∈ 𝑉 ∖ {1} (2.25)

ensures that there is only one representation of any given feasible tour. The effect of including

upper bounds on the sequence variables are summarized in Tables 2.38, 2.39, and 2.40.

Table 2. 38 Test Results of Incremental Effect of MTZ Upper Bound for n = 10.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 3.28 8.63 3.44 5.12 0.62 0.89 0.70 0.74 2.00 266.90

02 3.63 1.51 2.48 2.54 0.48 0.41 0.49 0.46 2.00 128.12

03 3.39 4.95 4.36 4.23 0.53 0.84 0.91 0.76 2.94 157.75

04 2.21 2.72 3.20 2.71 0.79 0.85 0.61 0.75 5.01 189.11

05 5.00 1.54 2.45 3.00 0.53 0.38 0.44 0.45 6.50 153.93

06 3.80 1.47 2.27 2.52 0.51 0.42 0.49 0.47 8.60 174.29

07 6.14 2.65 1.95 3.58 0.81 0.78 0.66 0.75 3.47 262.73

08 4.92 5.21 3.05 4.39 0.88 1.04 0.90 0.94 3.92 401.28

09 0.94 0.96 1.13 1.01 0.43 0.42 0.49 0.45 6.29 166.05

10 2.50 1.89 1.84 2.08 0.47 0.33 0.26 0.35 9.84 47.70

Min 0.94 0.96 1.13 1.01 0.43 0.33 0.26 0.35 2.00 47.70

Mean 3.58 3.15 2.62 3.12 0.61 0.64 0.60 0.61 5.06 194.79

Median 3.51 2.27 2.46 2.85 0.53 0.60 0.55 0.61 4.46 170.17

Max 6.14 8.63 4.36 5.12 0.88 1.04 0.91 0.94 9.84 401.28

Table 2. 39 Test Results of Incremental Effect of MTZ Upper Bound for n =2 0.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 1,013 786 838 879 85 67 70 74 18 39,289

02 848 709 754 770 51 44 45 47 19 21,355

03 1,102 891 939 977 76 65 67 69 22 34,606

04 1,040 982 1,038 1,020 107 98 103 103 20 65,589

05 185 168 184 179 31 27 29 29 24 19,799

06 1,409 1,489 1,575 1,491 119 114 119 117 15 67,825

07 1,098 906 969 991 68 54 58 60 18 24,179

08 778 684 736 733 63 54 56 58 14 27,443

09 240 205 219 221 53 42 44 46 19 28,029

10 481 358 384 408 70 51 53 58 24 33,074

Min 497 168 184 179 31 27 29 29 14 19,799

Mean 497 718 764 767 72 62 65 66 19 36,119

Median 497 747 796 825 69 54 57 59 19 30,551

Max 497 1,489 1,575 1,491 119 114 119 117 24 67,825

54

Table 2. 40 Test Results of Incremental Effect of MTZ Upper Bound for n = 30.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run

2

Real

Time

Run

3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 188,264 111,239 119,017 139,507 20,113 8,741 9,860 12,904 35 3,053,978

02 166,376 119,388 126,284 137,349 10,236 5,071 5,350 6,885 34 1,568,098

03 49,362 26,448 27,838 34,549 5,159 2,361 2,485 3,335 32 1,372,190

04 25,516 17,155 18,245 20,305 2,999 1,395 1,467 1,953 45 752,547

05 56,931 43,182 44,965 48,359 5,286 2,561 2,627 3,491 24 1,056,220

06 93,815 44,295 46,468 61,526 6,291 2,620 2,753 3,888 41 1,138,944

07 71,092 50,987 53,842 58,640 6,691 2,899 3,056 4,216 27 1,249,116

08 211,113 107,294 111,801 143,403 13,785 5,895 6,167 8,616 23 1,807,981

09 29,726 17,404 18,199 21,776 3,133 1,513 1,584 2,077 23 823,056

10 43,140 35,612 37,340 38,697 2,859 2,434 2,538 2,610 32 1,176,301

Min 25,516 17,155 18,199 20,305 2,859 1,395 1,467 1,953 23 752,547

Mean 93,533 57,300 60,400 70,411 7,655 3,549 3,789 4,998 32 1,399,843

Median 64,012 43,738 45,716 53,500 5,788 2,591 2,690 3,690 32 1,212,708

Max 211,113 119,388 126,284 143,403 20,113 8,741 9,860 12,904 45 3,053,978

Table 2. 41 Summary of Incremental Effect of MTZ upper bound Constraints

 Speedup LP Upper

Bound

Improvement
Ave. CPU Time Ticks Ave. Real Time

n = 10

Min 0.26 0.57 0.60 0.00%

Mean 1.73 1.00 1.10 0.00%

Median 1.40 0.96 0.96 0.00%

Max 5.20 1.87 1.92 0.00%

n = 20

Min 0.54 0.67 0.73 0.00%

Mean 0.99 0.96 0.93 0.00%

Median 0.98 0.99 0.95 0.00%

Max 1.31 1.20 1.05 0.00%

n = 30

Min 0.44 0.46 0.33 0.00%

Mean 0.93 0.91 0.74 0.00%

Median 0.83 0.94 0.76 0.00%

Max 1.77 1.11 1.35 0.00%

55

Table 2. 42 CI and GCI of MTZ upper bound Constraints

n CPU Ticks Real Time CI GCI

10 1.49 0.97 0.99 1.12

0.9096 20 0.98 0.98 0.94 0.97

30 0.85 0.93 0.76 0.84

 Conclusion: After applying technique 7, MTZ upper bound, the grand composite index of

speedups (GCI) was 0.9096 indicating that it was more efficient to solve the incumbent model.

Therefore, we did not adopt the upper bound constraints for the MTZ sequence variables.

2.4.10 Technique 8：Cover Cuts

 Fischetti et al. (1998) [49] found that cover cuts on sets of arcs whose total length is more than

the maximum route distance D were effective for solving the Orienteering Problem, which is a

special case of BPMP. They also proposed solving a knapsack problem to determine if there is a

set of arcs 𝑆 that violates the cover cut:

∑ 𝑥𝑖𝑗(𝑖,𝑗)∈𝑆 ≤ |𝑆| − 1 ∀ 𝑆 ⊆ 𝐴 such that ∑ 𝑑𝑖𝑗(𝑖,𝑗)∈𝑆 > 𝐷

in the LP relaxation. We applied this technique iteratively to the BPMP adding violated cover cuts

as necessary until no additional cover cuts are found at which point we solve the MIP. The results

are given in Tables 2.43, 2.44, 2.45.

56

Table 2. 43 Test Results of Incremental Effect of Cover Cuts for n =10.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 3.91 2.16 1.92 2.66 0.89 0.841569 0.85 0.86 2.00 255.37

02 4.91 5.89 4.18 4.99 0.90 0.77 1.04 0.91 2.00 91.28

03 4.86 4.74 5.46 5.02 0.91 0.71 0.84 0.82 2.94 188.63

04 3.23 2.63 5.25 3.70 0.73 1.03 1.07 0.94 5.01 206.10

05 3.84 2.29 8.14 4.76 0.62 0.77 0.93 0.77 6.50 111.96

06 5.66 5.66 12.58 7.97 1.02 1.59 1.49 1.37 8.60 333.89

07 3.64 3.12 8.29 5.02 1.12 1.47 1.44 1.34 3.47 279.35

08 2.70 2.79 3.97 3.15 0.91 0.83 0.94 0.89 3.92 235.57

09 3.26 3.94 3.42 3.54 0.80 0.83 0.79 0.81 6.29 165.98

10 1.88 0.76 1.13 1.26 0.40 0.33 0.38 0.37 9.84 43.82

Min 2.70 0.76 1.13 1.26 0.62 0.33 0.38 0.37 2.00 43.82

Mean 4.00 3.40 5.43 4.21 0.88 0.92 0.98 0.91 5.06 191.20

Median 3.84 2.96 4.72 4.23 0.90 0.83 0.93 0.88 4.46 197.37

Max 5.66 5.89 12.58 7.97 1.12 1.59 1.49 1.37 9.84 333.89

Table 2. 44 Test Results of Incremental Effect of Cover Cuts for n = 20.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 1,201 803 750 918 81 57 55 65 18 28,721

02 1,415 794 737 982 80 48 48 59 19 20,938

03 1,331 985 887 1,068 97 73 68 79 22 33,802

04 2,023 1,704 1,513 1,747 155 130 118 134 20 66,270

05 52,811 52,381 50,306 51,833 7,399 7,244 7,082 7,242 24 24,233

06 1,590 1,285 973 1,283 139 90 77 102 15 46,357

07 1,301 974 884 1,053 82 63 59 68 18 26,624

08 792 733 688 738 48 47 45 47 14 19,324

09 375 345 279 333 65 62 57 61 19 38,576

10 1,000 605 516 707 99 60 55 71 24 33,488

Min 375 345 279 333 48 47 45 47 14 19,324

Mean 6,384 6,061 5,753 6,066 825 787 767 793 19 33,833

Median 1,316 888 817 1,017 89 62 58 70 19 31,105

Max 52,811 52,381 50,306 51,833 7,399 7,244 7,082 7,242 24 66,270

57

Table 2. 45 Test Results of Incremental Effect of Cover Cuts for n = 30.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 163,814 110,014 100,087 124,638 11,210 7,650 6,978 8,613 35 2,471,321

02 156,964 109,168 94,901 120,344 8,054 4,697 4,206 5,653 34 1,432,326

03 53,951 37,454 32,678 41,361 4,084 2,793 2,516 3,131 32 1,246,448

04 29,781 20,245 17,227 22,418 2,573 1,816 1,639 2,009 45 968,206

05 36,947 29,370 25,515 30,611 3,062 1,996 1,793 2,283 24 936,560

06 52,662 35,395 34,936 40,998 3,433 2,325 2,235 2,665 41 913,807

07 35,181 25,640 22,331 27,717 3,549 2,375 2,200 2,708 27 1,268,084

08 111,663 76,245 72,748 86,885 7,185 4,888 4,620 5,564 23 1,644,209

09 31,972 30,566 26,140 29,559 2,716 2,022 1,801 2,179 23 874,020

10 48,201 41,012 35,332 41,515 3,769 2,693 2,456 2,973 32 1,137,796

Min 29,781 20,245 17,227 22,418 2,573 1,816 1,639 2,009 23 874,020

Mean 72,114 51,511 46,189 56,605 4,964 3,326 3,044 3,778 32 1,289,278

Median 50,431 36,425 33,807 41,179 3,659 2,534 2,345 2,840 32 1,192,122

Max 163,814 110,014 100,087 124,638 11,210 7,650 6,978 8,613 45 2,471,321

Table 2. 46 Summary of Incremental Effect of Cover Cuts Constraints

 Speedup LP Upper

Bound

Improvement
Ave. CPU Time Ticks Ave. Real Time

n = 10

Min 0.16 0.69 0.42 0.00%

Mean 1.13 0.96 0.71 0.00%

Median 1.22 0.98 0.75 0.00%

Max 1.67 1.06 0.87 0.00%

n = 20

Min 0.00 0.83 0.00 0.00%

Mean 0.74 1.01 0.76 0.00%

Median 0.81 0.97 0.78 0.00%

Max 0.96 1.57 1.03 0.00%

n = 30

Min 0.54 0.57 0.50 0.00%

Mean 1.02 0.95 0.88 0.00%

Median 1.04 0.96 0.88 0.00%

Max 1.65 1.20 1.18 0.00%

58

Table 2. 47 CI and GCI of Cover Cuts

n CPU Ticks Real Time CI GCI

10 1.20 0.97 0.74 0.95

0.9069 20 0.79 0.98 0.77 0.85

30 1.04 0.96 0.88 0.95

 Conclusion: After applying technique 8, Cover Cuts, the grand composite index of speedups

(GCI) is 0.9069 indicating that it was more efficient to solve the incumbent model. Therefore, we

did not adopt the technique of cover cuts.

2.4.11 Technique 9：Pairwise Demand Cuts

 Pairwise demand cuts state that pairs of delivery requests from the same node whose total

weight exceeds the vehicle's capacity are mutually exclusive.

𝑦𝑘𝑖 + 𝑦𝑘𝑗 ≤ 1 ∀{(𝑘, 𝑖), (𝑘, 𝑗) ∈ 𝐴: 𝑖 ≠ 𝑗, 𝑤𝑘𝑖 + 𝑤𝑘𝑗 > 𝑄 } (2.25)

𝑦𝑖𝑘 + 𝑦𝑗𝑘 ≤ 1 ∀{(𝑖, 𝑘), (𝑗, 𝑘) ∈ 𝐴: 𝑖 ≠ 𝑗, 𝑤𝑖𝑘 + 𝑤𝑗𝑘 > 𝑄 } (2.26)

The above are valid inequalities that are satisfied by any feasible solution to the MIP formulation.

In our preliminary tests, we observed that these cuts were not present in every possible case.

Therefore, instead of adding them as additional constraints to the whole node-arc model, we adopt

a simple scheme to add them as necessary. That is, we check for violated pairwise demand cuts of

the corresponding LP relaxation, add any violated cuts found to the model, and solve the LP again.

This process is repeated until no more cuts are found in the LP relaxation problem, at which point

we restore the integrality constraints and solve the MIP. In this way, we can use a minimal number

of pairwise demand cuts. We denote the set of node pairs for which pairwise demand cuts are

added by B. Tables 2.48, 2.49, and 2.50 give the results obtained from applying this technique to

the incumbent model.

59

Table 2. 48 Test Results of Incremental Effect of Pairwise Demand Cuts for n = 10.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 1.91 1.60 1.71 1.74 1.38 1.02689 1.07 1.16 2.00 245.31

02 3.96 4.22 3.34 3.84 0.79 0.95 0.73 0.82 2.00 91.28

03 3.20 2.73 2.82 2.92 1.00 0.89 0.93 0.94 2.94 189.06

04 2.69 1.81 3.07 2.52 0.93 0.88 0.83 0.88 4.65 197.43

05 1.07 1.31 1.30 1.23 0.45 0.56 0.56 0.52 6.50 111.96

06 2.06 2.38 2.39 2.28 1.05 1.16 1.20 1.14 8.48 343.63

07 5.34 4.93 2.93 4.40 1.03 1.28 1.00 1.10 3.47 276.50

08 1.75 3.13 4.57 3.15 0.69 1.14 0.95 0.93 3.88 242.67

09 3.42 2.92 3.32 3.22 0.84 0.98 0.96 0.93 6.29 166.29

10 1.02 0.82 0.82 0.89 0.61 0.53 0.56 0.57 9.80 50.95

Min 1.07 0.82 0.82 0.89 0.45 0.53 0.56 0.52 2.00 50.95

Mean 2.82 2.59 2.63 2.62 0.91 0.94 0.88 0.90 5.00 191.51

Median 2.69 2.56 2.87 2.72 0.93 0.97 0.94 0.93 4.27 193.25

Max 5.34 4.93 4.57 4.40 1.38 1.28 1.20 1.16 9.80 343.63

Table 2. 49 Test Results of Incremental Effect of Pairwise Demand Cuts for n = 20.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 1,473 805 873 1,050 94 62 63 73 18 27,321

02 1,212 736 763 903 75 50 52 59 19 22,714

03 1,161 978 1,055 1,065 77 68 71 72 22 28,821

04 1,237 1,170 1,232 1,213 118 117 124 120 20 59,825

05 182 179 183 181 44 43 44 44 24 26,643

06 1,265 1,148 1,234 1,216 120 117 123 120 15 73,393

07 1,555 903 974 1,144 95 64 65 74 18 26,859

08 1,345 855 918 1,039 97 69 72 79 14 26,292

09 496 306 322 374 90 69 72 77 19 38,632

10 390 340 361 364 56 51 53 53 24 30,898

Min 182 179 183 181 44 43 44 44 14 22,714

Mean 1,031 742 791 855 87 71 74 77 19 36,140

Median 1,225 830 895 1,045 92 66 68 74 19 28,071

Max 1,555 1,170 1,234 1,216 120 117 124 120 24 73,393

60

Table 2. 50 Test Results of Incremental Effect of Pairwise Demand Cuts for n =30.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run

1

Real

Time

Run

2

Real

Time

Run

3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 59,409 57,242 61,217 59,289 3,641 3,516 3,732 3,630 35 1,256,904

02 33,662 31,838 28,706 31,402 2,414 2,347 2,537 2,433 33 1,050,958

03 45,848 44,190 47,043 45,694 2,839 2,794 2,950 2,861 32 1,202,606

04 31,271 29,742 34,339 31,784 2,232 2,129 2,431 2,264 45 826,145

05 42,705 40,546 42,742 41,998 2,553 2,482 2,649 2,561 23 918,572

06 42,163 43,748 45,662 43,858 2,715 2,783 2,902 2,800 41 1,082,116

07 45,982 46,030 48,503 46,838 3,108 3,160 3,329 3,199 27 1,307,731

08 79,578 79,015 82,460 80,351 5,164 5,177 5,377 5,239 23 1,775,436

09 25,491 24,582 25,867 25,313 1,788 1,750 1,853 1,797 23 829,883

10 39,401 38,339 40,187 39,309 2,604 2,539 2,656 2,600 32 1,137,796

Min 25,491 24,582 25,867 25,313 1,788 1,750 1,853 1,797 23 826,145

Mean 44,551 43,527 45,673 44,584 2,906 2,868 3,042 2,938 32 1,138,815

Median 42,434 42,147 44,202 42,928 2,659 2,661 2,779 2,700 32 1,109,956

Max 79,578 79,015 82,460 80,351 5,164 5,177 5,377 5,239 45 1,775,436

Table 2. 51 Summary of Incremental Effect of Pairwise Demand Cuts

 Speedup LP Upper

Bound

Improvement
Ave. CPU Time Ticks Ave. Real Time

n = 10

Min 0.63 0.67 0.38 0.00%

Mean 1.66 0.95 0.71 1.00%

Median 1.65 0.98 0.75 0.00%

Max 2.35 1.06 0.88 7.06%

n = 20

Min 0.66 0.70 0.54 0.00%

Mean 0.87 0.95 0.78 0.59%

Median 0.81 0.97 0.81 0.29%

Max 1.47 1.08 1.00 1.83%

n = 30

Min 0.51 0.80 0.64 0.00%

Mean 1.34 1.05 1.09 0.32%

Median 1.02 1.04 1.06 0.22%

Max 4.47 1.47 2.26 1.09%

61

Table 2. 52 CI and GCI of Pairwise Demand Cuts

n CPU Ticks Real Time CI GCI

10 1.65 0.97 0.74 1.07

0.9853 20 0.83 0.97 0.80 0.87

30 1.11 1.05 1.07 1.08

 Conclusion: After applying technique 9, Pairwise Demand Cuts, the grand composite index of

speedups (GCI) was 0.9853, which means that the incumbent model was solved faster. Therefore,

we did not adopt technique 9.

2.4.12 Summary of Enhanced Node-Arc Model and Results for 40-Node Instance

 We conclude this section by restating the enhanced model and applying it to the 40-node

problem instances.

Enhanced Node-Arc Model

Objective

Maximize 𝑝 [∑ 𝑑𝑘𝑙𝑤𝑘𝑙𝑦𝑘𝑙(𝑘, 𝑙)∈𝐸] − 𝑐 ∑ 𝜃𝑖𝑗𝑑𝑖𝑗(𝑖, 𝑗)∈𝐸 − 𝑐𝑣 ∑ 𝑑𝑖𝑗𝑥𝑖𝑗(𝑖, 𝑗)∈𝐸 (2.1)

Subject to

∑ zkl,kjj∈V = ykl (k, l) ∈ A (2.2)

∑ zkl,ili∈V = ykl (k, l) ∈ A (2.3)

∑ 𝑧𝑘𝑙,𝑖𝑎𝑖∈𝑉, (𝑖, 𝑎)∈𝐴 = ∑ 𝑧𝑘𝑙,𝑎𝑗𝑗∈𝑉, (𝑎, 𝑗)∈𝐴 (𝑘, 𝑙) ∈ 𝐴, 𝑎 ∈ 𝑉\{𝑘, 𝑙} (2.4)

∑ 𝑥1,𝑗(1,𝑗)∈𝐴 = 1 (2.6)

∑ 𝑥𝑖,𝑛(𝑖,𝑛)∈𝐴 = 1 (2.7)

∑ 𝑥𝑖𝑘𝑖∈𝑉\{𝑘, 𝑛} = ∑ 𝑥𝑘𝑗𝑗∈𝑉\{1, 𝑘} 𝑘 ∈ 𝑉\{1, 𝑛} (2.8)

∑ 𝑑𝑖𝑗𝑥𝑖𝑗(𝑖, 𝑗)∈𝐴 ≤ 𝐷 (2.10)

θij = ∑ wklzkl,ij(k, l)∈A (i, j) ∈ A (2.11)

θij ≤ Qxij (i, j) ∈ A (2.21)

𝑠𝑖 − 𝑠𝑗 + (𝑛 + 1)𝑥𝑖𝑗 ≤ 𝑛 (𝑖, 𝑗) ∈ 𝐴 (2.13)

62

𝑥𝑖𝑗 ∈ {0, 1} (𝑖, 𝑗) ∈ 𝐴 (2.14)

𝑦𝑘𝑙 ∈ {0, 1} (𝑘, 𝑙) ∈ 𝐴 (2.15)

𝑧𝑘𝑙,𝑖𝑗 ∈ {0, 1} (𝑘, 𝑙) ∈ 𝐴, (𝑖, 𝑗) ∈ 𝐴 (2.16)

 We conclude this section with results from applying the enhanced node-arc model to 40-node

BPMP instances. From Table 2.54, we can see that the median and average real time for 40-node

instances was 56,428 seconds (15.7 hours) and 329,773 seconds (91.6 hours), which is probably

impractical for real-world application.

Table 2. 53 CPU Times for Enhanced Node-Arc Model for n = 40.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

 Run 3

Ave.

CPU

Time

01 1,642,420 1,609,370 1,624,790 1,625,527

02 5,311,600 5,398,720 5,554,910 5,421,743

03 2,279,190 2,279,210 2,294,180 2,284,193

04 440,044 432,906 439,291 437,414

05 504,116 501,716 506,084 503,972

06 895,623 893,713 901,347 896,894

07 1,322,480 1,309,680 1,320,570 1,317,577

08 1,124,880 1,095,630 1,108,450 1,109,653

09 334,320 331,986 335,769 334,025

10 50,837,400 54,439,600 52,230,100 52,502,367

Min 334,320 331,986 335,769 334,025

Mean 6,469,207 6,829,253 6,631,549 6,643,337

Median 1,223,680 1,202,655 1,214,510 1,213,615

Max 50,837,400 54,439,600 52,230,100 52,502,367

63

Table 2. 54 Real Times for Enhanced Node-Arc Model for n = 40.

Instance

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

01 76,067 74,799 75,979 75,615

02 190,590 193,773 200,240 194,868

03 139,011 137,874 139,658 138,847

04 23,039 22,795 23,035 22,956

05 30,046 29,894 30,123 30,021

06 57,037 57,189 57,075 57,100

07 56,135 55,357 55,778 55,756

08 52,482 50,920 51,489 51,630

09 18,474 18,300 18,464 18,413

10 2,557,613 2,762,254 2,637,688 2,652,518

Min 18,474 18,300 18,464 18,413

Mean 320,049 340,315 328,953 329,773

Median 56,586 56,273 56,427 56,428

Max 2,557,613 2,762,254 2,637,688 2,652,518

Table 2. 55 LP Upper Bounds and Ticks for Enhanced Node-Arc Model for n = 40.

Instance

LP

Upper

Bound

Ticks

01 49 18,661,092

02 57 38,797,945

03 54 28,592,204

04 37 8,250,144

05 66 9,998,664

06 52 13,904,434

07 41 15,569,350

08 38 16,177,156

09 55 6,601,682

10 61 463,811,772

Min 37 6,601,682

Mean 51 62,036,444

Median 53 15,873,253

Max 66 463,811,772

64

2.5 Enhancing the Triples Formulation

2.5.1 Initial Incumbent Formulation

 In this section we give the results for our initial incumbent, the original triples model. The model

was solved three times for each problem instance. The results are shown in Tables 2.56 -2.60.

Table 2. 56 Test Results of Original Triples Model for n = 10.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 3.15 1.91 2.69 2.58 0.68 0.62 0.74 0.68 2.00000 39.06

02 3.14 4.70 0.71 2.85 0.56 0.47 0.39 0.47 2.00000 34.44

03 2.69 2.82 3.61 3.04 0.42 0.48 0.48 0.46 2.00000 49.68

04 4.55 5.58 2.73 4.29 0.97 0.87 0.90 0.91 2.00000 97.23

05 2.53 3.66 2.61 2.93 0.54 0.59 0.54 0.56 2.00000 27.97

06 2.41 2.07 4.43 2.97 0.41 0.45 0.54 0.47 2.00000 66.53

07 2.80 3.69 2.69 3.06 0.76 0.49 0.57 0.61 2.00000 52.56

08 1.52 1.09 3.05 1.89 0.37 0.39 0.40 0.39 2.00000 62.65

09 5.24 2.48 1.87 3.20 0.47 0.45 0.51 0.48 2.00000 39.59

10 1.13 1.23 0.58 0.98 0.10 0.11 0.15 0.12 2.00000 10.63

Min 1.13 1.09 0.58 0.98 0.10 0.11 0.15 0.12 2.00000 10.63

Mean 2.92 2.92 2.50 2.78 0.53 0.49 0.52 0.51 2.00000 48.03

Median 2.75 2.65 2.69 2.95 0.51 0.48 0.53 0.48 2.00000 44.64

Max 5.24 5.58 4.43 4.29 0.97 0.87 0.90 0.91 2.00000 97.23

Table 2. 57 Test Results of Original Triples Model for n = 20.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run

1

Real

Time

Run

2

Real

Time

Run

3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 11.82 12.36 11.14 11.78 3.31 3.15 3.25 3.24 2.00024 1,382.92

02 5.89 4.82 6.39 5.70 2.43 2.28 2.41 2.37 2.00012 705.12

03 17.17 15.90 16.73 16.60 3.89 3.80 3.80 3.83 2.00060 1,776.09

04 44.74 44.71 46.30 45.25 5.35 5.23 5.40 5.33 2.00063 2,600.35

05 14.57 14.34 14.59 14.50 3.03 2.89 2.97 2.96 2.00000 1,441.45

06 308.56 328.86 306.95 314.79 20.93 21.64 20.48 21.02 2.00180 13,753.46

07 9.08 9.39 9.29 9.26 3.06 2.99 3.09 3.05 2.00024 1,136.33

08 9.26 8.36 8.63 8.75 3.57 3.22 3.31 3.37 2.00000 1,313.38

09 70.57 72.79 67.04 70.14 5.49 5.60 5.37 5.49 2.00204 2,809.86

10 25.38 27.30 24.66 25.78 3.56 3.35 3.40 3.44 2.00000 1,572.45

Min 5.89 4.82 6.39 5.70 2.43 2.28 2.41 2.37 2.00000 705.12

Mean 51.70 53.88 51.17 52.25 5.46 5.42 5.35 5.41 2.00057 2,849.14

Median 15.87 15.12 15.66 15.55 3.57 3.29 3.36 3.40 2.00024 1,506.95

Max 308.56 328.86 306.95 314.79 20.93 21.64 20.48 21.02 2.00204 13,753.46

65

Table 2. 58 Test Results of Original Triples Model for n = 30.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run

1

Real

Time

Run

2

Real

Time

Run

3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 2,007 2,187 2,057 2,084 106 115 107 109 2.00000 57,767

02 6,624 6,986 6,783 6,798 316 332 322 323 2.00084 190,088

03 1,552 1,657 1,626 1,611 106 112 109 109 2.00076 64,027

04 477 492 477 482 78 80 78 79 2.00103 60,791

05 2,288 2,442 2,368 2,366 121 127 122 123 2.00104 63,157

06 30 30 31 30 7 6 6 6 2.00146 4,318

07 2,120 2,286 2,236 2,214 119 127 123 123 2.00219 65,146

08 2,275 2,416 2,324 2,338 129 135 129 131 2.00124 71,547

09 6,352 6,773 6,584 6,570 398 424 403 408 2.00151 259,044

10 10,181 10,726 10,533 10,480 561 587 580 576 2.00116 248,936

Min 30 30 31 30 7 6 6 6 2.00000 4,318

Mean 3,390 3,600 3,502 3,497 194 205 198 199 2.00112 108,482

Median 2,198 2,351 2,280 2,276 120 127 123 123 2.00110 64,586

Max 10,181 10,726 10,533 10,480 561 587 580 576 2.00219 259,044

Table 2. 59 Test Results of Original Triples Model for n = 40.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 9,159 9,485 9,424 9,356 505 522 510 512 2.00002 223,051

02 230,646 233,806 233,457 232,636 12,633 12,967 12,762 12,787 2.00002 2,231,392

03 9,941 10,380 10,221 10,181 464 485 474 474 2.00003 200,479

04 4,924 5,099 5,097 5,040 357 384 363 368 2.00004 216,198

05 30,709 31,393 31,534 31,212 1,532 1,578 1,551 1,553 2.00005 583,752

06 110 115 110 112 16 17 16 17 2.00005 10,844

07 52,311 53,147 53,447 52,968 2,495 2,566 2,529 2,530 2.00002 719,292

08 117,263 120,211 120,584 119,353 5,383 5,500 5,464 5,449 2.00003 1,273,891

09 84,683 86,619 86,434 85,912 3,481 3,565 3,559 3,535 2.00003 1,006,632

10 102,631 105,095 104,735 104,154 5,021 5,141 5,088 5,083 2.00005 1,427,219

Min 110 115 110 112 16 17 16 17 2.00002 10,844

Mean 64,238 65,535 65,504 65,092 3,189 3,273 3,232 3,231 2.00003 789,275

Median 41,510 42,270 42,490 42,090 2,013 2,072 2,040 2,042 2.00003 651,522

Max 230,646 233,806 233,457 232,636 12,633 12,967 12,762 12,787 2.00005 2,231,392

66

Table 2. 60 Test Results of Original Triples Model for n = 50.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 265,863 266,362 267,515 266,580 10,802 10,868 10,891 10,853 2.00108 2,310,519

02 810,851 800,358 794,515 801,908 38,720 39,002 38,191 38,638 2.00196 6,807,569

03 678,901 680,901 670,418 676,740 28,237 28,427 27,970 28,211 2.00186 5,457,936

04 76,866 76,762 76,741 76,790 3,293 3,360 3,296 3,316 2.00281 1,059,798

05 127,561 127,923 127,392 127,625 5,659 5,767 5,719 5,715 2.00104 1,531,558

06 295,880 293,908 296,457 295,415 13,551 13,573 13,561 13,562 2.00324 2,717,566

07 598,680 599,843 598,380 598,968 25,062 25,265 25,062 25,130 2.00144 4,654,508

08 101,607 102,628 101,456 101,897 4,148 4,238 4,169 4,185 2.00153 1,390,149

09 265,103 264,168 264,372 264,548 11,312 11,400 11,337 11,350 2.00218 2,501,357

10 1,162,570 1,172,530 1,178,230 1,171,110 46,822 47,669 47,508 47,333 2.00111 8,281,539

Min 76,866 76,762 76,741 76,790 3,293 3,360 3,296 3,316 2.00104 1,059,798

Mean 438,388 438,538 437,548 438,158 18,761 18,957 18,770 18,829 2.00183 3,671,250

Median 280,872 280,135 281,986 280,998 12,432 12,487 12,449 12,456 2.00170 2,609,461

Max 1,162,570 1,172,530 1,178,230 1,171,110 46,822 47,669 47,508 47,333 2.00324 8,281,539

 As shown in Tables 2.56 -2.60, we were able to solve 10-node through 50-node instances with

the original triples model. But the mean real time for 50-node instances was more than 5 hours,

which is not practical in the real world. There are no speedups yet (no techniques applied yet).

2.5.2 Technique 1：Relax Linking Constraints

 The linking constraint in section 2.2.3 (2.19) is to force (i, k) to be an arc on the vehicle's route

if variable 𝑢𝑖𝑗
𝑘

 is positive. However, Dong (2015) showed that model remains valid even if this

constraint is relaxed. Relaxing (2.19) significantly reduces the number of constraints in the triples

model and consequently improves solution time as shown in Tables 2-36, 2-37, and 2-38.

67

Table 2. 61 Test Results of Incremental Effect of Relaxing Triples Linking Constraints for n =10.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP Upper

Bound

Ticks

01 2.84 9.23 1.30 4.46 0.48 0.59 0.43 0.50 2.00000 52.93

02 6.57 8.40 1.53 5.50 0.57 0.61 0.41 0.53 2.00000 27.67

03 3.68 1.25 1.37 2.10 0.35 0.27 0.36 0.33 2.00000 39.63

04 1.44 5.55 1.79 2.93 0.26 0.40 0.26 0.31 2.00000 58.17

05 2.53 3.87 1.84 2.75 0.30 0.36 0.30 0.32 2.00000 35.92

06 2.23 5.48 2.63 3.45 0.26 0.45 0.36 0.36 2.00000 55.46

07 3.64 4.41 2.37 3.48 0.68 0.72 0.67 0.69 2.00000 43.87

08 4.42 2.40 1.69 2.83 0.40 0.30 0.35 0.35 2.00000 94.04

09 2.18 3.72 0.74 2.21 0.22 0.30 0.22 0.25 2.00000 32.39

10 1.10 1.30 1.69 1.36 0.11 0.11 0.13 0.12 2.00000 20.06

Min 1.10 1.25 0.74 1.36 0.11 0.11 0.13 0.12 2.00000 20.06

Mean 3.06 4.56 1.69 3.11 0.36 0.41 0.35 0.37 2.00000 46.01

Median 2.68 4.14 1.69 2.88 0.33 0.38 0.36 0.34 2.00000 41.75

Max 6.57 9.23 2.63 5.50 0.68 0.72 0.67 0.69 2.00000 94.04

Table 2. 62 Test Results of Incremental Effect of Relaxing Triples Linking Constraints for n =

20.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP Upper

Bound

Ticks

01 9.83 9.74 9.73 9.77 2.27 2.29 2.24 2.27 2.00024 994.84

02 4.55 4.47 4.16 4.39 1.49 1.42 1.30 1.40 2.00012 549.77

03 25.88 26.24 25.05 25.72 5.51 5.56 5.30 5.46 2.00060 3,354.07

04 26.24 25.26 25.82 25.77 3.34 3.15 3.27 3.25 2.00063 1,374.97

05 11.13 11.48 11.18 11.26 2.54 2.64 2.52 2.57 2.00000 1,161.77

06 124.53 124.19 124.53 124.42 10.05 9.84 10.00 9.96 2.00180 6,194.38

07 6.92 6.74 6.85 6.83 2.04 1.93 2.03 2.00 2.00024 807.62

08 9.32 9.46 8.75 9.18 2.10 2.10 1.97 2.06 2.00000 834.06

09 31.08 30.91 31.42 31.14 3.45 3.40 3.50 3.45 2.00204 1,646.54

10 13.86 14.25 14.22 14.11 3.91 3.46 3.79 3.72 2.00000 1,216.68

Min 4.55 4.47 4.16 4.39 1.49 1.42 1.30 1.40 2.00000 549.77

Mean 26.33 26.27 26.17 26.26 3.67 3.58 3.59 3.61 2.00057 1,813.47

Median 12.49 12.87 12.70 12.69 2.94 2.90 2.90 2.91 2.00024 1,189.23

Max 124.53 124.19 124.53 124.42 10.05 9.84 10.00 9.96 2.00204 6,194.38

68

Table 2. 63 Test Results of Incremental Effect of Relaxing Triples Linking Constraints for n =

30.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 1,393 1,393 1,395 1,393 65 64 64 64 2.00000 47,098

02 761 759 757 759 50 49 49 49 2.00084 41,553

03 540 543 540 541 31 32 31 31 2.00076 23,678

04 53 53 52 52 10 10 10 10 2.00103 7,225

05 640 635 636 637 36 35 36 36 2.00104 25,442

06 38 38 38 38 8 8 8 8 2.00146 5,788

07 757 756 764 759 43 43 43 43 2.00219 34,530

08 674 676 674 675 39 40 40 39 2.00124 31,445

09 1,220 1,216 1,214 1,217 63 63 63 63 2.00151 49,284

10 3,246 3,257 3,262 3,255 168 168 166 167 2.00116 145,491

Min 38 38 38 38 8 8 8 8 2.00000 5,788

Mean 932 932 933 933 51 51 51 51 2.00112 41,153

Median 716 716 715 717 41 41 41 41 2.00110 32,988

Max 3,246 3,257 3,262 3,255 168 168 166 167 2.00219 145,491

Table 2. 64 Test Results of Incremental Effect of Relaxing Triples Linking Constraints for n =

40.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 7,201 7,125 7,129 7,152 295 294 297 295 2.00002 188,145

02 83,958 83,701 83,890 83,850 3,065 3,057 3,041 3,054 2.00002 1,645,678

03 1,805 1,813 1,825 1,814 111 110 111 111 2.00003 91,071

04 1,238 1,226 1,235 1,233 111 110 112 111 2.00004 108,777

05 4,190 4,210 4,191 4,197 197 197 197 197 2.00005 129,188

06 110 108 107 108 15 15 15 15 2.00005 10,497

07 26,473 26,518 26,435 26,475 1,024 1,025 1,024 1,024 2.00002 629,536

08 29,710 29,807 29,837 29,784 1,223 1,223 1,227 1,224 2.00003 791,111

09 27,626 27,744 27,602 27,657 1,076 1,089 1,080 1,082 2.00003 673,787

10 45,022 45,058 44,980 45,020 1,827 1,833 1,820 1,827 2.00005 1,000,757

Min 110 108 107 108 15 15 15 15 2.00002 10,497

Mean 22,733 22,731 22,723 22,729 894 895 892 894 2.00003 526,855

Median 16,837 16,821 16,782 16,813 660 660 661 660 2.00003 408,840

Max 83,958 83,701 83,890 83,850 3,065 3,057 3,041 3,054 2.00005 1,645,678

69

Table 2. 65 Test Results of Incremental Effect of Relaxing Triples Linking Constraints for n =

50.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 141,304 137,605 140,397 139,769 5,007 4,880 4,971 4,953 2.00108 2,058,914

02 866,252 858,891 892,573 872,572 30,469 30,362 31,393 30,741 2.00196 10,599,888

03 368,226 362,851 381,483 370,853 12,930 12,751 13,293 12,991 2.00186 4,595,967

04 67,435 65,744 67,846 67,008 2,420 2,336 2,382 2,380 2.00281 977,185

05 301,103 295,877 308,370 301,783 10,760 10,528 10,927 10,738 2.00104 3,735,936

06 388,682 385,707 405,853 393,414 13,546 13,365 14,009 13,640 2.00324 4,646,419

07 375,089 370,334 388,520 377,981 13,120 13,439 13,842 13,467 2.00144 4,614,224

08 48,649 47,324 48,210 48,061 1,811 1,771 1,809 1,797 2.00153 780,865

09 146,889 145,335 146,745 146,323 5,363 5,268 5,329 5,320 2.00218 2,140,370

10 568,862 562,414 590,824 574,033 20,187 19,526 20,516 20,076 2.00111 7,221,995

Min 48,649 47,324 48,210 48,061 1,811 1,771 1,809 1,797 2.00104 780,865

Mean 327,249 323,208 337,082 329,180 11,561 11,423 11,847 11,610 2.00183 4,137,176

Median 334,665 329,364 344,927 336,318 11,845 11,639 12,110 11,865 2.00170 4,165,951

Max 866,252 858,891 892,573 872,572 30,469 30,362 31,393 30,741 2.00324 10,599,888

Table 2. 66 Summary of Incremental Effect of Relaxing Triples Linking Constraints

 Speedup LP Upper

Bound

Improvement
Ave. CPU Time Ticks Ave. Real Time

n = 10

Min 0.52 0.53 0.88 0.00%

Mean 0.97 1.05 1.46 0.00%

Median 0.87 1.20 1.33 0.00%

Max 1.47 1.67 2.98 0.00%

n = 20

Min 0.65 0.53 0.70 0.00%

Mean 1.51 1.45 1.44 0.00%

Median 1.33 1.40 1.56 0.00%

Max 2.53 2.22 2.11 0.00%

n = 30

Min 0.80 0.75 0.77 0.00%

Mean 4.22 3.13 3.99 0.00%

Median 3.34 2.38 3.46 0.00%

Max 9.21 8.41 7.84 0.00%

n = 40

Min 1.03 1.03 1.10 0.00%

Mean 3.37 1.80 3.55 0.00%

Median 2.94 1.46 3.29 0.00%

Max 7.44 4.52 7.87 0.00%

n = 50

Min 0.42 0.41 0.53 0.00%

Mean 1.45 1.01 1.72 0.00%

Median 1.70 1.10 2.00 0.00%

Max 2.12 1.78 2.36 0.00%

70

Table 2. 67 CI and GCI of Relaxing Triples Linking Constraints

n CPU Ticks Real Time CI GCI

10 0.89 1.17 1.37 1.17

2.11

20 1.37 1.41 1.53 1.44

30 3.55 2.57 3.58 3.20

40 3.05 1.55 3.36 2.62

50 1.64 1.09 1.93 1.55

 Conclusion: After applying technique 1, relax linking constraints (2.19), the grand composite

index of speedups (GCI) was 2.11, which means, on average, the model with relax linking

constraints was solved 2.11 times faster than the incumbent model. Thus, we adopted it.

2.5.3 Technique 2： Enforce Node-Degree

 Unlike the node-arc model, the original triples model does not explicitly enforce the node-

degree constraints (2.9) because the MTZ subtour elimination constraints (2.13) ensure that vehicle

visits each node at most once in an integer solution. However, the node-degree constraints can be

violated in solutions to the LP relaxation of the triples model. Tables 2-39, 2-40, and 2-41

summarize the effect of adding (2.13) to the triples model.

Table 2. 68 Test Results of Incremental Effect of Enforcing Node-Degree Constraints for n =10.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP Upper

Bound

Ticks

01 1.09 1.69 1.38 1.39 0.26 0.28 0.27 0.27 2.00000 42.03

02 2.29 3.35 1.49 2.37 0.30 0.35 0.23 0.29 2.00000 79.55

03 3.13 2.92 1.49 2.51 0.44 0.37 0.36 0.39 2.00000 70.13

04 0.82 1.28 5.03 2.38 0.21 0.26 0.40 0.29 2.00000 29.74

05 0.81 2.11 4.19 2.37 0.16 0.22 0.30 0.23 2.00000 35.50

06 2.50 4.27 1.86 2.87 0.53 0.59 0.53 0.55 2.00000 69.55

07 5.85 5.44 5.91 5.73 0.92 0.82 0.96 0.90 2.00000 41.21

08 2.60 1.06 0.91 1.52 0.28 0.26 0.26 0.27 2.00000 85.26

09 2.55 1.18 1.21 1.65 0.20 0.15 0.18 0.18 2.00000 29.72

10 1.29 4.14 6.02 3.82 0.11 0.26 0.33 0.23 2.00000 21.72

Min 0.81 1.06 0.91 1.39 0.11 0.15 0.18 0.18 2.00000 21.72

Mean 2.29 2.74 2.95 2.66 0.34 0.36 0.38 0.36 2.00000 50.44

Median 2.39 2.52 1.67 2.38 0.27 0.27 0.32 0.28 2.00000 41.62

Max 5.85 5.44 6.02 5.73 0.92 0.82 0.96 0.90 2.00000 85.26

71

Table 2. 69 Test Results of Incremental Effect of Enforcing Node-Degree Constraints for n = 20.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run

1

Real

Time

Run

2

Real

Time

Run

3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 7.73 7.80 8.02 7.85 1.88 1.85 2.00 1.91 2.00024 806.69

02 4.53 5.11 4.13 4.59 1.83 1.93 1.62 1.79 2.00012 641.58

03 25.86 25.80 26.19 25.95 6.38 6.42 6.23 6.34 2.00060 3,539.62

04 19.64 18.96 18.67 19.09 2.21 2.14 2.01 2.12 2.00063 952.86

05 9.98 9.52 9.90 9.80 2.41 2.42 2.44 2.42 2.00000 1,080.53

06 101.83 102.91 101.94 102.22 9.59 9.63 9.71 9.64 2.00120 5,003.73

07 6.04 6.23 5.90 6.06 1.21 1.23 1.19 1.21 2.00024 955.74

08 7.56 7.63 7.85 7.68 2.43 2.42 2.47 2.44 2.00000 870.83

09 48.88 48.37 47.77 48.34 5.41 5.26 5.11 5.26 2.00120 3,190.62

10 12.69 12.16 11.99 12.28 2.76 2.71 2.85 2.77 2.00000 1,224.06

Min 4.53 5.11 4.13 4.59 1.21 1.23 1.19 1.21 2.00000 641.58

Mean 24.48 24.45 24.24 24.39 3.61 3.60 3.56 3.59 2.00042 1,826.63

Median 11.34 10.84 10.94 11.04 2.42 2.42 2.46 2.43 2.00024 1,018.14

Max 101.83 102.91 101.94 102.22 9.59 9.63 9.71 9.64 2.00120 5,003.73

Table 2. 70 Test Results of Incremental Effect of Enforcing Node-Degree Constraints for n = 30.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 428 431 432 430 29 29 29 29 2.00000 22,102

02 758 758 753 756 45 45 45 45 2.00084 36,254

03 401 406 406 405 32 33 32 32 2.00076 26,200

04 84 83 83 83 23 22 22 22 2.00103 13,248

05 386 388 388 387 29 29 29 29 2.00104 19,896

06 34 34 34 34 7 7 7 7 2.00146 4,460

07 440 440 439 440 33 33 32 32 2.00201 27,300

08 476 477 476 476 30 30 30 30 2.00124 22,649

09 767 760 764 764 47 46 47 47 2.00151 37,883

10 1,188 1,192 1,206 1,195 71 72 71 71 2.00116 57,959

Min 34 34 34 34 7 7 7 7 2.00000 4,460

Mean 496 497 498 497 34 35 34 34 2.00111 26,795

Median 434 436 435 435 31 32 31 31 2.00110 24,424

Max 1,188 1,192 1,206 1,195 71 72 71 71 2.00201 57,959

72

Table 2. 71 Test Results of Incremental Effect of Enforcing Node-Degree Constraints for = 40.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 3,475 3,493 3,502 3,490 190 191 189 190 2.00002 142,912

02 58,456 58,441 58,390 58,429 2,156 2,154 2,154 2,154 2.00002 1,162,683

03 1,304 1,296 1,334 1,312 83 84 83 83 2.00003 71,249

04 850 854 865 856 85 85 86 85 2.00004 82,715

05 4,511 4,486 4,514 4,504 241 239 240 240 2.00005 179,905

06 122 116 119 119 14 14 14 14 2.00005 10,638

07 5,476 5,459 5,492 5,476 251 251 251 251 2.00002 165,771

08 22,031 21,988 22,052 22,024 917 907 912 912 2.00003 600,851

09 18,202 18,130 18,220 18,184 748 754 753 752 2.00003 499,628

10 19,572 19,480 19,512 19,521 897 887 892 892 2.00004 486,885

Min 122 116 119 119 14 14 14 14 2.00002 10,638

Mean 13,400 13,374 13,400 13,391 558 556 558 557 2.00003 340,324

Median 4,994 4,973 5,003 4,990 246 245 246 245 2.00003 172,838

Max 58,456 58,441 58,390 58,429 2,156 2,154 2,154 2,154 2.00005 1,162,683

Table 2. 72 Test Results of Incremental Effect of Enforcing Node-Degree Constraints for = 50.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 108,028 110,449 137,951 118,809 3,842 3,923 6,987 4,917 2.00108 1,508,032

02 629,754 635,799 663,146 642,900 22,121 22,275 32,607 25,667 2.00196 7,596,212

03 480,592 480,103 492,276 484,324 16,426 16,394 23,767 18,862 2.00186 5,513,749

04 6,643 6,710 8,307 7,220 418 417 663 499 2.00267 306,845

05 155,699 156,200 174,768 162,222 5,447 5,472 9,194 6,705 2.00104 1,965,157

06 138,762 137,979 177,974 151,572 4,976 4,980 9,334 6,430 2.00258 2,007,687

07 181,113 181,222 183,882 182,072 6,439 6,441 9,610 7,497 2.00144 2,273,111

08 43,367 43,234 40,384 42,328 1,589 1,600 2,404 1,864 2.00150 677,770

09 92,820 1,600 97,970 64,130 3,306 3,314 5,173 3,931 2.00218 1,280,190

10 235,560 234,574 235,669 235,268 8,175 8,201 11,947 9,441 2.00111 2,822,918

Min 6,643 1,600 8,307 7,220 418 417 663 499 2.00104 306,845

Mean 207,234 198,787 221,233 209,084 7,274 7,302 11,169 8,581 2.00174 2,595,167

Median 147,231 147,090 176,371 156,897 5,211 5,226 9,264 6,567 2.00168 1,986,422

Max 629,754 635,799 663,146 642,900 22,121 22,275 32,607 25,667 2.00267 7,596,212

73

Table 2. 73 Summary of Incremental Effect of Enforcing Node-Degree Constraints

 Speedup LP Upper

Bound

Improvement
Ave. CPU Time Ticks Ave. Real Time

n = 10

Min 0.36 0.35 0.50 0.00%

Mean 1.41 1.01 1.16 0.00%

Median 1.22 1.04 1.18 0.00%

Max 3.21 1.96 1.85 0.00%

n = 20

Min 0.64 0.52 0.66 0.00%

Mean 1.10 1.01 1.09 0.01%

Median 1.15 0.98 1.05 0.00%

Max 1.35 1.44 1.65 0.04%

n = 30

Min 0.63 0.55 0.45 0.00%

Mean 1.64 1.38 1.35 0.00%

Median 1.51 1.29 1.27 0.00%

Max 3.24 2.51 2.34 0.01%

n = 40

Min 0.91 0.72 0.82 0.00%

Mean 1.82 1.55 1.64 0.00%

Median 1.44 1.32 1.38 0.00%

Max 4.84 3.80 4.08 0.00%

n = 50

Min 0.77 0.83 0.69 0.00%

Mean 2.50 1.84 1.76 0.00%

Median 1.97 1.79 1.48 0.00%

Max 9.28 3.18 4.76 0.03%

Table 2. 74 CI and GCI of Enforcing Node-Degree Constraints

n CPU Ticks Real Time CI GCI

10 1.27 1.04 1.18 1.15

1.43

20 1.14 0.98 1.06 1.05

30 1.54 1.31 1.29 1.37

40 1.54 1.38 1.45 1.45

50 2.13 1.80 1.56 1.80

 Conclusion: After applying technique 2, enforce node-degree constraints, the grand composite

index of speedups (GCI) was 1.43, which means, on average, the model with enforce node-degree

constraints was solved 1.43 times faster than the incumbent model. Thus, we adopted it.

74

2.5.4 Technique 3：Single-Node Demand Cuts

 Tables 2-42, 2-43, and 2-44 summarize the results of applying the single-node demand cuts

described in Section 2.4.5 to the incumbent triples model.

Table 2. 75 Incremental Effect Single-Node Demand Cuts for Triples Model n =10.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP Upper

Bound

Ticks

01 1.60 1.91 2.69 2.07 0.31 0.36 0.40 0.36 2.00000 40.38

02 1.88 1.27 2.74 1.96 0.20 0.26 0.32 0.26 2.00000 70.39

03 2.21 0.93 1.35 1.50 0.22 0.21 0.31 0.25 2.00000 51.98

04 2.84 1.57 2.83 2.42 0.24 0.26 0.30 0.27 2.00000 49.50

05 1.68 1.59 3.57 2.28 0.30 0.26 0.33 0.30 2.00000 52.67

06 3.00 3.35 2.05 2.80 0.66 0.55 0.49 0.57 2.00000 56.49

07 1.74 1.65 2.61 2.00 0.57 0.67 0.43 0.56 2.00000 45.07

08 4.62 1.25 0.70 2.19 0.36 0.30 0.16 0.27 2.00000 91.48

09 3.84 2.80 1.85 2.83 0.60 0.59 0.57 0.59 2.00000 28.55

10 0.49 2.57 3.00 2.02 0.08 0.15 0.18 0.14 2.00000 19.43

Min 0.49 0.93 0.70 1.50 0.08 0.15 0.16 0.14 2.00000 19.43

Mean 2.39 1.89 2.34 2.21 0.35 0.36 0.35 0.35 2.00000 50.59

Median 2.04 1.62 2.65 2.13 0.31 0.28 0.33 0.29 2.00000 50.74

Max 4.62 3.35 3.57 2.83 0.66 0.67 0.57 0.59 2.00000 91.48

Table 2. 76 Incremental Effect Single-Node Demand Cuts for Triples Model n = 20.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP Upper

Bound

Ticks

01 8.36 8.18 8.01 8.18 2.52 2.44 2.48 2.48 2.00024 1,017.50

02 6.04 6.60 6.62 6.42 2.92 3.08 3.23 3.08 2.00012 887.88

03 18.25 18.66 18.64 18.52 4.71 4.89 4.80 4.80 2.00060 3,190.64

04 23.01 21.58 21.54 22.04 2.94 2.82 2.85 2.87 2.00063 1,293.59

05 7.97 7.61 7.71 7.76 3.85 3.53 3.76 3.71 2.00000 1,098.06

06 40.74 40.57 39.77 40.36 5.14 5.02 4.77 4.98 2.00120 2,652.09

07 6.25 6.38 6.45 6.36 1.19 1.25 1.24 1.23 2.00024 912.88

08 7.04 7.14 6.22 6.80 2.59 2.51 2.15 2.42 2.00000 903.82

09 33.34 33.59 34.38 33.77 5.49 5.56 5.65 5.57 2.00120 3,731.75

10 15.47 15.66 15.58 15.57 4.92 5.02 4.86 4.93 2.00000 1,746.58

Min 6.04 6.38 6.22 6.36 1.19 1.25 1.24 1.23 2.00000 887.88

Mean 16.65 16.60 16.49 16.58 3.63 3.61 3.58 3.61 2.00042 1,743.48

Median 11.92 11.92 11.79 11.88 3.40 3.31 3.50 3.40 2.00024 1,195.83

Max 40.74 40.57 39.77 40.36 5.49 5.56 5.65 5.57 2.00120 3,731.75

75

Table 2. 77 Incremental Effect Single-Node Demand Cuts for Triples Model n = 30.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP Upper

Bound

Ticks

01 503.72 509.13 522.53 511.79 45.47 46.07 46.49 46.01 2.00000 38,712.14

02 515.72 525.54 537.24 526.16 42.70 43.32 44.02 43.35 2.00084 37,530.25

03 610.56 614.69 627.78 617.68 53.95 54.39 54.91 54.42 2.00076 50,643.76

04 64.27 65.50 65.27 65.01 11.98 12.02 12.04 12.01 2.00103 9,870.53

05 359.08 361.42 374.17 364.89 32.04 32.29 32.90 32.41 2.00104 26,453.56

06 42.00 43.85 43.89 43.25 10.01 10.94 10.89 10.61 2.00146 6,480.00

07 200.72 202.79 205.35 202.95 17.85 17.85 18.21 17.97 2.00201 15,115.31

08 247.45 249.41 250.16 249.01 27.44 27.85 27.71 27.67 2.00124 25,631.55

09 937.22 936.55 945.48 939.75 76.53 76.65 76.70 76.63 2.00151 72,046.28

10 639.46 652.14 668.38 653.33 38.27 38.76 38.71 38.58 2.00116 28,822.55

Min 42.00 43.85 43.89 43.25 10.01 10.94 10.89 10.61 2.00000 6,480.00

Mean 412.02 416.10 424.03 417.38 35.62 36.01 36.26 35.97 2.00110 31,130.59

Median 431.40 435.28 448.35 438.34 35.16 35.53 35.81 35.50 2.00110 27,638.06

Max 937.22 936.55 945.48 939.75 76.53 76.65 76.70 76.63 2.00201 72,046.28

Table 2. 78 Incremental Effect Single-Node Demand Cuts for Triples Model n = 40.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 1,789 1,857 1,975 1,874 117 121 124 121 2.00002 93,185

02 39,662 41,683 43,428 41,591 1,504 1,555 1,607 1,555 2.00002 838,400

03 1,310 1,359 1,443 1,371 93 96 99 96 2.00003 78,457

04 1,184 1,206 1,227 1,206 153 153 153 153 2.00004 153,586

05 1,600 1,657 1,791 1,683 134 134 140 136 2.00005 116,150

06 120 123 123 122 16 17 17 17 2.00005 11,778

07 5,701 5,975 6,452 6,043 278 291 306 292 2.00002 190,329

08 16,448 17,265 18,197 17,303 702 723 759 728 2.00003 469,779

09 10,445 10,902 11,571 10,973 457 478 503 479 2.00003 315,020

10 17,805 18,599 19,503 18,636 750 779 806 778 2.00004 480,756

Min 120 123 123 122 16 17 17 17 2.00002 11,778

Mean 9,606 10,063 10,571 10,080 420 435 451 435 2.00003 274,744

Median 3,745 3,916 4,214 3,958 215 222 230 222 2.00003 171,958

Max 39,662 41,683 43,428 41,591 1,504 1,555 1,607 1,555 2.00005 838,400

76

Table 2. 79 Incremental Effect Single-Node Demand Cuts for Triples Model n = 50.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 84,724 88,331 92,498 88,518 3,040 3,170 3,320 3,176 2.00108 1,295,474

02 159,434 164,355 171,481 165,090 5,568 5,735 5,969 5,757 2.00196 2,310,404

03 72,500 75,529 78,732 75,587 2,689 2,721 2,850 2,753 2.00186 1,209,763

04 8,252 8,883 9,592 8,909 467 492 508 489 2.00267 329,474

05 14,645 15,460 16,519 15,541 609 645 679 644 2.00104 316,748

06 77,032 80,702 85,150 80,961 2,745 2,837 3,006 2,863 2.00258 1,194,310

07 65,166 68,697 71,285 68,383 2,413 2,515 2,625 2,518 2.00144 1,218,643

08 6,860 7,246 7,703 7,270 347 359 378 361 2.00150 215,113

09 18,669 19,809 21,402 19,960 769 806 859 811 2.00218 400,788

10 114,244 118,440 123,559 118,748 4,079 4,198 4,412 4,229 2.00111 1,855,890

Min 6,860 7,246 7,703 7,270 347 359 378 361 2.00104 215,113

Mean 62,153 64,745 67,792 64,897 2,272 2,348 2,460 2,360 2.00174 1,034,661

Median 68,833 72,113 75,009 71,985 2,551 2,618 2,737 2,635 2.00168 1,202,037

Max 159,434 164,355 171,481 165,090 5,568 5,735 5,969 5,757 2.00267 2,310,404

Table 2. 80 Summary of Incremental Effect Single-Node Demand Cuts for Triples Model

 Speedup LP Upper

Bound

Improvement
Ave. CPU Time Ticks Ave. Real Time

n = 10

Min 0.58 0.60 0.30 0.00%

Mean 1.26 1.00 1.09 0.00%

Median 1.03 1.04 1.03 0.00%

Max 2.87 1.35 1.71 0.00%

n = 20

Min 0.72 0.70 0.56 0.00%

Mean 1.20 0.98 0.95 0.00%

Median 1.04 0.91 0.86 0.00%

Max 2.53 1.89 1.94 0.00%

n = 30

Min 0.66 0.52 0.59 0.00%

Mean 1.28 1.01 1.10 0.00%

Median 1.17 0.82 0.97 0.00%

Max 2.17 2.01 1.86 0.00%

n = 40

Min 0.71 0.54 0.56 0.00%

Mean 1.35 1.16 1.18 0.00%

Median 1.16 1.15 1.20 0.00%

Max 2.68 1.59 1.77 0.00%

n = 50

Min 0.81 0.93 1.02 0.00%

Mean 3.84 2.76 4.17 0.00%

Median 2.94 2.51 3.72 0.00%

Max 10.44 6.20 10.40 0.00%

77

Table 2. 81 CI and GCI of Incremental Effect Single-Node Demand Cuts for Triples Model

n CPU Ticks Real Time CI GCI

10 1.09 1.03 1.04 1.05

1.64

20 1.09 0.93 0.88 0.96

30 1.20 0.86 1.00 1.00

40 1.21 1.15 1.20 1.18

50 3.17 2.58 3.85 3.20

 Conclusion: After applying technique 3, single-node demand cuts, the grand composite index

of speedups (GCI) was 1.64, which means, on average, the model with single-node demand cuts

was solved 1.64 times faster than the incumbent model. Thus, we adopted it.

2.5.5 Technique 4：Branching Priority

 Tables 2-45, 2-46, and 2-47 summarize the results of applying the branching priority described

in Section 2.4.7 to the incumbent triples model.

Table 2. 82 Incremental Effect of Branching Priority for Triples Model n = 10.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP Upper

Bound

Ticks

01 1.16 1.73 2.51 1.80 0.23 0.38 0.39 0.33 2.00000 40.39

02 2.83 1.57 2.81 2.41 0.26 0.28 0.33 0.29 2.00000 70.39

03 2.39 3.44 2.41 2.75 0.30 0.50 0.31 0.37 2.00000 51.98

04 2.03 1.14 1.61 1.59 0.34 0.20 0.22 0.25 2.00000 49.51

05 2.76 1.65 3.61 2.67 0.30 0.29 0.34 0.31 2.00000 52.68

06 2.39 2.13 1.55 2.02 0.33 0.50 0.36 0.40 2.00000 56.50

07 3.62 1.51 4.19 3.11 0.59 0.73 0.55 0.62 2.00000 40.45

08 0.95 1.97 1.58 1.50 0.20 0.25 0.23 0.23 2.00000 91.48

09 3.63 1.83 1.89 2.45 0.53 0.57 0.33 0.48 2.00000 28.55

10 1.09 0.97 1.21 1.09 0.08 0.11 0.10 0.10 2.00000 19.43

Min 0.95 0.97 1.21 1.09 0.08 0.11 0.10 0.10 2.00000 19.43

Mean 2.28 1.79 2.34 2.14 0.32 0.38 0.32 0.34 2.00000 50.14

Median 2.39 1.69 2.15 2.22 0.30 0.34 0.33 0.32 2.00000 50.75

Max 3.63 3.44 4.19 3.11 0.59 0.73 0.55 0.62 2.00000 91.48

78

Table 2. 83 Incremental Effect of Branching Priority for Triples Model n = 20.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 7.35 8.02 8.32 7.90 2.28 2.59 2.62 2.50 2.00024 1,029.24

02 6.94 6.64 6.53 6.70 2.55 3.34 3.42 3.10 2.00012 1,025.05

03 17.95 18.36 18.70 18.34 4.54 4.85 4.82 4.74 2.00060 2,986.63

04 33.84 15.74 16.91 22.16 3.56 2.96 3.29 3.27 2.00063 1,191.60

05 7.79 9.10 9.20 8.70 2.41 4.02 4.10 3.51 2.00000 1,134.01

06 59.24 39.31 38.65 45.73 7.16 5.21 5.32 5.90 2.00120 2,975.40

07 40.33 6.56 6.07 17.65 3.36 1.21 1.16 1.91 2.00024 912.91

08 7.50 7.38 7.76 7.55 2.08 2.69 2.98 2.58 2.00000 983.31

09 86.61 35.69 34.16 52.15 8.78 5.86 5.53 6.72 2.00120 3,901.59

10 59.73 14.57 14.96 29.75 5.90 4.34 4.68 4.97 2.00000 1,428.35

Min 6.94 6.56 6.07 6.70 2.08 1.21 1.16 1.91 2.00000 912.91

Mean 32.73 16.14 16.13 21.66 4.26 3.71 3.79 3.92 2.00042 1,756.81

Median 25.89 11.84 12.08 17.99 3.46 3.68 3.76 3.39 2.00024 1,162.81

Max 86.61 39.31 38.65 52.15 8.78 5.86 5.53 6.72 2.00120 3,901.59

Table 2. 84 Incremental Effect of Branching Priority for Triples Model n = 30.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 501 428 419 449 55 45 44 48 2.00000 36,550

02 579 513 512 535 53 46 46 49 2.00084 42,555

03 912 485 481 626 89 43 43 58 2.00076 38,059

04 63 64 64 64 14 15 15 15 2.00103 12,265

05 412 333 328 358 40 33 32 35 2.00104 23,784

06 49 43 42 45 10 10 10 10 2.00146 6,348

07 507 475 472 485 47 44 43 45 2.00201 36,954

08 266 246 247 253 26 25 25 25 2.00124 22,520

09 1,223 831 836 963 96 68 70 78 2.00151 61,052

10 1,771 1,353 1,346 1,490 103 74 75 84 2.00116 60,572

Min 49 43 42 45 10 10 10 10 2.00000 6,348

Mean 629 477 475 527 53 40 40 45 2.00110 34,066

Median 504 451 445 467 50 43 43 46 2.00110 36,752

Max 1,771 1,353 1,346 1,490 103 74 75 84 2.00201 61,052

79

Table 2. 85 Incremental Effect of Branching Priority for Triples Model n = 40.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 3,229 2,770 2,688 2,895 184 157 155 165 2.00002 112,430

02 663 450 438 517 53 32 31 39 2.00002 24,087

03 1,993 1,549 1,537 1,693 179 136 134 150 2.00003 115,872

04 2,721 1,465 1,437 1,875 297 155 153 202 2.00004 147,957

05 3,676 1,907 1,860 2,481 307 128 126 187 2.00005 99,149

06 410 144 145 233 41 17 18 25 2.00005 13,648

07 9,354 5,751 5,480 6,862 506 262 253 340 2.00002 158,469

08 14,316 9,293 8,959 10,856 697 368 356 474 2.00003 192,972

09 21,827 13,467 13,085 16,126 1,091 569 556 739 2.00003 346,382

10 23,637 14,657 14,377 17,557 1,302 623 613 846 2.00004 374,733

Min 410 144 145 233 41 17 18 25 2.00002 13,648

Mean 8,182 5,145 5,001 6,109 466 245 240 317 2.00003 158,570

Median 3,452 2,338 2,274 2,688 302 156 154 194 2.00003 131,915

Max 23,637 14,657 14,377 17,557 1,302 623 613 846 2.00005 374,733

Table 2. 86 Incremental Effect of Branching Priority for Triples Model for n = 50.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run

2

Real

Time

Run

3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 158,883 91,719 90,821 113,808 7,776 3,292 3,319 4,796 2.00108 1,493,511

02 266,752 157,822 159,416 194,663 12,546 5,548 5,543 7,879 2.00196 2,114,350

03 109,610 77,547 77,711 88,289 4,893 2,738 2,745 3,459 2.00186 1,047,296

04 6,231 3,849 3,736 4,605 646 329 324 433 2.00267 280,329

05 32,187 18,066 17,589 22,614 2,015 717 699 1,144 2.00104 327,999

06 132,681 79,786 79,954 97,474 6,108 2,805 2,778 3,897 2.00258 1,105,471

07 132,983 86,835 87,378 102,399 5,820 3,011 3,003 3,945 2.00144 1,111,524

08 16,382 7,360 7,055 10,266 1,425 433 418 759 2.00150 293,061

09 143,116 89,635 89,482 107,411 6,886 3,131 3,105 4,374 2.00218 1,361,881

10 215,784 136,825 138,530 163,713 9,414 4,949 5,025 6,463 2.00111 2,112,308

Min 6,231 3,849 3,736 4,605 646 329 324 433 2.00104 280,329

Mean 121,461 74,944 75,167 90,524 5,753 2,695 2,696 3,715 2.00174 1,124,773

Median 132,832 83,310 83,666 99,936 5,964 2,908 2,890 3,921 2.00168 1,108,497

Max 266,752 157,822 159,416 194,663 12,546 5,548 5,543 7,879 2.00267 2,114,350

80

Table 2. 87 Summary of Incremental Effect of Branching Priority for Triples Model

 Speedup LP Upper

Bound

Improvement
Ave. CPU Time Ticks Ave. Real Time

n = 10

Min 0.55 1.00 0.69 0.00%

Mean 1.14 1.01 1.11 0.00%

Median 1.15 1.00 1.14 0.00%

Max 1.85 1.11 1.86 0.00%

n = 20

Min 0.36 0.87 0.64 0.00%

Mean 0.82 1.00 0.92 0.00%

Median 0.90 0.98 0.96 0.00%

Max 1.04 1.22 1.06 0.00%

n = 30

Min 0.42 0.41 0.40 0.00%

Mean 0.89 0.94 0.85 0.00%

Median 0.98 1.04 0.93 0.00%

Max 1.14 1.33 1.10 0.00%

n = 40

Min 0.52 0.68 0.64 0.00%

Mean 0.84 1.16 0.83 0.00%

Median 0.68 1.04 0.73 0.00%

Max 1.59 2.43 1.54 0.00%

n = 50

Min 0.19 0.29 0.19 0.00%

Mean 0.82 0.93 0.66 0.00%

Median 0.75 1.02 0.66 0.00%

Max 1.93 1.18 1.13 0.00%

Table 2. 88 CI and GCI of Incremental Effect of Branching Priority for Triples Model

n CPU Ticks Real Time CI GCI

10 1.15 1.00 1.14 1.09

0.91

20 0.88 0.98 0.95 0.94

30 0.96 1.02 0.91 0.96

40 0.72 1.07 0.76 0.86

50 0.77 1.00 0.66 0.81

 Conclusion: After applying technique 4, branching priority, the grand composite index of

speedups (GCI) was 0.91, indicating that was more efficient to solve the incumbent model.

Therefore, we did not adopt this technique.

81

2.5.6 Technique 5：Lifted MTZ

 Tables 2-48, 2-49, and 2-50 summarize the results of lifting the MTZ constraints as described

in section 2.4.8 in the incumbent triples model.

Table 2. 89 Incremental Effect of Lifted MTZ in Triples Model for n =10.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP Upper

Bound

Ticks

01 5.16 1.27 1.98 2.80 0.51 0.32 0.35 0.39 2.00000 32.35

02 1.78 1.47 2.36 1.87 0.27 0.32 0.36 0.32 2.00000 71.29

03 1.28 2.20 2.65 2.05 0.32 0.50 0.35 0.39 2.00000 69.81

04 1.32 1.39 2.56 1.76 0.32 0.18 0.20 0.23 2.00000 29.01

05 1.38 2.05 2.21 1.88 0.45 0.55 0.21 0.40 2.00000 40.50

06 3.49 1.76 4.20 3.15 0.44 0.49 0.51 0.48 2.00000 32.80

07 0.97 1.29 1.80 1.35 0.21 0.26 0.31 0.26 2.00000 62.57

08 1.17 1.56 2.92 1.88 0.31 0.25 0.31 0.29 2.00000 97.91

09 3.08 2.24 3.11 2.81 0.62 0.57 0.55 0.58 2.00000 35.28

10 3.16 0.91 1.27 1.78 0.18 0.11 0.12 0.14 2.00000 17.82

Min 0.97 0.91 1.27 1.35 0.18 0.11 0.12 0.14 2.00000 17.82

Mean 2.28 1.61 2.51 2.13 0.36 0.36 0.33 0.35 2.00000 48.93

Median 1.58 1.52 2.46 1.88 0.32 0.32 0.33 0.35 2.00000 37.89

Max 5.16 2.24 4.20 3.15 0.62 0.57 0.55 0.58 2.00000 97.91

Table 2. 90 Incremental Effect of Lifted MTZ in Triples Model for n =20.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 7.88 7.86 7.56 7.77 1.48 1.41 1.35 1.41 2.00024 1,153.88

02 5.45 5.57 5.55 5.52 2.53 2.71 2.56 2.60 2.00012 768.35

03 22.64 22.77 23.15 22.85 5.75 5.84 5.93 5.84 2.00060 3,184.01

04 21.46 20.31 20.55 20.77 3.25 3.24 3.25 3.25 2.00063 1,299.20

05 9.96 9.71 9.78 9.82 3.62 3.46 3.58 3.55 2.00000 1,198.43

06 47.84 47.01 46.94 47.27 5.19 4.99 4.92 5.03 2.00120 2,598.90

07 6.08 5.89 5.43 5.80 1.31 1.27 1.20 1.26 2.00024 1,015.31

08 10.45 11.43 11.33 11.07 2.22 2.31 2.38 2.30 2.00000 946.58

09 38.13 37.83 38.49 38.15 5.42 5.02 5.38 5.27 2.00120 3,228.06

10 20.65 20.32 20.64 20.54 7.70 7.59 7.81 7.70 2.00000 2,082.89

Min 5.45 5.57 5.43 5.52 1.31 1.27 1.20 1.26 2.00000 768.35

Mean 19.05 18.87 18.94 18.96 3.85 3.78 3.84 3.82 2.00042 1,747.56

Median 15.55 15.87 15.94 15.80 3.44 3.35 3.42 3.40 2.00024 1,248.82

Max 47.84 47.01 46.94 47.27 7.70 7.59 7.81 7.70 2.00120 3,228.06

82

Table 2. 91 Incremental Effect of Lifted MTZ in Triples Model for n = 30.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run

1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 415 411 414 413 50 49 50 50 2.00000 38,411

02 510 511 517 513 42 42 43 42 2.00084 35,978

03 393 391 397 394 42 41 42 42 2.00076 36,968

04 62 61 64 63 17 17 17 17 2.00103 12,387

05 296 302 304 300 32 32 33 32 2.00104 24,524

06 43 44 43 43 12 13 12 12 2.00146 6,585

07 238 235 235 236 20 20 21 20 2.00201 18,269

08 305 307 309 307 31 31 32 31 2.00124 29,221

09 1,188 1,201 1,208 1,199 80 81 80 80 2.00151 70,949

10 1,070 1,089 1,101 1,087 64 64 65 64 2.00116 50,361

Min 43 44 43 43 12 13 12 12 2.00000 6,585

Mean 452 455 459 456 39 39 39 39 2.00111 32,365

Median 349 349 353 350 37 37 37 37 2.00110 32,600

Max 1,188 1,201 1,208 1,199 80 81 80 80 2.00201 70,949

Table 2. 92 Incremental Effect of Lifted MTZ in Triples Model for n = 40.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 3,566 3,752 3,805 3,708 215 222 225 221 2.00002 171,624

02 38,795 40,334 40,529 39,886 1,469 1,531 1,528 1,510 2.00002 827,796

03 167 172 170 170 18 18 18 18 2.00003 13,932

04 403 401 406 403 36 35 36 35 2.00004 29,858

05 2,409 2,541 2,601 2,517 155 156 160 157 2.00005 121,821

06 106 110 110 109 13 13 13 13 2.00005 10,090

07 5,539 5,819 5,933 5,764 251 260 268 260 2.00002 162,603

08 16,462 17,096 17,370 16,976 672 692 709 691 2.00003 422,257

09 11,816 12,297 12,487 12,200 495 510 521 509 2.00003 314,160

10 13,900 14,297 14,535 14,244 678 689 697 688 2.00004 498,871

Min 106 110 110 109 13 13 13 13 2.00002 10,090

Mean 9,316 9,682 9,795 9,598 400 413 418 410 2.00003 257,301

Median 4,552 4,786 4,869 4,736 233 241 247 240 2.00003 167,114

Max 38,795 40,334 40,529 39,886 1,469 1,531 1,528 1,510 2.00005 827,796

83

Table 2. 93 Incremental Effect of Lifted MTZ in Triples Model for n = 50.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 59,542 61,296 61,796 60,878 2,180 2,206 2,252 2,213 2.00108 989,870
02 151,536 153,830 151,638 152,335 5,239 5,375 5,336 5,317 2.00196 2,234,792
03 85,861 88,013 88,642 87,505 3,049 3,121 3,132 3,101 2.00186 1,384,630
04 3,025 3,104 3,186 3,105 295 293 298 295 2.00267 258,223
05 59,747 62,436 62,635 61,606 2,317 2,387 2,421 2,375 2.00104 1,258,846
06 73,880 76,684 77,022 75,862 2,638 2,711 2,737 2,695 2.00248 1,177,145
07 72,171 74,723 75,077 73,990 2,688 2,769 2,801 2,753 2.00144 1,298,540
08 5,454 5,634 5,766 5,618 342 352 356 350 2.00150 249,632
09 75,334 77,390 77,516 76,747 2,818 2,882 2,874 2,858 2.00218 1,603,195
10 136,861 139,016 143,006 139,628 4,865 4,965 5,090 4,973 2.00111 2,258,454
Min 3,025 3,104 3,186 3,105 295 293 298 295 2.00104 249,632
Mean 72,341 74,213 74,628 73,727 2,643 2,706 2,730 2,693 2.00173 1,271,333
Median 73,026 75,703 76,050 74,926 2,663 2,740 2,769 2,724 2.00168 1,278,693
Max 151,536 153,830 151,638 152,335 5,239 5,375 5,336 5,317 2.00267 2,258,454

Table 2. 94 Summary of Incremental Effect of Lifted MTZ Constraints on Triples Model

 Speedup LP Upper

Bound

Improvement
Ave. CPU Time Ticks Ave. Real Time

n = 10

Min 0.73 0.72 0.55 0.00%

Mean 1.08 1.13 1.05 0.00%

Median 1.09 1.04 1.01 0.00%

Max 1.48 1.72 1.65 0.00%

n = 20

Min 0.61 0.84 0.64 0.00%

Mean 0.91 0.98 1.04 0.00%

Median 0.87 0.98 1.02 0.00%

Max 1.16 1.16 1.75 0.00%

n = 30

Min 0.60 0.57 0.60 0.00%

Mean 1.01 0.96 0.91 0.00%

Median 1.01 1.00 0.90 0.00%

Max 1.57 1.37 1.31 0.00%

n = 40

Min 0.51 0.54 0.55 0.00%

Mean 1.87 1.87 1.75 0.00%

Median 1.05 1.06 1.09 0.00%

Max 8.08 5.63 5.28 0.00%

n = 50

Min 0.25 0.25 0.27 0.00%

Mean 1.09 0.86 0.95 0.00%

Median 1.00 0.91 0.97 0.00%

Max 2.87 1.31 1.65 0.00%

84

Table 2. 95 CI and GCI of Lifted MTZ in Triples Model

n CPU Ticks Real Time CI GCI

10 1.09 1.06 1.02 1.05

1.04

20 0.88 0.98 1.02 0.97

30 1.02 0.99 0.91 0.97

40 1.27 1.26 1.25 1.26

50 1.03 0.90 0.97 0.96

 Conclusion: After applying technique 5, lifted MTZ, the grand composite index of speedups

(GCI) is 1.04, which means, on average, the model with lifted MTZ was 1.04 times faster than the

incumbent model. Thus, we adopted it.

2.5.7 Technique 6：MTZ upper bound

 Tables 2-51, 2-52, and 2-53 summarize the effects of imposing a bound on the MTZ sequence

variables as described in Section 2.4.9 on the triples model.

Table 2. 96 Incremental Effect of MTZ upper bound in Triples Model for n =10.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP Upper

Bound

Ticks

01 1.79 2.31 1.06 1.72 0.30 0.32 0.29 0.30 2.00000 34.71

02 1.53 2.48 1.56 1.85 0.21 0.25 0.29 0.25 2.00000 65.64

03 3.32 3.93 1.74 3.00 0.49 0.49 0.48 0.49 2.00000 54.90

04 2.15 2.31 1.83 2.10 0.35 0.36 0.31 0.34 2.00000 42.70

05 2.03 2.79 1.18 2.00 0.20 0.23 0.15 0.19 2.00000 41.03

06 3.56 2.94 1.88 2.79 1.02 1.15 1.01 1.06 2.00000 38.94

07 1.62 1.71 2.55 1.96 0.42 0.54 0.53 0.50 2.00000 41.14

08 1.56 2.50 1.42 1.83 0.21 0.24 0.18 0.21 2.00000 84.09

09 1.23 0.66 1.61 1.16 0.16 0.11 0.19 0.15 2.00000 29.73

10 1.06 1.16 0.44 0.89 0.10 0.09 0.07 0.09 2.00000 21.80

Min 1.06 0.66 0.44 0.89 0.10 0.09 0.07 0.09 2.00000 21.80

Mean 1.98 2.28 1.53 1.93 0.35 0.38 0.35 0.36 2.00000 45.47

Median 1.71 2.39 1.58 1.91 0.26 0.29 0.29 0.28 2.00000 41.09

Max 3.56 3.93 2.55 3.00 1.02 1.15 1.01 1.06 2.00000 84.09

85

Table 2. 97 Incremental Effect of MTZ upper bound in Triples Model for n =20.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 12.25 13.10 10.24 11.87 3.90 4.01 3.62 3.84 2.00024 1,864.56

02 6.60 9.28 5.56 7.15 2.25 2.30 2.37 2.31 2.00012 757.58

03 10.70 10.99 11.33 11.00 2.86 2.90 2.88 2.88 2.00060 1,298.64

04 17.76 18.00 17.43 17.73 3.01 3.17 3.31 3.16 2.00063 1,335.02

05 7.92 10.42 9.52 9.29 3.41 3.32 3.83 3.52 2.00000 1,355.41

06 51.04 50.22 51.01 50.76 3.90 3.93 3.79 3.87 2.00120 2,239.13

07 7.03 7.15 7.01 7.06 1.34 1.35 1.36 1.35 2.00024 1,002.93

08 9.47 10.87 10.20 10.18 2.64 2.71 2.64 2.66 2.00000 1,079.31

09 41.62 43.28 42.21 42.37 5.97 5.76 5.95 5.89 2.00120 3,614.30

10 11.82 12.22 13.31 12.45 2.55 2.61 2.77 2.64 2.00000 1,186.95

Min 6.60 7.15 5.56 7.06 1.34 1.35 1.36 1.35 2.00000 757.58

Mean 17.62 18.55 17.78 17.99 3.18 3.21 3.25 3.21 2.00042 1,573.38

Median 11.26 11.60 10.79 11.43 2.94 3.04 3.10 3.02 2.00024 1,316.83

Max 51.04 50.22 51.01 50.76 5.97 5.76 5.95 5.89 2.00120 3,614.30

Table 2. 98 Incremental Effect of MTZ upper bound in Triples Model for n = 30.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 386 388 403 392 35 35 35 35 2.00000 26,475

02 555 570 570 565 52 53 52 52 2.00084 43,281

03 435 432 433 433 45 45 44 45 2.00076 38,164

04 82 80 79 80 15 15 15 15 2.00103 12,938

05 340 346 348 345 33 34 33 33 2.00104 24,637

06 42 43 42 42 10 10 10 10 2.00146 6,263

07 208 210 212 210 19 20 20 20 2.00201 17,145

08 598 604 637 613 38 39 40 39 2.00124 29,961

09 932 967 983 961 65 68 68 67 2.00151 55,735

10 1,124 1,160 1,190 1,158 72 74 75 73 2.00116 58,062

Min 42 43 42 42 10 10 10 10 2.00000 6,263

Mean 470 480 490 480 38 39 39 39 2.00110 31,266

Median 410 410 418 413 36 37 37 37 2.00110 28,218

Max 1,124 1,160 1,190 1,158 72 74 75 73 2.00201 58,062

86

Table 2. 99 Incremental Effect of MTZ upper bound in Triples Model for n = 40.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 3,473 3,642 3,753 3,623 216 226 228 223 2.00002 166,015

02 48,563 50,988 52,396 50,649 1,805 1,865 1,918 1,863 2.00002 977,826

03 1,706 1,783 1,778 1,756 154 159 158 157 2.00003 136,353

04 334 342 342 339 83 86 86 85 2.00004 52,850

05 2,350 2,460 2,526 2,445 171 177 179 176 2.00005 140,095

06 76 76 74 75 13 14 13 13 2.00005 9,808

07 6,458 6,701 6,945 6,701 298 307 316 307 2.00002 193,303

08 10,798 11,093 11,577 11,156 433 438 460 444 2.00003 245,850

09 7,285 7,506 7,746 7,512 317 325 334 325 2.00003 189,765

10 13,229 13,844 14,225 13,766 626 649 662 645 2.00004 462,913

Min 76 76 74 75 13 14 13 13 2.00002 9,808

Mean 9,427 9,843 10,136 9,802 412 424 436 424 2.00003 257,478

Median 4,966 5,172 5,349 5,162 257 266 272 265 2.00003 177,890

Max 48,563 50,988 52,396 50,649 1,805 1,865 1,918 1,863 2.00005 977,826

Table 2. 100 Incremental Effect of MTZ upper bound in Triples Model for n = 50.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 57,085 60,619 62,352 60,019 2,146 2,263 2,280 2,230 2.00108 1,154,436

02 136,413 146,583 148,175 143,724 4,767 5,104 5,178 5,016 2.00196 1,988,723

03 74,924 80,044 80,395 78,454 2,781 2,899 2,934 2,871 2.00186 1,304,192

04 3,098 3,216 3,242 3,185 356 363 360 359 2.00267 338,100

05 19,397 20,037 20,602 20,012 801 825 860 829 2.00104 404,223

06 15,499 16,313 16,550 16,121 760 792 818 790 2.00248 467,217

07 67,595 71,849 73,539 70,994 2,601 2,751 2,795 2,716 2.00144 1,398,034

08 8,482 8,857 9,227 8,855 438 455 464 453 2.00150 274,003

09 66,965 67,367 68,774 67,702 2,432 2,437 2,497 2,455 2.00218 1,214,504

10 98,926 95,167 96,668 96,920 4,007 3,930 3,970 3,969 2.00111 2,270,514

Min 3,098 3,216 3,242 3,185 356 363 360 359 2.00104 274,003

Mean 54,838 57,005 57,952 56,599 2,109 2,182 2,216 2,169 2.00173 1,081,395

Median 62,025 63,993 65,563 63,860 2,289 2,350 2,388 2,342 2.00168 1,184,470

Max 136,413 146,583 148,175 143,724 4,767 5,104 5,178 5,016 2.00267 2,270,514

87

Table 2. 101 Summary of Incremental Effect of MTZ upper bound Constraints

 Speedup LP Upper

Bound

Improvement
Ave. CPU Time Ticks Ave. Real Time

n = 10

Min 0.68 0.68 0.45 0.00%

Mean 1.24 1.05 1.39 0.00%

Median 1.02 1.04 1.28 0.00%

Max 2.41 1.52 3.78 0.00%

n = 20

Min 0.65 0.62 0.37 0.00%

Mean 1.11 1.16 1.25 0.00%

Median 0.99 0.99 1.02 0.00%

Max 2.08 2.45 2.91 0.00%

n = 30

Min 0.50 0.83 0.81 0.00%

Mean 0.93 1.04 1.04 0.00%

Median 0.92 0.99 1.00 0.00%

Max 1.25 1.45 1.44 0.01%

n = 40

Min 0.10 0.10 0.12 0.00%

Mean 1.06 0.97 0.93 0.00%

Median 1.03 0.95 0.94 0.00%

Max 1.62 1.72 1.56 0.00%

n = 50

Min 0.63 0.76 0.77 0.01%

Mean 1.62 1.36 1.44 0.01%

Median 1.09 1.03 1.07 0.01%

Max 4.71 3.11 3.41 0.03%

Table 2. 102 CI and GCI of MTZ Upper Bound in Triples Model

n CPU Ticks Real Time CI GCI

10 1.07 1.04 1.32 1.15

1.06

20 1.02 1.04 1.07 1.05

30 0.92 1.00 1.01 0.98

40 1.03 0.95 0.94 0.97

50 1.22 1.11 1.16 1.16

 Conclusion: After applying technique 6, MTZ upper bound, the grand composite index of

speedups (GCI) was 1.06, which means, on average, the model with MTZ upper bound was 1.06

times faster than the incumbent model. Thus, we adopted it.

88

2.5.8 Technique 7：Pairwise Demand Cuts

 Tables 2-54, 2-55, and 2-56 summarize the effects of the pairwise demand cuts described in

Section 2.4.11 on the incumbent triples model.

Table 2. 103 Incremental Effect of Pairwise Demand Cuts in Triples Model for n = 10.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP Upper

Bound

Ticks

01 1.64 1.95 1.94 1.84 0.49 0.55 0.61 0.55 2.00000 43.04

02 1.66 1.26 1.00 1.31 0.37 0.34 0.34 0.35 2.00000 72.64

03 2.35 2.30 5.73 3.46 0.38 0.52 0.48 0.46 2.00000 58.14

04 2.42 1.35 1.16 1.64 0.29 0.35 0.28 0.30 2.00000 39.17

05 2.27 1.45 1.05 1.59 0.29 0.36 0.33 0.33 2.00000 43.40

06 3.56 1.55 1.82 2.31 0.48 0.47 0.44 0.46 2.00000 44.02

07 1.65 1.91 3.66 2.41 0.30 0.50 0.44 0.41 2.00000 77.99

08 2.61 1.36 1.19 1.72 0.32 0.43 0.38 0.38 2.00000 67.88

09 1.99 1.20 1.79 1.66 0.39 0.35 0.38 0.38 2.00000 32.95

10 0.85 0.95 1.20 1.00 0.17 0.18 0.21 0.19 2.00000 21.30

Min 0.85 0.95 1.00 1.00 0.17 0.18 0.21 0.19 2.00000 21.30

Mean 2.10 1.53 2.05 1.89 0.35 0.41 0.39 0.38 2.00000 50.05

Median 2.13 1.41 1.50 1.69 0.35 0.39 0.38 0.38 2.00000 43.71

Max 3.56 2.30 5.73 3.46 0.49 0.55 0.61 0.55 2.00000 77.99

Table 2. 104 Incremental Effect of Pairwise Demand Cuts in Triples Model for n = 20.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 11.93 10.84 10.72 11.16 2.62 2.36 2.36 2.44 2.00024 1,195.60

02 8.61 8.70 8.56 8.62 3.09 3.42 3.31 3.28 2.00012 871.91

03 24.87 24.59 24.25 24.57 6.05 6.24 6.10 6.13 2.00060 3,359.75

04 24.18 23.93 23.97 24.03 3.04 3.10 2.98 3.04 2.00063 1,276.76

05 11.44 12.13 10.72 11.43 4.02 4.57 4.30 4.29 2.00000 1,326.97

06 52.51 50.90 53.63 52.34 4.94 5.09 4.97 5.00 2.00120 2,393.68

07 9.30 9.08 9.57 9.32 1.89 1.86 1.77 1.84 2.00024 1,069.51

08 10.43 11.38 10.54 10.78 2.74 2.99 2.87 2.87 2.00000 971.54

09 44.77 43.63 44.01 44.13 7.84 7.56 7.54 7.65 2.00120 4,668.66

10 13.50 13.22 13.46 13.39 3.17 3.09 3.15 3.14 2.00000 1,231.83

Min 8.61 8.70 8.56 8.62 1.89 1.86 1.77 1.84 2.00000 871.91

Mean 21.15 20.84 20.94 20.98 3.94 4.03 3.93 3.97 2.00042 1,836.62

Median 12.71 12.68 12.09 12.41 3.13 3.26 3.23 3.21 2.00024 1,254.30

Max 52.51 50.90 53.63 52.34 7.84 7.56 7.54 7.65 2.00120 4,668.66

89

Table 2. 105 Incremental Effect of Pairwise Demand Cuts in Triples Model for n = 30.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 407 396 397 400 36 36 36 36 2.00000 24,127

02 550 537 542 543 48 47 47 47 2.00084 38,595

03 331 324 324 326 30 30 29 29 2.00076 21,074

04 80 83 82 82 17 19 18 18 2.00102 9,623

05 330 316 324 324 32 31 31 31 2.00103 22,346

06 67 66 66 66 14 14 14 14 2.00143 7,710

07 579 569 568 572 58 57 57 58 2.00195 51,896

08 308 306 306 306 28 28 28 28 2.00124 21,740

09 866 852 855 857 62 61 62 62 2.00144 50,339

10 1,271 1,236 1,250 1,252 78 76 76 76 2.00115 61,032

Min 67 66 66 66 14 14 14 14 2.00000 7,710

Mean 479 468 471 473 40 40 40 40 2.00109 30,848

Median 369 360 360 363 34 33 33 34 2.00109 23,236

Max 1,271 1,236 1,250 1,252 78 76 76 76 2.00195 61,032

Table 2. 106 Incremental Effect of Pairwise Demand Cuts in Triples Model for n = 40.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 4,771 4,686 4,754 4,737 254 248 256 253 2.00002 174,779

02 47,036 47,029 48,382 47,482 1,797 1,791 1,833 1,807 2.00002 1,009,754

03 1,227 1,190 1,220 1,212 107 105 106 106 2.00003 83,875

04 390 386 382 386 40 40 39 40 2.00004 26,484

05 3,539 3,458 3,547 3,515 220 214 216 217 2.00005 160,177

06 164 156 159 160 21 20 21 21 2.00005 10,982

07 13,218 13,023 13,337 13,192 621 604 613 613 2.00002 420,735

08 16,042 15,841 16,370 16,084 704 690 712 702 2.00003 461,088

09 7,730 7,603 7,825 7,719 386 379 388 385 2.00003 256,009

10 16,209 16,074 16,566 16,283 650 638 657 648 2.00004 381,025

Min 164 156 159 160 21 20 21 21 2.00002 10,982

Mean 11,033 10,944 11,254 11,077 480 473 484 479 2.00003 298,491

Median 6,251 6,144 6,290 6,228 320 313 322 319 2.00003 215,394

Max 47,036 47,029 48,382 47,482 1,797 1,791 1,833 1,807 2.00005 1,009,754

90

Table 2. 107 Incremental Effect of Pairwise Demand Cuts in Triples Model for n = 50.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 54,936 55,220 57,277 55,811 2,078 2,127 2,162 2,122 2.00108 1,012,679
02 171,945 177,419 179,265 176,210 6,019 6,169 6,288 6,159 2.00196 2,517,416
03 75,874 77,582 81,860 78,439 2,807 2,850 2,994 2,884 2.00186 1,356,211
04 5,226 5,180 5,420 5,275 403 390 402 398 2.00262 294,987
05 54,709 54,706 58,117 55,844 2,126 2,105 2,257 2,163 2.00098 1,044,172
06 16,469 16,458 17,068 16,665 783 779 794 785 2.00247 443,939
07 78,189 79,629 82,554 80,124 2,944 2,974 3,076 2,998 2.00143 1,418,407
08 10,651 10,780 11,130 10,854 525 526 537 529 2.00149 297,638
09 69,195 70,762 72,988 70,982 2,527 2,565 2,646 2,579 2.00214 1,222,352
10 28,431 28,755 29,753 28,979 1,213 1,214 1,239 1,222 2.00110 624,504
Min 5,226 5,180 5,420 5,275 403 390 402 398 2.00098 294,987
Mean 56,562 57,649 59,543 57,918 2,142 2,170 2,239 2,184 2.00171 1,023,231
Median 54,822 54,963 57,697 55,827 2,102 2,116 2,210 2,142 2.00167 1,028,426
Max 171,945 177,419 179,265 176,210 6,019 6,169 6,288 6,159 2.00262 2,517,416

Table 2. 108 Summary of Incremental Effect of Pairwise Demand Cuts in Triples Model

 Speedup LP Upper

Bound

Improvement
Ave. CPU Time Ticks Ave. Real Time

n = 10

Min 0.70 0.53 0.41 0.00%

Mean 1.04 0.93 0.90 0.00%

Median 1.00 0.92 0.65 0.00%

Max 1.42 1.24 2.29 0.00%

n = 20

Min 0.45 0.39 0.47 0.00%

Mean 0.85 0.96 0.87 0.00%

Median 0.88 0.95 0.80 0.00%

Max 1.06 1.56 1.57 0.00%

n = 30

Min 0.37 0.33 0.34 0.00%

Mean 1.05 1.11 1.00 0.00%

Median 1.01 1.10 1.02 0.00%

Max 2.00 1.81 1.52 0.00%

n = 40

Min 0.47 0.46 0.50 0.00%

Mean 0.83 1.03 1.00 0.00%

Median 0.81 0.92 0.86 0.00%

Max 1.45 2.00 2.15 0.00%

n = 50

Min 0.36 0.39 0.38 0.00%

Mean 1.08 1.20 1.11 0.00%

Median 0.92 0.99 0.93 0.00%

Max 3.34 3.64 3.25 0.00%

91

Table 2. 109 CI and GCI of Pairwise Demand Cuts Constraints

n CPU Ticks Real Time CI GCI

10 1.01 0.92 0.72 0.87

0.95

20 0.87 0.95 0.82 0.88

30 1.02 1.10 1.01 1.05

40 0.81 0.95 0.90 0.89

50 0.97 1.05 0.98 1.00

 Conclusion: After applying technique 7, pairwise demand cuts, the grand composite index of

speedups (GCI) was 0.95, indicating that was more efficient to solve the incumbent model.

Therefore, we did not adopt this technique.

2.5.9 Technique 8：Cover Cuts

 Tables 2-57, 2-58, and 2-59 summarize the effects of including the cover cuts described in

Section 2.4.10 in the incumbent triples model.

Table 2. 110 Incremental Effect of Cover Cuts in Triples Model for n =10.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP Upper

Bound

Ticks

01 2.73 1.65 1.72 2.03 0.52 0.55 0.58 0.55 2.00000 38.95

02 3.34 1.98 2.93 2.75 0.35 0.37 0.42 0.38 2.00000 69.22

03 3.75 2.98 1.26 2.66 0.38 0.44 0.33 0.38 2.00000 58.14

04 1.93 1.65 3.29 2.29 0.27 0.33 0.32 0.30 2.00000 47.03

05 3.15 2.63 3.44 3.07 0.30 0.39 0.42 0.37 2.00000 58.05

06 3.26 2.62 2.47 2.78 1.17 1.05 1.27 1.16 2.00000 39.63

07 3.44 4.35 3.42 3.74 0.64 0.67 0.82 0.71 2.00000 42.73

08 2.99 1.79 2.82 2.53 0.46 0.37 0.53 0.46 2.00000 91.32

09 3.55 1.94 2.14 2.54 0.39 0.42 0.43 0.41 2.00000 32.97

10 2.88 2.24 1.31 2.14 0.22 0.25 0.18 0.22 2.00000 25.75

Min 1.93 1.65 1.26 2.03 0.22 0.25 0.18 0.22 2.00000 25.75

Mean 3.10 2.38 2.48 2.65 0.47 0.48 0.53 0.49 2.00000 50.38

Median 3.20 2.11 2.65 2.60 0.39 0.41 0.43 0.40 2.00000 44.88

Max 3.75 4.35 3.44 3.74 1.17 1.05 1.27 1.16 2.00000 91.32

92

Table 2. 111 Incremental Effect of Cover Cuts in Triples Model for n = 20.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP Upper

Bound

Ticks

01 10.08 10.08 9.80 9.99 1.74 1.50 1.69 1.64 2.00024 1,091.96

02 9.50 8.15 7.16 8.27 2.84 3.15 2.64 2.88 2.00012 830.11

03 14.87 14.06 13.24 14.06 3.60 3.66 3.51 3.59 2.00060 1,281.55

04 24.68 24.28 24.26 24.41 3.16 3.15 3.14 3.15 2.00063 1,278.14

05 12.70 11.18 11.19 11.69 3.61 3.65 3.61 3.62 2.00000 1,236.54

06 50.72 50.33 49.39 50.15 5.05 5.18 5.04 5.09 2.00120 2,633.05

07 9.15 9.48 9.33 9.32 1.59 1.53 1.45 1.53 2.00024 848.01

08 16.11 13.72 13.88 14.57 3.47 3.44 3.36 3.42 2.00000 1,124.51

09 44.87 45.46 43.65 44.66 6.34 6.51 6.21 6.35 2.00120 3,640.30

10 16.32 16.87 16.31 16.50 3.27 3.53 3.47 3.42 2.00000 1,379.11

Min 9.15 8.15 7.16 8.27 1.59 1.50 1.45 1.53 2.00000 830.11

Mean 20.90 20.36 19.82 20.36 3.47 3.53 3.41 3.47 2.00042 1,534.33

Median 15.49 13.89 13.56 14.31 3.37 3.49 3.41 3.42 2.00024 1,257.34

Max 50.72 50.33 49.39 50.15 6.34 6.51 6.21 6.35 2.00120 3,640.30

Table 2. 112 Incremental Effect of Cover Cuts in Triples Model for n = 30.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 390 368 374 377 32 31 32 32 2.00000 22,285

02 551 540 530 540 46 45 44 45 2.00084 35,298

03 325 325 319 323 31 31 31 31 2.00076 26,605

04 82 82 82 82 14 14 14 14 2.00103 9,625

05 356 339 342 346 32 31 31 31 2.00104 22,640

06 63 62 60 61 12 12 12 12 2.00146 6,969

07 345 332 334 337 24 23 23 23 2.00201 17,597

08 517 504 506 509 37 37 36 37 2.00124 27,866

09 1,044 1,022 1,029 1,032 71 70 70 70 2.00151 58,433

10 1,274 1,258 1,255 1,262 73 72 72 72 2.00116 57,087

Min 63 62 60 61 12 12 12 12 2.00000 6,969

Mean 495 483 483 487 37 37 36 37 2.00110 28,440

Median 373 353 358 362 32 31 31 31 2.00110 24,623

Max 1,274 1,258 1,255 1,262 73 72 72 72 2.00201 58,433

93

Table 2. 113 Incremental Effect of Cover Cuts in Triples Model for n = 40.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 4,300 4,188 4,276 4,255 230 226 229 228 2.00002 159,697

02 40,902 40,761 41,903 41,189 1,537 1,518 1,557 1,537 2.00002 825,500

03 1,465 1,443 1,477 1,462 138 135 137 137 2.00003 116,597

04 410 397 402 403 84 87 87 86 2.00004 54,108

05 1,926 1,893 1,924 1,914 124 120 122 122 2.00005 90,208

06 147 146 145 146 21 21 21 21 2.00005 10,434

07 5,745 5,603 5,772 5,707 267 263 270 267 2.00002 169,254

08 8,963 8,876 9,151 8,997 375 370 380 375 2.00003 217,200

09 8,859 8,639 9,046 8,848 365 362 370 365 2.00003 209,020

10 12,840 12,663 13,009 12,837 594 583 598 592 2.00004 403,339

Min 147 146 145 146 21 21 21 21 2.00002 10,434

Mean 8,556 8,461 8,710 8,576 374 368 377 373 2.00003 225,536

Median 5,022 4,896 5,024 4,981 249 244 249 247 2.00003 164,476

Max 40,902 40,761 41,903 41,189 1,537 1,518 1,557 1,537 2.00005 825,500

Table 2. 114 Incremental Effect of Cover Cuts in Triples Model for n = 50.

Instance

CPU

Time

Run 1

CPU

Time

Run 2

CPU

Time

Run 3

Ave.

CPU

Time

Real

Time

Run 1

Real

Time

Run 2

Real

Time

Run 3

Ave.

Real

Time

LP

Upper

Bound

Ticks

01 68,297 69,609 71,206 69,704 2,867 2,913 2,944 2,908 2.00108 1,820,955

02 138,769 141,921 146,276 142,322 4,924 5,011 5,129 5,022 2.00196 2,229,416

03 75,719 77,300 80,848 77,956 2,682 2,746 2,814 2,747 2.00186 1,142,579

04 5,809 5,806 6,066 5,894 411 404 415 410 2.00267 302,474

05 64,022 64,760 67,875 65,552 2,348 2,346 2,478 2,391 2.00104 1,205,026

06 14,488 14,613 15,450 14,850 730 733 761 741 2.00248 438,844

07 71,361 72,741 76,292 73,465 2,727 2,742 2,870 2,779 2.00144 1,361,864

08 8,312 8,382 8,802 8,499 457 454 467 459 2.00150 277,007

09 67,345 68,589 72,547 69,494 2,453 2,472 2,610 2,512 2.00218 1,146,126

10 98,784 101,344 105,507 101,878 3,808 3,819 3,991 3,873 2.00111 2,014,816

Min 5,809 5,806 6,066 5,894 411 404 415 410 2.00104 277,007

Mean 61,290 62,507 65,087 62,961 2,341 2,364 2,448 2,384 2.00173 1,193,911

Median 67,821 69,099 71,876 69,599 2,567 2,607 2,712 2,629 2.00168 1,175,576

Max 138,769 141,921 146,276 142,322 4,924 5,011 5,129 5,022 2.00267 2,229,416

94

Table 2. 115 Summary of Incremental Effect of Cover Cuts in the Triples Model

 Speedup LP Upper

Bound

Improvement
Ave. CPU Time Ticks Ave. Real Time

n = 10

Min 0.41 0.71 0.37 0.00%

Mean 0.73 0.90 0.70 0.00%

Median 0.70 0.91 0.61 0.00%

Max 1.12 0.98 1.27 0.00%

n = 20

Min 0.70 0.85 0.76 0.00%

Mean 0.85 1.06 1.00 0.00%

Median 0.79 1.00 0.84 0.00%

Max 1.19 1.71 2.34 0.00%

n = 30

Min 0.62 0.90 0.83 0.00%

Mean 0.98 1.12 1.05 0.00%

Median 0.99 1.08 1.05 0.00%

Max 1.34 1.43 1.45 0.00%

n = 40

Min 0.52 0.91 0.65 0.00%

Mean 1.00 1.11 1.06 0.00%

Median 1.07 1.13 1.09 0.00%

Max 1.28 1.55 1.44 0.00%

n = 50

Min 0.31 0.34 0.35 0.00%

Mean 0.87 0.94 0.91 0.00%

Median 0.97 1.04 0.98 0.00%

Max 1.09 1.14 1.07 0.00%

Table 2. 116 CI and GCI of Cover cut Constraints

n CPU Ticks Real Time CI GCI

10 0.71 0.91 0.63 0.75

0.99

20 0.80 1.02 0.89 0.91

30 0.98 1.09 1.06 1.05

40 1.06 1.13 1.08 1.09

50 0.95 1.02 0.96 0.98

 Conclusion: After applying technique 8, cover cut, the grand composite index of speedups (GCI)

was 0.99, indicating that was more efficient to solve the incumbent model. Therefore, we did not

adopt this technique.

95

2.5.10 Summary of Enhanced Triples Model

 We conclude this section by restating the enhanced triples model:

Objective

Maximize 𝑝 [∑ 𝑑𝑘𝑙𝑤𝑘𝑙𝑦𝑘𝑙(𝑘, 𝑙)∈𝐴] − 𝑐 ∑ 𝜃𝑖𝑗𝑑𝑖𝑗(𝑖, 𝑗)∈A − 𝑐𝑣 ∑ 𝑑𝑖𝑗𝑥𝑖𝑗(𝑖, 𝑗)∈𝐴 (2.1)

Subject to

∑ 𝑥1,𝑗(1,𝑗)∈𝐴 = 1 (2.6)

∑ 𝑥𝑖,𝑛(𝑖,𝑛)∈𝐴 = 1 (2.7)

∑ 𝑥𝑖𝑘𝑖∈𝑉\{𝑘, 𝑛} = ∑ 𝑥𝑘𝑗𝑗∈𝑉\{1, 𝑘} , 𝑘 ∈ 𝑉\{1, 𝑛} (2.8)

∑ 𝑥𝑖𝑘𝑖∈𝑉\{𝑘, 𝑛} ≤ 1 𝑘 ∈ 𝑉\{1, 𝑛} (2.9)

∑ 𝑑𝑖𝑗𝑥𝑖𝑗(𝑖, 𝑗)∈𝐴 ≤ 𝐷 (2.10)

 𝑠𝑖 − 𝑠𝑗 + (𝑛 − 1)𝑥𝑖𝑗 + (𝑛 − 3)𝑥𝑗𝑖 ≤ 𝑛 − 2 ∀ (𝑖, 𝑗) ∈ 𝐴: 𝑖 ≠ 1, 𝑗 ≠ 𝑛(2.24)

𝜃𝑖𝑗 = 𝑤𝑖𝑗𝑦𝑖𝑗 + ∑ 𝑢𝑖𝑘
𝑗

(𝑖, 𝑘, 𝑗)∈𝑇 + ∑ 𝑢𝑘𝑗
𝑖

(𝑘, 𝑗, 𝑖)∈𝑇 − ∑ 𝑢𝑖𝑗
𝑘

(𝑖, 𝑗, 𝑘)∈𝑇 , (𝑖, 𝑗) ∈ 𝐴 (2.17)

𝜃𝑖𝑗 ≤ 𝑄𝑥𝑖𝑗, (𝑖, 𝑗) ∈ 𝐴 (2.18)

𝑢𝑖𝑗
𝑘 ≥ 0, (𝑖, 𝑗, 𝑘) ∈ 𝑇 (2.20)

∑ 𝑤𝑖𝑗𝑦𝑖𝑗𝑗∈𝑉∖{1,𝑖} ≤ 𝑄 ∀𝑖 ∈ 𝑉 ∖ {𝑛} (2.22)

∑ 𝑤𝑖𝑗𝑦𝑖𝑗𝑖∈𝑉∖{𝑗,𝑛} ≤ 𝑄 ∀𝑗 ∈ 𝑉 ∖ {1} (2.23)

𝑥𝑖𝑗 ∈ {0, 1} (𝑖, 𝑗) ∈ 𝐴 (2.14)

𝑦𝑘𝑙 ∈ {0, 1} (𝑘, 𝑙) ∈ 𝐴 (2.15)

1 ≤ 𝑆𝑖 ≤ 𝑛 − 1 ∀𝑖 ∈ 𝑉 ∖ {1} (2.25)

2.6 Best Node-Arc vs. Best Triples Comparison

 In this section we compare the enhanced node-arc and triples model on the 10-, 20-, 30-, and

40-node problem instances. Recall that the CPLEX solution statistics for the enhanced node-arc

model on the 10- 20-, and 30-node problem instances are given in Tables 2-19a, 2-19b, and 2-19c,

respectively, and the statistics for the node-arc model on the 40-node problem instances are given

96

in Tables 2-34a, 2-34b, and 2-34c. Recall also that the CPLEX solution statistics for the enhanced

triples mode are given in Tables 2-51a to 2-51e. The results are summarized in Table 2-60. In

almost every case, the enhanced triples formulation was solved faster than the enhanced node-arc

formulation regardless of which performance measure is considered. Furthermore, we note that

the speedups for ticks, CPU and real time all show an increasing trend as problem size increases.

We note a similar trend in the LP upper bound improvement.

Table 2. 117 Best Node-Arc vs. Best Triples

Best Triples vs Best Node-arc

n CPU speedup ticks speedup real time speedup

LP upper

bound

improvement

10

Min 0.39 1.47 0.86 0.00%

Mean 2.38 4.47 2.31 47.71%

Median 2.40 4.08 2.22 54.52%

Max 4.50 8.38 4.00 79.68%

20

Min 6.34 8.89 7.98 86.00%

Mean 62.43 24.02 21.46 89.30%

Median 68.97 25.39 20.01 89.22%

Max 137.06 42.75 46.20 91.82%

30

Min 34.33 16.06 30.96 91.20%

Mean 210.55 52.26 101.59 93.33%

Median 153.62 44.40 106.01 93.81%

Max 872.08 137.89 212.53 95.56%

40

Min 44.46 34.79 56.61 94.53%

Mean 1,943.68 319.00 1,050.75 95.92%

Median 327.41 96.47 225.86 96.21%

Max 11,929.94 1,417.70 4,275.04 96.97%

2.7 Conclusions

 Enhanced Node-Arc Formulation: The best techniques for node-arc formulation are:

conditional arc-flow, relax node-degree, relax x-z linking, branching priority. With the best

97

techniques, we were able to solve problem instances that were previously unsolved with the

original node-arc formulation in the literature: all of the 30- and 40- node instances.

 Enhanced Triples Formulation: The best techniques for triples formulation are: relax u-x

linking constraints, add node-degree, single-node demand cuts, lifted MTZ, MTZ upper bound.

For the triples model in the literature, the maximum tried problem size is 40 nodes. Using the

original model, we solved instances with 50 nodes and the mean real time was more than 5 hours.

After adding our most effective techniques, the triples model can solve a 50-node problem easily

(40 minutes mean real time). On average, the enhanced triples formulation is 2.31, 21.46, 101.59

and 1,050.75 times faster than the enhanced node-arc formulation for 10-node, 20-node, 30-node,

and 40-node respectively in terms of real time solution.

98

CHAPTER 3

FIXED CHARGE NETWORK FLOW PROBLEM

3.1 Introduction

 The fixed charge network flow problem (FCNF) is a minimum cost network flow problem with

variable and fixed charges on arcs with positive flow. FCNF has been studied widely in the

literature in terms of formulations, algorithms and practical applications. There are two main

classes of FCNF: single-source FCNF and multicommodity FCNF. In single-source FCNF, all

demands are from the same source; while in multicommodity FCNF, there are distinct demand

pairs with different sources and sinks (some of the sources may be shared and some of the sinks

may be shared). The arcs can be capacitated or uncapacitated. The dominant cost for an arc can be

either the fixed cost or variable cost. The arc capacities can be loose or tight relative to the

demands. The triples formulation has been successfully applied to the maximum concurrent flow

problem and the backhaul profit maximization problem but not to FCNF. Our study is focused on

investigating a triples-based formulation of FCNF. In Section 3.2, we review the formulations of

the FCNF from the literature. In Section 3.3, first we give the straightforward triples formulation

for the FCNF; then we introduce the Stronger triples formulation of the FCNF, with singletons,

and show that the it is equivalent to the node-arc formulation.

3.2 FCNF Formulations from the Literature

 We review the formulations from the literature for single-source FCNF and multicommodity

FCNF in section 3.2.1 and 3.2.2 respectively.

99

3.2.1 Single-Source FCNF Formulation

 The single-source FCNF can be formulated in a traditional way with node balance constraints

and arc switching constraints, called Base formulation [50]. Rardin and Wolsey [51] proposed an

alternative multicommodity extended MIP formulation, called MCE formulation, which can

increase the linear programming lower bound substantially. Here we give a brief introduction to

both formulations. Note that the notation in this chapter and section should be considered

separately from the notation in previous chapters and sections.

Sets and parameters

𝐺 = (𝑁, 𝐴) The network

𝑁 A set of locations (nodes) including the source, node 1

𝐴 A set of arcs, {(𝑖, 𝑗): 𝑖 ≠ 𝑗, 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑉\{1}}

𝑓𝑘𝑙 The fixed cost of arc (𝑘, 𝑙)

𝑐𝑘𝑙 The variable unit cost of arc (𝑘, 𝑙)

𝑏𝑘 The net demand of node k

𝐷 ⊆ 𝑁 A collection of sink nodes with rational demand 𝑏𝑑 > 0, 𝑑 ∈ 𝐷

n The number of nodes in the network

Decision variables

𝑥𝑖𝑗 The total flow on arc (𝑖, 𝑗)

𝑦𝑖𝑗 ∈ {0,1} Binary variable, 1, if arc (𝑖, 𝑗) is selected; 0, otherwise

𝑤𝑖𝑗
𝑑 Units of flow on arc (𝑖, 𝑗) destined for sink d

100

3.2.1.1 Base formulation of FCNF [50]

(Base)

Objective

min ∑ 𝑐𝑖𝑗(𝑖, 𝑗)∈A 𝑥𝑖𝑗 + ∑ 𝑓𝑖𝑗𝑦𝑖𝑗(𝑖, 𝑗)∈𝐴 (3.1)

Subject to

∑ 𝑥𝑖𝑘(𝑖, 𝑘)∈𝐴 − ∑ 𝑥𝑘𝑗(𝑘, 𝑗)∈𝐴 = 𝑏𝑘 ∀𝑘 ∈ 𝑁 (3.2)

𝑥𝑖𝑗 ≤ (∑ 𝑏𝑑d∈𝐷)𝑦𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴 (3.3)

𝑥𝑖𝑗 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴 (3.4)

𝑦𝑖𝑗 ∈ {0,1} ∀(𝑖, 𝑗) ∈ 𝐴 (3.5)

Base formulation explanation

 The objective function, (3.1), minimizes total cost, which is equal to variable costs plus fixed

costs of arcs with non-zero flow. Constraints (3.2) are node balance constraints. Constraints (3.3)

are switching constraints to limit the maximum flow on arc (𝑖, 𝑗) in a relationship to the state of

arc defined by variable 𝑦𝑖𝑗 : if the arc is selected the maximum arc flow is the total demand,

otherwise it is 0. Constraints (3.4) represent non-negative arc flow. Constraints (3.5) define binary

variables 𝑦𝑖𝑗 to indicate the state of arc (𝑖, 𝑗) , selected (equal to 1) or not (equal to 0).

101

3.2.1.2 MCE formulation of FCNF [51]

(MCE)

Objective

min ∑ 𝑐𝑖𝑗𝑥𝑖𝑗(𝑖, 𝑗)∈A + ∑ 𝑓𝑖𝑗𝑦𝑖𝑗(𝑖, 𝑗)∈𝐴 (3.1)

Subject to

∑ 𝑤𝑖𝑘
𝑑

(𝑖, 𝑘)∈𝐴 − ∑ 𝑤𝑘𝑗
𝑑

(𝑘, 𝑗)∈𝐴 = {

𝑏𝑑 ∀𝑘 = 𝑑 ∈ 𝐷

0 ∀𝑘 ∈ 𝑁 ∖ {1}, ∀𝑑 ≠ 𝑘 ∈ 𝐷
−𝑏𝑑 𝑘 = 1 , ∀𝑑 ∈ 𝐷

 (3.6)

𝑥𝑖𝑗 ≤ (∑ 𝑏𝑑𝑑∈𝐷)𝑦𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴 (3.3)

𝑥𝑖𝑗 = ∑ 𝑤𝑖𝑗
𝑑

𝑑∈𝐷 ∀(𝑖, 𝑗) ∈ 𝐴 (3.7)

𝑤𝑖𝑗
𝑑 ≤ 𝑏𝑑𝑦𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑑 ∈ 𝐷 (3.8)

𝑤𝑖𝑗
𝑑 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑑 ∈ 𝐷 (3.9)

𝑦𝑖𝑗 ∈ {0,1} ∀(𝑖, 𝑗) ∈ 𝐴 (3.5)

MCE Formulation Explanation

 Objective (3.1) is retained from the Base formulation. Constraints (3.6) are node balance

constraints for each commodity d: at source node 1, the net demand for each commodity d is equal

to -bd; at a demand node d, the net demand for the corresponding commodity d is equal to bd , and

is equal to 0 for all other commodities; at all the transshipment nodes, for each commodity, the net

demand is equal to 0. Constraints (3.3) are the same as constraints (3.3) in Base, are switching

constraints to limit the maximum flow on arc (𝑖, 𝑗) in a relationship to the state of use defined by

102

variable 𝑦𝑖𝑗. Constraints (3.7) state that the total arc flow is equal to the sum of each commodity

flow on that arc. Constraints (3.8) are switching constraints for each commodity on an arc bounded

by its corresponding demand amount. Constraints (3.9) represent non-negative commodity arc

flow. Constraint (3.5) is to indicate if arc is selected or not. It is worth pointing out that constraints

(3.3) can be relaxed due to constraints (3.7) and (3.8).

3.2.1.3 Major Advantage of MCE over Base

 In the above uncapacitated FCNF, the node balance constraints in MCE (3.6) replace the

corresponding constraints (3.2) by breaking down the balance equations for each commodity

(demand); this improves the LP lower bound greatly. Also, the multicommodity switching

constraints in MCE (3.9) improve the LP lower bound especially when the arc capacity is much

larger than the demands. In some cases, the LP lower bound can be equal or close to the MIP

optimal value [51].

3.2.2 Multicommodity FCNF Formulation

 The multicommodity fixed charge network flow problem (FCNF) is a variant of the

multicommodity network flow problem stated in Chapter 1 in that fixed costs are considered for

each arc if used. Therefore, accordingly, in the literature there are node-arc and arc-path

formulations. Here, we focus on the node-arc formulation. We give the two typical node-arc

formulations based on the single source MCE in Section 3.2.1.2 and the multicommodity node-arc

formulation in Section 1.1.2.2 with the assumption that the unit cost for all the commodities are

the same for each specific arc. Note that the notation in this section should be considered separately

from the notation in previous sections since some of them have the same meaning but some of

them do not.

103

Sets and parameters

𝐺 = (𝑁, 𝐴) The network

𝑁 The set of all nodes in 𝐺

𝐴 The set of all arcs in 𝐺

𝐻 The set of all commodities

𝑠ℎ The source or origin of commodity ℎ ∈ 𝐻

𝑡ℎ The terminal or destination of commodity ℎ ∈ 𝐻

𝑐𝑖𝑗 Per unit flow cost on arc (𝑖, 𝑗)

 𝑑ℎ The total demand units of commodity ℎ

𝑏𝑖
ℎ The supply/demand at node 𝑖 of commodity ℎ

 (𝑏𝑖
ℎ  =  𝑑ℎ if 𝑖  =  𝑠ℎ, 𝑏𝑖

ℎ  =   − 𝑑ℎ if 𝑖  =  𝑡ℎ, and 𝑏𝑖
ℎ  =  0 otherwise).

𝑢𝑖𝑗 The arc capacity off arc (𝑖, 𝑗)

Decision variables

𝑥𝑖𝑗 The total flow on arc (𝑖, 𝑗)

𝑦𝑖𝑗 ∈ {0,1} Binary variable, 1, if arc (𝑖, 𝑗) is selected; 0, otherwise

𝑤𝑖𝑗
ℎ The flow on arc (𝑖, 𝑗) of commodity h

Objective

min ∑ 𝑐𝑖𝑗𝑥𝑖𝑗(𝑖, 𝑗)∈A + ∑ 𝑓𝑖𝑗𝑦𝑖𝑗(𝑖, 𝑗)∈𝐴 (3.1)

Subject to

∑ 𝑤𝑖𝑗
ℎ

{𝑗∈𝑁: (𝑖, 𝑗)∈A} − ∑ 𝑤𝑗𝑖
ℎ =  𝑏𝑖

ℎ
{𝑗 ∈ 𝑁: (𝑗, 𝑖)∈A} ∀𝑖 ∈ 𝑁, ∀ ℎ ∈ 𝐻 (3.10)

𝑥𝑖𝑗 ≤ 𝑢𝑖𝑗𝑦𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴 (3.11)

104

𝑥𝑖𝑗 = ∑ 𝑤𝑖𝑗
ℎ

ℎ∈𝐻 ∀(𝑖, 𝑗) ∈ 𝐴 (3.12)

𝑤𝑖𝑗
ℎ ≤ 𝑑ℎ𝑦𝑖𝑗 ∀ (𝑖, 𝑗) ∈ 𝐴, ℎ ∈ 𝐻 (3.13)

𝑤𝑖𝑗
ℎ ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴, ℎ ∈ 𝐻 (3.14)

𝑦𝑖𝑗 ∈ {0,1} ∀(𝑖, 𝑗) ∈ 𝐴 (3.5)

 Formulation Explanation

 Objective (3.1) is retained from Base and MCE of the single source FCNF. Constraints (3.10)

are node balance constraints for each commodity h at each node i. Constraints (3.11) are switching

constraints to limit the maximum flow on arc (𝑖, 𝑗) in a relationship to the state of use defined by

variable 𝑦𝑖𝑗. Constraints (3.12) states that the total arc flow is equal to the sum of each commodity

flow on that arc. Constraints (3.13), called commodity switching constraints, are switching

constraints for each commodity on an arc bounded by its corresponding demand amount.

Constraints (3.14) represent non-negative commodity arc flow. Constraint (3.5) is retained from

the Base and MCE formulations to indicate if arc is selected or not.

 It is worth noticing that constraints (3.13) can be relaxed without affecting the validity of the

formulation. Hereinafter, we refer the above formulation with (3.13) as the “node-arc formulation

with commodity switching constraints” (node-arc W for short). We refer to the above formulation

without (3.13) as the “node-arc formulation without commodity switching constraints” (node-arc

WO for short).

105

3.3 Triples Formulations of FCNF

3.3.1 Straightforward Triples Formulation

 Here we use as many as possible the notations in 3.2.2 as long as they have the same meaning.

For clarity and convenience, we put them below so that readers do not need to go back to the

previous section for the specific meaning of the notations and also no confusion arises in case a

notation has different meanings in the previous sections.

Sets and parameters

𝐺 = (𝑁, 𝐴) The network

𝑁 The set of all nodes in 𝐺

𝐴 The set of all arcs in 𝐺

𝐴̅ The set of virtual arcs {(𝑖, 𝑗): 𝑖 ≠ 𝑗, 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, (𝑖, 𝑗) ∉ 𝐴}

𝐻 The set of all commodities

𝑠ℎ The source or origin of commodity ℎ ∈ 𝐻

𝑡ℎ The terminal or destination of commodity ℎ ∈ 𝐻

𝑐𝑖𝑗 Per unit flow cost on arc (𝑖, 𝑗) assuming that is the same for all commodities

 𝑑ℎ The total demand units of commodity ℎ

𝑏𝑖
ℎ The supply/demand at node 𝑖 of commodity ℎ

 (𝑏𝑖
ℎ  =  𝑑ℎ if 𝑖  =  𝑠ℎ, 𝑏𝑖

ℎ  =   − 𝑑ℎ if 𝑖  =  𝑡ℎ, and 𝑏𝑖
ℎ  =  0 otherwise).

𝑑𝑖𝑗 The demand from node 𝑖 to node 𝑗 (i.e., 𝑑𝑠ℎ𝑡ℎ
=  𝑑ℎ for commodity ℎ ∈ 𝐻)

𝐷 ⊆ 𝑁 The sink nodes with rational demand 𝑏𝑑 > 0, 𝑑 ∈ 𝐷

𝑢𝑖𝑗 The arc capacity on arc (𝑖, 𝑗)

𝑇 = {(𝑖, 𝑗, 𝑘): 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝐷\{𝑖}, 𝑘 ∈ 𝑁\{𝑖, 𝑗}, (𝑖, 𝑘) ∈ 𝐴} The set of node triples

106

Decision variables

𝑥𝑖𝑗 The total flow on arc (𝑖, 𝑗)

𝑦𝑖𝑗 ∈ {0,1} Binary variable, 1, if arc (𝑖, 𝑗) is selected; 0, otherwise

𝑧𝑖𝑗
𝑘 ≥ 0 ∀(𝑖, 𝑗, 𝑘) ∈ 𝑇 Triples variables

In general, the set of virtual arcs, 𝐴̅, in the triples formulation is the set of arcs that would need to

be added to 𝐺 to make it a complete network. However, it is sufficient to restrict the virtual arcs

in the FCNF application such that (𝑖, 𝑗) is in 𝐴̅ only if 𝑗 = 𝑡ℎ for some commodity ℎ. Hereinafter,

we make this restriction. Using the above notations, the straightforward triples formulation of

multicommodity FCNF is:

Objective

min ∑ 𝑐𝑖𝑗x𝑖𝑗(𝑖,𝑗)∈𝐴 + ∑ 𝑓𝑖𝑗𝑦𝑖𝑗(𝑖, 𝑗)∈𝐴 (3.1)

Subject to

𝑥𝑖𝑗 = 𝑑𝑖𝑗 + ∑ 𝑧𝑖𝑘
𝑗

{𝑘∈𝑁:(𝑖,𝑘,𝑗)∈𝑇} + ∑ 𝑧𝑘𝑗
𝑖

{𝑘∈𝑁:(𝑘,𝑗,𝑖)∈𝑇} − ∑ 𝑧𝑖𝑗
𝑘

{𝑘∈𝑁:(𝑖,𝑗,𝑘)∈𝑇}    ∀(𝑖, 𝑗) ∈ 𝐴  ∪ A̅ (3.15)

𝑥𝑖𝑗 ≤ 𝑢𝑖𝑗𝑦𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴 (3.11)

𝑥𝑖𝑗 ≥ 0   ∀(𝑖, 𝑗) ∈ 𝐴 (3.4)

𝑥𝑖𝑗 = 0 ∀(𝑖, 𝑗) ∈ A̅ (3.16)

𝑦𝑖𝑗 ∈ {0,1}, ∀(𝑖, 𝑗) ∈ 𝐴 (3.5)

𝑧𝑖𝑗
𝑘 ≥ 0 ∀ (𝑖, 𝑗, 𝑘) ∈ 𝑇 (3.17)

Constraints (3.15) are the triples constraints introduced in Section 1.9. They replace the node

balance constraints (3.2) in the Base model and (3.6) in the MCE model. Constraints (3.16) ensure

107

that there is no flow on the virtual arcs. The objective and the other constraints in the formulation

have been discussed in preceding sections.

3.3.2 Stronger Triples Formulation of FCNF

Our computational experiments with the straight-forward triples formulation given in Section

3.3.1 showed that it is not as strong as the MCE for the single source FCNF. But it can be

strengthened to give the same LP lower bound as the MCE by adding singleton demand nodes. In

the network, there are two kinds of nodes: nodes with zero demands and nodes with non-zero

demands. In order to fully realize the advantage of the commodity switching constraints in MCE

to strengthen the LP relaxation of the triples formulation, we need to add a singleton node to each

of the nodes with nonzero demands and move the demand to it [52]. Though the singleton concept

was motivated and first put forth for the single-source scenario, it was later successfully expanded

to the multicommodity scenario. Since single-source is a special case of multicommodity, here we

will describe the stronger triples formulation for the multicommodity scenario. In the stronger

triples formulation of FCNF, with a singleton added for each commodity ℎ ∈ 𝐻 at the end node

𝑡ℎ , we augment the given network with a set of singleton nodes, 𝑆 . For each 𝑡ℎ there is a

corresponding singleton node 𝑠ℎ́ ∈ 𝑆. Singleton node 𝑠ℎ́ has demand 𝑑ℎ, and the corresponding

node 𝑡ℎ has its demand reduced to zero. The arc set is augmented with a set of arcs 𝐴𝑆 connecting

each original demand node 𝑡ℎ to its corresponding singleton node 𝑠ℎ́ . For each 𝑡ℎ , 𝐴𝑆 has arc

(𝑡ℎ, 𝑠́ℎ) with fixed and variable costs of zero, and a capacity of 𝑑ℎ units. We refer to the nodes in

𝑆 as singletons because they each have a single incoming arc and no outgoing arcs.

108

With singletons we let 𝑑𝑖𝑗 = 0 for all arcs except arcs from the source node 𝑠ℎ to the singleton

node 𝑠ℎ́ associated with the sink node 𝑡ℎ of commodity ℎ ∈ 𝐻, in which case 𝑑𝑠ℎ,𝑠́ℎ
= 𝑑ℎ. The set

of virtual arcs is 𝐴̅ = {(𝑖, 𝑗): 𝑖 ≠ 𝑗, 𝑖 ∈ 𝑁 ∖ 𝑆, 𝑗 ∈ 𝑆, (𝑖, 𝑗) ∉ 𝐴}. With this change, the Stronger

triples formulation of multicommodity FCNF is

Objective

min ∑ 𝑐𝑖𝑗x𝑖𝑗(𝑖,𝑗)∈𝐴 + ∑ 𝑓𝑖𝑗𝑦𝑖𝑗(𝑖, 𝑗)∈𝐴 (3.1)

Subject to

𝑥𝑖𝑗 = 𝑑𝑖𝑗 + ∑ 𝑧𝑖𝑘
𝑗

{𝑘∈𝑁:(𝑖,𝑘,𝑗)∈𝑇} + ∑ 𝑧𝑘𝑗
𝑖

{𝑘∈𝑁:(𝑘,𝑗,𝑖)∈𝑇} − ∑ 𝑧𝑖𝑗
𝑘

{𝑘∈𝑁:(𝑖,𝑗,𝑘)∈𝑇}    ∀(𝑖, 𝑗) ∈ 𝐴  ∪ 𝐴𝑆 ∪ 𝐴̅ (3.15)

𝑥𝑖𝑗 ≤ 𝑢𝑖𝑗𝑦𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴 (3.11)

𝑧𝑖𝑗
𝑘 ≤ 𝑑𝑖𝑗𝑦𝑖𝑘 ∀(𝑖,  𝑗, 𝑘) ∈ 𝑇 (3.18)

𝑥𝑖𝑗 = 0 ∀(𝑖, 𝑗) ∈ A̅ (3.16)

𝑥𝑡ℎ𝑠́ℎ
= 𝑑ℎ  ∀ ℎ ∈ 𝐻 (3.19)

𝑥𝑖𝑗 ≥ 0   ∀(𝑖, 𝑗) ∈ 𝐴\𝐴𝑠 (3.20)

𝑦𝑖𝑗 ∈ {0,1} ∀(𝑖, 𝑗) ∈ 𝐴 (3.5)

𝑧𝑖𝑗
𝑘 ≥ 0 ∀(𝑖,  𝑗, 𝑘) ∈ 𝑇 (3.17)

 Constraint sets (3.5), (3.11), (3.15), (3.16), and (3.17) are carried over from the straightforward

triples formulation of FCNF. Constraint set (3.18) ensures that flow is only diverted on to arcs

selected by the 𝑦 variables. For a given commodity ℎ, constraint (3.19) forces the required amount

of flow into the singleton node 𝑠́ℎ by fixing the flow on arc in (𝑡ℎ, 𝑠́ℎ) ∈ 𝐴𝑆 to 𝑑ℎ . Constraint

(3.20) ensures that all other arc flows are non-negative.

109

We now illustrate the stronger triples formulation with a small example.

Figure 4 7-node original network

Figure 4 is the original 7-node network. Node 1 is the source node with a total supply of 50 units,

Nodes 5, 6 and 7 are demand nodes with respective demand of 20, 15 and 15.

Figure 5 7-node network with added singletons

 Figure 5 is an extended network with added singletons. The original demand nodes are node 5,

node 6 and node 7, with the respective demands of 20, 15, and 15. Now, we add singleton demand

nodes 8, 9, 10 corresponding to node 5, 6, 7 respectively. As noted in Figure 5, the costs on the

newly formed arcs are all zero.

110

Stronger triples formulation of the example in Figure 5

Objective

Min: 5x12 + 4x13 + 6x24 + 3x26 + 4x34 + 4x37 + 2x45 + x56 + 2x57 + 4x67 + 5x76 +

70y12 + 75y13 + 65y24 + 80y26 + 70y34 + 75y37 + 90y45 + 80y56 + 75y57 + 75y67 +

70y76

Constraints

Arc flow represented by demands and triples

(1) Singleton arcs:

20 = 𝑧48
5 − 𝑧58

6 − 𝑧58
7 for arc (5,8)

15 = 𝑧29
6 + 𝑧59

6 + 𝑧79
6 − 𝑧69

7 for arc (6,9)

15 = 𝑧3,10
7 + 𝑧5,10

7 + 𝑧6,10
7 −𝑧7,10

6 for arc (7,10)

(2) Virtual arcs terminating at singleton nodes:

𝑥28 = 0 = 𝑧18
2 − 𝑧28

4 − 𝑧28
6

𝑥29 = 0 = 𝑧19
2 − 𝑧29

4 − 𝑧29
6

𝑥2,10 = 0 = 𝑧110
2 − 𝑧210

4 − 𝑧210
6

𝑥38 = 0 = 𝑧18
3 − 𝑧38

4 − 𝑧38
7

𝑥39 = 0 = 𝑧19
3 − 𝑧39

4 − 𝑧39
7

𝑥3,10 = 0 = 𝑧110
3 − 𝑧310

4 − 𝑧310
7

111

𝑥48 = 0 = 𝑧28
4 + 𝑧38

4 − 𝑧48
5

𝑥49 = 0 = 𝑧29
4 + 𝑧39

4 − 𝑧49
5

𝑥4,10 = 0 = 𝑧210
4 + 𝑧310

4 − 𝑧410
5

𝑥59 = 0 = 𝑧49
5 − 𝑧59

6 − 𝑧59
7

𝑥5,10 = 0 = 𝑧410
5 − 𝑧510

6 − 𝑧510
7

𝑥68 = 0 = 𝑧28
6 + 𝑧58

6 + 𝑧78
6 − 𝑧68

7

𝑥6,10 = 0 = 𝑧210
6 + 𝑧510

6 + 𝑧710
6 − 𝑧610

7

𝑥78 = 0 = 𝑧38
7 + 𝑧58

7 + 𝑧68
7 − 𝑧78

6

𝑥79 = 0 = 𝑧39
7 + 𝑧59

7 + 𝑧69
7 − 𝑧79

6

(3) Virtual arcs coming out of the source node:

𝑥18 = 0 = 20 − 𝑧18
2 − 𝑧18

3

𝑥19 = 0 = 15 − 𝑧19
2 − 𝑧19

3

𝑥1,10 = 0 = 15 − 𝑧110
2 − 𝑧110

3

(4) Arcs in the given network:

𝑥12 = 𝑧18
2 + 𝑧19

2 +𝑧1,10
2

𝑥13 = 𝑧18
3 + 𝑧19

3 +𝑧1,10
3

𝑥24 = 𝑧28
4 + 𝑧29

4 +𝑧2,10
4

𝑥26 = 𝑧28
6 + 𝑧29

6 +𝑧2,10
6

𝑥34 = 𝑧38
4 + 𝑧39

4 +𝑧3,10
4

𝑥37 = 𝑧38
7 + 𝑧39

7 +𝑧3,10
7

𝑥45 = 𝑧48
5 + 𝑧49

5 +𝑧4,10
5

112

𝑥56 = 𝑧58
6 + 𝑧59

6 +𝑧5,10
6

𝑥57 = 𝑧58
7 + 𝑧59

7 +𝑧5,10
7

𝑥67 = 𝑧68
7 + 𝑧69

7 +𝑧6,10
7

𝑥76 = 𝑧78
6 + 𝑧79

6 +𝑧7,10
6

Triples switching constraints

𝑧18
2 ≤ 20 𝑦12

𝑧19
2 ≤ 15 𝑦12

𝑧1,10
2 ≤ 15 𝑦12

𝑧18
3 ≤ 20 𝑦13

𝑧19
3 ≤ 15 𝑦13

𝑧1,10
3 ≤ 15 𝑦13

𝑧28
4 ≤ 20 𝑦24

𝑧29
4 ≤ 15 𝑦24

𝑧2,10
4 ≤ 15 𝑦24

𝑧28
6 ≤ 20 𝑦26

𝑧29
6 ≤ 15 𝑦26

𝑧2,10
6 ≤ 15 𝑦26

𝑧38
4 ≤ 20 𝑦34

113

𝑧39
4 ≤ 15 𝑦34

𝑧3,10
4 ≤ 15 𝑦34

Optimal solution

𝑥13 = 50

𝑥34 = 35

𝑥37 = 15

𝑥45 = 35

𝑥56 = 15

𝑦13 = 1

𝑦34 = 1

𝑦37 = 1

𝑦45 = 1

𝑦56 = 1

𝑧18
3 = 20

𝑧38
4 = 20

𝑧48
5 = 20

𝑧19
3 = 15

𝑧39
4 = 15

𝑧49
5 = 15

𝑧59
6 = 15

𝑧1,10
3 = 15

z3,10
7 = 15

114

The optimal total cost is: 875

Interpretation of the optimal triples solution

Figure 6 Example optimal triples solution

As shown in Figure 6, the example optimal triples solution is to send 20 units of flow from node

1 to node 8 diverted via node 3, to send 20 units of flow from node 3 to node 8 diverted via node

4, to send 20 units of flow from node 4 to node 8 diverted via node 5, and 20 units of flow from

node 5 directly to node 8; send 15 units of flow from node 1 to node 9 diverted via node 3, to send

15 units of flow from node 3 to node 9 diverted via node 4, to send 15 units of flow from node 4

to node 9 diverted via node 5, to send 15 units of flow from node 5 to node 9 diverted via node 6,

and 15 units of flow from node 6 directly to node 9; send 15 units of flow from node 1 to node 10

diverted via node 3, and 15 units of flow from node 3 directly to node 10 in order to satisfy all

demands at a minimum cost of 875.

115

3.3.3 Proof of Equality of Node-Arc Formulation and Stronger Triples Formulation

 As explained in sections 3.2.2 and 3.3.2, H represents the set of commodities and each

commodity ℎ ∈ 𝐻 represents an OD pair; while S represents the set of singletons, each 𝑠́ℎ ∈ 𝑆

represents a unique singleton corresponding to a commodity h. For convenience, and without loss

of generality, assume that the commodities in H are numbered the same way as the singleton nodes

in S so that 𝐻 = 𝑆 = {|𝑁| + 1, |𝑁| + 2, … , |𝑁| + |𝐻|}. Using this notation, we can show that

the node-arc formulation and the stronger triples formulation are essentially the same formulation.

The key observation in showing that the formulations are the same is that because triples variable

𝑧𝑖𝑗
𝑘 represents the total flow on arc (𝑖, 𝑘) destined for singleton node 𝑗 , there is a one-to-one

correspondence between the 𝑧 variables in the stronger triples formulation and the 𝑤 variables in

the node-arc formulation: 𝑧𝑖𝑗
𝑘 corresponds to 𝑤𝑖𝑘

𝑗
, and 𝑤𝑖𝑗

ℎ corresponds to 𝑧𝑖ℎ
𝑗

. Thus, there is a one-

to-one correspondence between variable-domain constraint set (3.17) in the stronger triples

formulation and constraint set (3.14) in the node-arc formulation. Since each triple (𝑖, 𝑗, 𝑘) in 𝑇

corresponds to the combination of arc (𝑖, 𝑘) and commodity 𝑗 in the node-arc formulation, the term

∑ 𝑧𝑖𝑗
𝑘

{𝑘∈𝑁:(𝑖,𝑗,𝑘)∈𝑇} in the stronger triples formulation corresponds to the term ∑ 𝑤𝑖𝑘
𝑗

𝑗∈𝐻 in the node-

arc formulation. Next, we show that each of the other components of the stronger triples

formulation has a one-to-one correspondence with a component of the node-arc model.

 The two formulations share decision variables 𝑥𝑖𝑗 and 𝑦𝑖𝑗 for each arc (𝑖, 𝑗) in 𝐴 and the

corresponding variable-domain constraints, objective function (3.1), and 𝑥-𝑦 switching constraints

(3.11). Switching constraint 𝑧𝑖𝑗
𝑘 ≤ 𝑑𝑖𝑗𝑦𝑖𝑘 in the stronger triples formulation corresponds to

switching constraint 𝑤𝑖𝑘
𝑗

≤ 𝑑𝑗𝑦𝑖𝑘 in the node-arc formulation. Thus, there is a one-to-one

116

correspondence between constraint set (3.18) in the stronger triples formulation and constraint set

(3.13) in the node-arc formulation. Next, we partition the triples constraints (3.15) into four cases

by arc type and show how each case corresponds to a constraint set in the node-arc formulation.

Case 1: (𝒊, 𝒋) ∈ 𝑨.

 If (𝑖, 𝑗) is an arc in the given network 𝐺, then 𝑑𝑖𝑗 = 0. In this case node 𝑗 is not a singleton and

so there are no triples in 𝑇 of the form (𝑘, 𝑗, 𝑖) or (𝑖, 𝑗, 𝑘). Furthermore, (𝑖, 𝑘, 𝑗) is only in 𝑇 in this

case if node 𝑘 is a singleton; and so, the triples constraint (3.15) in this case simplifies to 𝑥𝑖𝑗 =

∑ 𝑧𝑖𝑘
𝑗

{𝑘∈𝐻: (𝑖,𝑘,𝑗)∈𝑇} . From the correspondence between the 𝑧 and 𝑤 variables, ∑ 𝑧𝑖𝑘
𝑗

{𝑘∈𝐻: (𝑖,𝑘,𝑗)∈𝑇} =

∑ 𝑤𝑖𝑗
𝑘

{𝑘∈𝐻} . Thus, triples constraint (3.15) for arc (𝑖, 𝑗) ∈ 𝐴 reduces to 𝑥𝑖𝑗 = ∑ 𝑤𝑖𝑗
𝑘

𝑘∈𝐻 , which is

constraint (3.12) for arc (𝑖, 𝑗) in the node-arc formulation.

Case 2: (𝒊, 𝒋) ∈ 𝑨̅ and 𝒊 is the source node for commodity 𝒉 ∈ 𝑯

 In this case node 𝑗 must be the singleton node 𝑠ℎ́ corresponding to the destination node 𝑡ℎ for

commodity ℎ . So, 𝑑𝑖𝑗 = 𝑑ℎ and constraint (3.16) forces 𝑥𝑖𝑗 = 0 . Furthermore, (𝑖, 𝑗) is not a

member of the given arc set 𝐴 in this case; and so, there are no triples of the form (𝑖, 𝑘, 𝑗). Thus,

the triples constraint (3.15) in this case reduces to 𝑑ℎ = ∑ 𝑧𝑖𝑗
𝑘

{𝑘∈𝑁: (𝑖,𝑗,𝑘)∈𝑇} − ∑ 𝑧𝑘𝑗
𝑖

{𝑘∈(𝑘,𝑗,𝑖)∈𝑇} .

 From the correspondence between the 𝑧 and 𝑤 variables, ∑ 𝑧𝑖𝑗
𝑘

{𝑘∈𝑁: (𝑖,𝑗,𝑘)∈𝑇} = ∑ 𝑤𝑖𝑘
𝑗

𝑘∈𝑁 and

∑ 𝑧𝑘𝑗
𝑖

{𝑘∈𝑁: (𝑘,𝑗,𝑖)∈𝑇} = ∑ 𝑤𝑘𝑖
𝑗

𝑘∈𝑁 . Thus, triples constraint (3.15) in this case reduces to

𝑑𝑗 = ∑ 𝑤𝑖𝑘
𝑗

𝑘∈𝑁 − ∑ 𝑤𝑘𝑖
𝑗

𝑘∈𝑁 , which is the node-balance constraint (3.10) for the source node of

commodity 𝑗 in the node-arc formulation.

117

Case 3: (𝒊, 𝒋) ∈ 𝑨𝑺

 In this case node 𝑖 is the destination node 𝑡ℎ for some commodity ℎ, node 𝑗 is the associated

singleton node 𝑠ℎ́, 𝑑𝑖𝑗 = 0, and constraint (3.19) forces 𝑥𝑖𝑗 = 𝑑𝑗. Furthermore, (𝑖, 𝑗) is not a

member of the given arc set 𝐴 in this case; and so, there are no triples of the form (𝑖, 𝑘, 𝑗). Thus,

the triples constraint (3.15) in this case reduces to 𝑑𝑗 = ∑ 𝑧𝑘𝑗
𝑖

{𝑘∈(𝑘,𝑗,𝑖)∈𝑇} − ∑ 𝑧𝑖𝑗
𝑘

{𝑘∈𝑁: (𝑖,𝑗,𝑘)∈𝑇} .

 From the correspondence between the 𝑧 and 𝑤 variables, ∑ 𝑧𝑖𝑗
𝑘

{𝑘∈𝑁: (𝑖,𝑗,𝑘)∈𝑇} = ∑ 𝑤𝑖𝑘
𝑗

𝑘∈𝑁 and

∑ 𝑧𝑘𝑗
𝑖

{𝑘∈𝑁: (𝑘,𝑗,𝑖)∈𝑇} = ∑ 𝑤𝑘𝑖
𝑗

{𝑘∈𝑁} . Thus, triples constraint (3.15) in this case reduces to

𝑑𝑗 = ∑ 𝑤𝑘𝑖
𝑗

𝑘∈𝑁 − ∑ 𝑤𝑖𝑘
𝑗

𝑘∈𝑁 , which is the node-balance constraint (3.10) for the sink node of

commodity 𝑗 in the node-arc formulation.

Case 4: (𝒊, 𝒋) ∈ 𝑨̅ and 𝒊 is not a source node for any commodity

 In this case node 𝑗 must be the singleton node 𝑠ℎ́ for some commodity ℎ. So, 𝑑𝑖𝑗 = 0 and

constraint (3.16) forces 𝑥𝑖𝑗 = 0. Furthermore, (𝑖, 𝑗) is not a member of the given arc set 𝐴 in this

case; and so, there are no triples of the form (𝑖, 𝑘, 𝑗). Thus, the triples constraint (3.15) in this case

reduces to ∑ 𝑧𝑖𝑗
𝑘

{𝑘∈𝑁: (𝑖,𝑗,𝑘)∈𝑇} = ∑ 𝑧𝑘𝑗
𝑖

{𝑘∈(𝑘,𝑗,𝑖)∈𝑇} .

 From the correspondence between the 𝑧 and 𝑤 variables, ∑ 𝑧𝑖𝑗
𝑘

{𝑘∈𝑁: (𝑖,𝑗,𝑘)∈𝑇} = ∑ 𝑤𝑖𝑘
𝑗

{𝑘∈𝑁} and

∑ 𝑧𝑘𝑗
𝑖

{𝑘∈𝑁: (𝑘,𝑗,𝑖)∈𝑇} = ∑ 𝑤𝑘𝑖
𝑗

𝑘∈𝑁 . Thus, triples constraint (3.15) in this case reduces to

∑ 𝑤𝑖𝑘
𝑗

𝑘∈𝑁 = ∑ 𝑤𝑘𝑖
𝑗

𝑘∈𝑁 , which is the node-balance constraint (3.10) for nodes that are

transshipment nodes for commodity 𝑗 in the node-arc formulation.

 The only components of the stronger triples formulation that have not yet been accounted for

are constraints (3.16), (3.19), and (3.20). Constraints (3.16) and (3.19) simply fix the 𝑥 variables

118

on arcs that are not in the given arcs 𝐴 to constants; and so, there is no need to map them to the

node-arc formulation. Constraint (3.20) for arc (𝑖, 𝑗) ∈ 𝐴 is the non-negativity constraint for 𝑥𝑖𝑗,

which is not explicit in the node-arc formulation but is implied by constraint (3.12).

3.3.4 Comparison of Problem Size of Three FCNF Formulations

 Tables 3.1 and 3.2 give upper bounds on the number of variables and structural constraints in

the node-arc W and node-arc WO and straightforward triples formulations, respectively. The

bounds are based on worst-case instances in which the network has the largest possible numbers

of arcs and commodities, 𝑛(𝑛 − 1). As shown in Table 3.1, the straightforward triples formulation

reduces the number of continuous variables in the MIP by a factor of n for both node-arc

formulations. As shown in Table 3.2, the straightforward triples formulation reduces the number

of constraints in the MIP by a factor of 𝑛 for the node-arc WO formulation and by a factor of 𝑛2

for the node-arc W. In Chapter 4, we demonstrate how this reduction in MIP size leads to

improvement in early stage MIP objective values compared with the node-arc formulations.

Table 3. 1 Comparison of Variable Counts

Number of Node-Arc WO/W Straightforward Triples

Continuous variables 𝑥𝑖𝑗 𝑛(𝑛 − 1) 𝑛(𝑛 − 1)

 𝑤𝑖𝑗
ℎ 𝑛2(𝑛 − 1)2 N/A

 𝑧𝑖𝑗
𝑘 N/A 𝑛2(𝑛 − 1)

Total 𝑛4– 2𝑛3 + 2𝑛2 − 𝑛 𝑛3 − 𝑛

Binary variables 𝑦𝑖𝑗 𝑛(𝑛 − 1) 𝑛(𝑛 − 1)

119

Table 3. 2 Comparison of Constraint Counts

Number of constraints Node-Arc WO Node-Arc W Straightforward Triples

Node balance (3.10) 𝑛2(𝑛 − 1) 𝑛2(𝑛 − 1) N/A

Are switching (3.11) 𝑛(𝑛 − 1) 𝑛(𝑛 − 1) 𝑛(𝑛 − 1)

Arc flow summation (3.12) 𝑛(𝑛 − 1) 𝑛(𝑛 − 1) N/A

Commodity switching

constraints

(3.13) N/A 𝑛2(𝑛 − 1)2 N/A

Arc flow by triples (3.15) N/A N/A 𝑛(𝑛 − 1)

Total 𝑛3 + 2𝑛2– 3𝑛 𝑛4– 𝑛3 + 3𝑛2– 3𝑛 2𝑛2– 2𝑛

3.4 Conclusions

 The multicommodity fixed charge network flow problem (FCNF) can be formulated using the

triples concept in a straightforward way (called Straightforward Triples Formulation of FCNF)

and it has many fewer variables and constraints as shown in section 3.3.4. However, when testing

on the single-source FCNF instances, this turns out to be a weaker formulation than the MCE in

terms of the value of the LP lower bound. Adding full singletons to each sink node of the demand

pair enables the triples formulation much stronger (called Stronger Triples Formulation of FCNF)

and it is proved to be exactly the same as the node-arc formulation when adopting the same

numbering scheme for the commodities and the singletons respectively. The proof that the

Stronger Triples Formulation is essentially the node-arc formulation gives new insight into the

essence and validity of the triples formulation. The possibility of better solution for dense and

complete networks using the triples formulation is explored in the next Chapter.

120

CHAPTER 4

EXPERIMENTAL STUDY OF THE MULTICOMMODITY FCNF

4.1 Computing Environment

 The computations reported below were performed on the SMU Lyle School’s general use

Linux machines. The formulations were implemented in AMPL 10.00 and solved with CPLEX

12.6.0.0. We used the default settings for AMPL and CPLEX except where specified. The

computer hardware specifications are listed in Table 4.1.

Table 4. 1 Computer Hardware Specifications

Make/Model HP DL380

Processor Dual 14 Core Intel Xeon@2.6GHz

RAM 380GB

4.2 Data Sources of multicommodity FCNF

 Preliminary experiments suggested that the best use case for the straightforward triples

formulation over the node-arc formulation is on problem instances that are relatively dense in

terms of the ratio of the number of arcs to the number of nodes, and the ratio of the number of

commodities to the number of nodes. We found 16 such benchmark instances from the literature

[49] that are available online; following the process used to generate those instances, we randomly

generated 32 additional problem instances on complete networks with the largest possible number

of arcs and commodities.

 4.3 Experimental Study of Multicommodity FCNF

 For the multicommodity FCNF, the purpose is to test to see if the straightforward triples

formulation performs better than the two forms of node-arc formulations: node-arc formulation

with commodity switching constraints (referred to as: node-arc W) and node-arc formulation

without commodity switching constraints (referred to as: node-arc WO). We observed that within

121

a given time limit, the straightforward triples formulation finds solutions that compare favorably

with those found in the time limit using either of the node-arc formulations. However, given an

unlimited amount of time, we found that the branch-and-bound process tends to converge faster to

a provably optimal solution using the node-arc model with commodity switching constraints.

Inspired by this observation, we design a hybrid procedure with the hope of combing the

advantages of both the triples (fewer variables and constraints) and node-arc W (stronger LP

relaxation) formulations. The first step in the hybrid procedure is to solve the problem with the

straightforward triples formulation and stop the branch-and-bound process when a preset

optimality gap has been obtained (we use 3%). The second step is to let the x and y values from

the triples solution be the initial values of an incumbent solution for a second CPLEX run with the

node-arc W. We test the 32 randomly generated complete instances with a time limit using the

three models, and the hybrid procedure and draw conclusions. Note that we use the terms

“straightforward triples formulation” and “triples formulation” interchangeably in this chapter.

4.3.1 Benchmark Instances

4.3.1.1 Unlimited solution time testing

 First, we try to solve the 16 benchmark dense instances to optimality, with unlimited solution

time, using the three models and compare their performance measures. It turns out that the models

only solve nine out of the 16 benchmark instances to optimality and break down for the other seven

instances due to running out of memory. Hereinafter, we refer to the instances that were solved to

optimality as the “9 easy instances” and the other instances the “7 hard instances”.

 Table 4.2 gives the solution time and LP/MIP summary of the 9 easy instances using the

formulation of node-arc WO. The F/V column indicates whether the fixed or variable arc costs

122

dominate in the problem instance, and the T/L column indicates whether the arc capacities are tight

or loose. The LP/MIP column gives the ratio of the objective function value (cost) of the LP

relaxation to the optimal cost of an integer solution.

Table 4. 2 Summary of the 9 easy instances using Node-Arc WO

Data

File
Nodes Arcs Commodities F/V T/L

Average CPU

(seconds)

Ave. Real Time

(seconds)
Ticks

LP/

MIP

c37 20 230 200 V L 469,206 19,703 4.5E+06 73%

c38 20 230 200 F L 836,824 33,459 6.9E+06 71%

c39 20 230 200 V T 72,620 4,153 6.5E+05 76%

c40 20 230 200 F T 2,032,137 83,714 1.4E+07 74%

c45 20 300 200 V L 1,362,733 55,796 1.1E+07 79%

c47 20 300 200 V T 44,792 2,524 4.7E+05 82%

c48 20 300 200 F T 1,948,390 97,385 1.4E+07 79%

c53 30 520 400 V L 1,909,010 107,137 1.1E+07 86%

c55 30 520 400 V T 282,422 11,808 2.4E+06 88%

 Table 4.3 is the summary of solution time and LP/MIP of the 9 easy instances using the

formulation of node-arc W.

Table 4. 3 Summary of the 9 easy instances using Node-Arc W

Data

File
Nodes Arcs Commodities

F/

V

T/

L

Average CPU

(seconds)

Average

Real Time

(seconds)

Ticks LP/MIP

c37 20 230 200 V L 72,367 2,950 584,693 97%

c38 20 230 200 F L 133,713 5,075 975,285 96%

c39 20 230 200 V T 26,698 1,259 310,960 98%

c40 20 230 200 F T 868,016 30,479 8,674,774 97%

c45 20 300 200 V L 1,226,470 44,617 9,073,520 98%

c47 20 300 200 V T 15,865 957 253,202 99%

c48 20 300 200 F T 1,225,500 41,663 12,474,442 97%

c53 30 520 400 V L 284,542 12,592 2,027,042 99%

c55 30 520 400 V T 283,470 13,510 2,422,190 99%

123

 Table 4.4 is the summary of solution time and LP/MIP of the 9 easy instances using the

formulation of straightforward triples formulation.

Table 4. 4 Summary of the 9 easy instances using Straightforward Triples

Data

File
Nodes Arcs Commodities F/V T/L

Average

CPU

(seconds)

Ave. Real Time

(seconds)
Ticks

LP/

MIP

c37 20 230 200 V L 426,371 19,946 10,011,484 73%

c38 20 230 200 F L 603,456 37,209 9,044,378 71%

c39 20 230 200 V T 44,479 2,113 914,589 76%

c40 20 230 200 F T 1,444,260 86,066 19,967,835 74%

c45 20 300 200 V L 540,946 29,654 7,648,995 79%

c47 20 300 200 V T 15,169 704 369,614 82%

c48 20 300 200 F T 178,578 10,009 3,365,320 79%

c53 30 520 400 V L 580,277 26,559 5,321,572 86%

c55 30 520 400 V T 84,062 5,052 1,151,782 88%

 Table 4.5 is the summary of solution time and LP/MIP of the 9 easy instances using the hybrid

procedure.

Table 4. 5 Summary of the 9 easy instances using Hybrid procedure

Data

File
Nodes Arcs Commodities F/V T/L

Average

CPU

(seconds)

Average

Real time

(seconds)

Ticks

c37 20 230 200 V L 43,358 1,721 1,007,143

c38 20 230 200 F L 88,710 3,348 1,570,272

c39 20 230 200 V T 6,569 422 217,425

c40 20 230 200 F T 315,648 11,627 4,356,293

c45 20 300 200 V L 465,080 17,726 7,181,774

c47 20 300 200 V T 8,739 409 154,945

c48 20 300 200 F T 921,740 33,835 10,656,645

c53 30 520 400 V L 128,488 5,875 1,677,549

c55 30 520 400 V T 89,298 4,127 1,307,085

124

 Table 4.6 is the comparison summary of solution time and LP bounds of the 9 easy instances

between using the formulations of node arc with commodity switching constraints and node arc

without commodity switching constraints. The LP Ratio column gives the ratio of the cost of the

LP relaxation of the node-arc W model to that of the node-arc WO model. Speedups and LP ratios

in bold indicate favorable results for the node-arc W model.

Table 4. 6 Comparison of the 9 easy instances using Node-Arc models W vs. WO

Data

File
Nodes Arcs Commodities F/V T/L

Speedup
LP

Ratio
CPU

Time
Ticks

Real

Time

c37 20 230 200 V L 6.48 7.67 6.68 1.33

c38 20 230 200 F L 6.26 7.03 6.59 1.34

c39 20 230 200 V T 2.72 2.10 3.30 1.29

c40 20 230 200 F T 2.34 1.63 2.75 1.31

c45 20 300 200 V L 1.11 1.20 1.25 1.24

c47 20 300 200 V T 2.82 1.85 2.64 1.20

c48 20 300 200 F T 1.59 1.11 2.34 1.22

c53 30 520 400 V L 6.71 5.36 8.51 1.16

c55 30 520 400 V T 1.00 1.01 0.87 1.13

 Table 4.7 is the comparison summary of solution time and LP bounds of the 9 easy instances

between using the formulations of straightforward triples and node-arc formulation without

commodity switching constraints. Speedups and LP ratios in bold indicate favorable results for the

straightforward triples model.

125

Table 4. 7 Comparison of the 9 easy instances using Triples vs. Node-Arc WO

Data

File
Nodes Arcs Commodities F/V T/L

Speedup
LP

Ratio CPU Time
Real

Time
Ticks

c37 20 230 200 V L 1.10 0.45 0.99 1.00

c38 20 230 200 F L 1.39 0.76 0.90 1.00

c39 20 230 200 V T 1.63 0.71 1.96 1.00

c40 20 230 200 F T 1.41 0.71 0.97 1.00

c45 20 300 200 V L 2.52 1.43 1.88 1.00

c47 20 300 200 V T 2.95 1.27 3.59 1.00

c48 20 300 200 F T 10.91 4.11 9.73 1.00

c53 30 520 400 V L 3.29 2.04 4.03 1.00

c55 30 520 400 V T 3.36 2.12 2.34 1.00

 Table 4.8 is the comparison summary of solution time and LP bounds of the 9 easy instances

between using the formulations of triples and node arc formulation with commodity switching

constraints.

Table 4. 8 Comparison of the 9 easy instances using Triples vs. Node-Arc W

Data

File
Nodes Arcs Commodities F/V T/L

Speed Up

CPU

Time

Real

Time
Ticks

LP

Ration

c37 20 230 200 V L 0.17 0.06 0.15 0.75

c38 20 230 200 F L 0.22 0.11 0.14 0.74

c39 20 230 200 V T 0.60 0.34 0.60 0.77

c40 20 230 200 F T 0.60 0.43 0.35 0.77

c45 20 300 200 V L 2.27 1.19 1.50 0.81

c47 20 300 200 V T 1.05 0.69 1.36 0.83

c48 20 300 200 F T 6.86 3.71 4.16 0.82

c53 30 520 400 V L 0.49 0.38 0.47 0.87

c55 30 520 400 V T 3.37 2.10 2.67 0.88

 Observation: From tables 4.2-4.8, we can see that the results using the node-arc W are better in

terms of all three solution times and LP lower bounds than the node-arc WO. The straightforward

triples formulation performs better than the node-arc WO in terms of CPU times and gives the

126

same LP lower bounds; the larger the problem size, the better the straightforward triples performs

versus the node-arc WO. There are three instances (c45, c48, c55) where the triples runs much

faster in all three kinds of solution times though the LP bound is not as good as compared with the

node-arc W. The possible reason for the better performance is the relatively smaller number of the

variables and the constraints as shown in the Table 4.9, which compares the size of the three

formulations, the number of variables and the number of constraints for all 16 benchmark

instances. The “# of variables” and “# of constraints” give the ratios of the number of the variables

and constraints in the node-arc formulations to the number of variable and constraints in the

straightforward triples formulation.

Table 4. 9 Size comparison of the three formulations of multicommodity FCNF

Data

File
|𝑁| arcs

arc

density
commodities

commodity

density
F/V T/L

Node arc WO/Triples Node arc W/Triples

of

variables

of

constraints

of

variables

of

constraints

c37 20 230 60.5% 200 52.6% V L 10 7 10 82

c38 20 230 60.5% 200 52.6% F L 10 7 10 83

c39 20 230 60.5% 200 52.6% V T 10 7 10 83

c40 20 230 60.5% 200 52.6% F T 10 7 10 82

c45 20 300 78.9% 200 52.6% V L 10 7 10 94

c46 20 300 78.9% 200 52.6% F L 10 7 10 94

c47 20 300 78.9% 200 52.6% V T 10 7 10 94

c48 20 300 78.9% 200 52.6% F T 10 7 10 94

c53 30 520 59.8% 400 46.0% V L 13 9 13 159

c54 30 520 59.8% 400 46.0% F L 13 9 13 159

c55 30 520 59.8% 400 46.0% V T 13 9 13 158

c56 30 520 59.8% 400 46.0% F T 13 9 13 159

c61 30 700 80.5% 400 46.0% V L 13 9 13 185

c62 30 700 80.5% 400 46.0% F L 13 9 13 184

c63 30 700 80.5% 400 46.0% V T 13 9 13 184

c64 30 700 80.5% 400 46.0% F T 13 9 13 185

127

 We can see that the straightforward triples formulation is much smaller than both of the node-

arc formulations. Specifically, the number of variables of both node-arc formulations are 10 times

larger than the triples formulation for the 20-node instances and 13 times larger than the 30-node

instances. The number of constraints of the node-arc WO is seven times larger than the triples

formulation for the 20-node instances and nine times larger than the 30-node instances. The

number of constraints of the node-arc formulation with commodity switching constraints is 52-94

times larger than the triples formulation for the 20-node instances and 158-185 times larger than

the 30-node instances.

 Tables 4.10-4.12 are the comparison summaries of solution times of the 9 easy instances

between using the hybrid procedure versus the three models. Speedups in bold indicate favorable

results for the hybrid procedure.

Table 4. 10 Comparison of the 9 easy instances using Hybrid vs. Node-Arc W

Data

File
Nodes Arcs Commodities F/V T/L

Speedup

CPU

Time
Ticks

Real

Time

c37 20 230 200 V L 1.7 0.6 1.7

c38 20 230 200 F L 1.5 0.6 1.5

c39 20 230 200 V T 4.1 1.4 3.0

c40 20 230 200 F T 2.7 2.0 2.6

c45 20 300 200 V L 2.6 1.3 2.5

c47 20 300 200 V T 1.8 1.6 2.3

c48 20 300 200 F T 1.3 1.2 1.2

c53 30 520 400 V L 2.2 1.2 2.1

c55 30 520 400 V T 3.2 1.9 3.3

128

Table 4. 11 Comparison of the 9 easy instances using Hybrid vs. Node-Arc WO

Data

File
Nodes Arcs Commodities F/V T/L

Speedup

CPU

Time
Ticks

Real

Time

c37 20 230 200 V L 9.83 9.94 11.59

c38 20 230 200 F L 6.80 5.76 11.11

c39 20 230 200 V T 6.77 4.21 5.01

c40 20 230 200 F T 4.58 4.58 7.40

c45 20 300 200 V L 1.16 1.07 1.67

c47 20 300 200 V T 1.74 2.39 1.72

c48 20 300 200 F T 0.19 0.32 0.30

c53 30 520 400 V L 4.52 3.17 4.52

c55 30 520 400 V T 0.94 0.88 1.22

Table 4. 12 Comparison of Hybrid vs. Triples

Data

File
Nodes Arcs Commodities F/V T/L

Speedup

CPU

Time
Ticks

Real

Time

c37 20 230 200 V L 9.8 9.9 11.6

c38 20 230 200 F L 6.8 5.8 11.1

c39 20 230 200 V T 6.8 4.2 5.0

c40 20 230 200 F T 4.6 4.6 7.4

c45 20 300 200 V L 1.2 1.1 1.7

c47 20 300 200 V T 1.7 2.4 1.7

c48 20 300 200 F T 0.2 0.3 0.3

c53 30 520 400 V L 4.5 3.2 4.5

c55 30 520 400 V T 0.9 0.9 1.2

Observation: From tables 4.10-4.12, we can see that the hybrid procedure performs much better

than almost all the three models for seven of the nine easy instances (except c48 and c55) in terms

of all the three solution times. Overall, the node-arc formulation W gave superior results on the

nine easy instances compared to the node-arc formulation WO and the triples formulation.

However, the hybrid procedure was 1.2 to 3 times faster than the node-arc formulation W in all

129

but two cases: the ticks measure for instances c37 and c38. This suggests that the triples

formulation should be used as first part of the process for solving dense FCNF problems.

4.3.1.2 Limited times for 7 hard instances

 For the seven hard benchmark instances, which cannot be solved to optimality due to running

out of memory, we test them in 5 limited real time periods (in minutes): 5, 15, 30, 60, 120, and

compare the costs of the best solutions (upper bounds) found using the three models. Figures 7-13

are the graphs for instances C46, C54, C56, C31, C32, C63, C64 respectively.

 Figure 7 MIP objective value versus solution time for instance C46

110000

120000

130000

140000

150000

160000

170000

0 20 40 60 80 100 120 140

O
b

je
ct

iv
e

V
al

u
es

 (
$

)

Solution Time (Minutes)

C46 Obj. vs Solution Time

Node arc WO Node arc W Triples WO

130

Figure 8 MIP objective value versus solution time for instance C54

Figure 9 MIP objective value versus solution time for instance C56

149000

199000

249000

299000

349000

399000

449000

0 20 40 60 80 100 120 140

A
x
is

O
b

je
ct

iv
e

V
al

u
es

 (
$

)

Solution Time (Minutes)

C54 Obj. vs Solution Time

Node arc WO Node arc W Triples WO

152500

162500

172500

182500

192500

202500

212500

0 20 40 60 80 100 120 140

A
x
is

O
b

je
ct

iv
e

V
al

u
es

 (
$

)

Solution Time (Minutes)

C56 Obj. vs Solution Time

Node arc WO Node arc W Triples WO

131

Figure 10 MIP objective value versus solution time for instance C61

Figure 11 MIP objective value versus solution time for instance C62

97000

102000

107000

112000

117000

122000

127000

132000

0 20 40 60 80 100 120 140

O
b

je
ct

iv
e

V
al

u
es

 (
$

)

Solution Time (Minutes)

C61 Obj. vs Solution Time

Node arc WO Node arc W Triples WO

134000

234000

334000

434000

534000

634000

734000

0 20 40 60 80 100 120 140

O
b

je
ct

iv
e

V
al

u
es

 (
$

)

Solution Time (Minutes)

C62 Obj. vs Solution Time

Node arc WO Node arc W Triples WO

132

Figure 12 MIP objective value versus solution time for instance C63

Figure 13 MIP objective value versus solution time for instance C64

 From Figures 7-13, we can see that the triples formulation generally found much better

solutions in the first five minutes than either of the node-arc models. This trend was confirmed by

repeating the experiment with the Gurobi MIP solver (version 9.5.1). We also use the hybrid

procedure with time limit 1800 seconds (30 minutes) to test the seven hard instances and compare

80000

130000

180000

230000

280000

0 20 40 60 80 100 120 140

O
b

je
ct

iv
e

V
al

u
es

 (
$

)

Solution Time (Minutes)

C63 Obj. vs Solution Time

Node arc WO Node arc W Triples WO

129000

179000

229000

279000

329000

379000

429000

479000

0 20 40 60 80 100 120 140

O
b

je
ct

iv
e

V
al

u
es

 (
$

)

Solution Time (Minutes)

C64 Obj. vs Solution Time

Node arc WO Node arc W Triples WO

133

the objective values with the three models with the same time limit. Note that the hybrid procedure

basically has two phases and the first phase may stop either at gap=3% or time=1800 seconds,

whichever criteria is reached first. In our cases, the first phase usually takes less than 1800 seconds

to stop. In order to be fair for the comparison, we tested two settings: setting I is 1800 seconds for

both phases and setting II is 900 seconds for both phases. Table 4.13 and Table 4.14 give the

comparative results for both settings. We can see that the hybrid procedure gives the best results

for all the seven hard instances in terms of objective function (cost) values in both settings. Cost

ratios in bold indicate favorable results for the hybrid procedure. We can see that setting I and

setting II give almost the same objective values for the hybrid procedure with the only exception

of instance C64, the ratio of hybrid to node-arc WO drops from 1.12 to 1.11.

Table 4. 13 Comparison of Hybrid vs. Node-Arc W/ Node-Arc/Triples for 7 Hard Instances (I)

Data

File

Node

s

Arc

s

Commoditie

s

F/

V

T/

L

Hybrid Cost

vs

Node-Arc

WO

Hybrid Cost

vs

Node-Arc W

Hybrid

Cost vs

Triples

c46 20 300 200 F L 1.05 1.01 1.00

c54 30 520 400 F L 1.04 1.00 1.00

c56 30 520 400 F T 1.10 1.01 1.00

c61 30 700 400 V L 1.06 1.15 1.00

c62 30 700 400 F L 1.09 1.25 1.00

c63 30 700 400 V T 1.04 1.02 1.00

c64 30 700 400 F T 1.12 1.14 1.00

134

Table 4. 14 Comparison of Hybrid vs. Node-Arc W/ Node-Arc/Triples for 7 Hard Instances (II)

Data

File
Nodes Arcs Commodities F/V T/L

Hybrid Cost

vs

Node-Arc

WO

Hybrid Cost

vs

 Node-Arc

W

Hybrid

Cost vs

Triples

c46 20 300 200 F L 1.05 1.01 1.00

c54 30 520 400 F L 1.04 1.00 1.00

c56 30 520 400 F T 1.10 1.01 1.00

c61 30 700 400 V L 1.06 1.15 1.00

c62 30 700 400 F L 1.09 1.25 1.00

c63 30 700 400 V T 1.04 1.02 1.00

c64 30 700 400 F T 1.11 1.14 1.00

4.3.2 Randomly Generated Instances

 We test the 32 randomly generated complete problem instances with real time limits of 1800

seconds (30 minutes) and 7200 seconds (120 minutes) using the node-arc W, node-arc WO, and

triples formulations, and the hybrid procedure and compare their objective values. The ratios of

the objective values of other models divided by those of triples are shown in Tables 4.15 and 4.16

respectively. For the hybrid procedure, we also use two settings as we do in section 4.3.1.

 From Table 4.15 we can see that the triples formulation found the best solution for all of the 32

instances compared to node-arc W, node-arc WO and the hybrid procedure when the time limit is

1800 seconds (for both setting I and setting II of the hybrid procedure). Compared to the node-arc

WO formulation, CPLEX found a better solution to 24 of the 32 instances with the triples

formulation and the median, average (geometric mean), and maximum improvement ratios were

1.03, 1.17, and 1.75, respectively. Compared to the node-arc W formulation, CPLEX found a better

solution to 29 of the 32 instances with the triples formulation and the median, average (geometric

mean), and maximum improvement ratios were 1.04, 1.19, and 2.88, respectively. Compared to

135

the hybrid procedure with setting I, CPLEX found a better solution to 11 of the 32 instances with

the triples formulation and the median, average (geometric mean), and maximum improvement

ratios were 1.00, 1.07, and 1.64, respectively. Setting II produced identical results with the hybrid

procedure.

 From Table 4.16 we can see that triples formulation still found the best solution for all of the

32 instances compared to node-arc W and node-arc WO formulations and the hybrid procedure

when the time limit is 7200 seconds (for both setting I and setting II of the hybrid procedure), but

the difference is getting smaller with respect to other models, which implies that triples solution

may near the optimal objective though an optimality gap still exists. Compared to the node-arc

WO formulation, CPLEX found a better solution to 12 of the 32 instances with the triples

formulation and the median, average (geometric mean), and maximum improvement ratios were

1.00, 1.02, and 1.21, respectively. Compared to the node-arc W formulation, CPLEX found a better

solution to 11 of the 32 instances with the triples formulation and the median, average (geometric

mean), and maximum improvement ratios were 1.00, 1.03, and 1.15, respectively. Compared to

the hybrid procedure with setting I, CPLEX found a better solution to 3 of the 32 instances with

the triples formulation and the median, average (geometric mean), and maximum improvement

ratios were 1.00, 1.01, and 1.11, respectively. Compared to the hybrid procedure with setting II,

CPLEX found a better solution to 12 of the 32 instances with the triples formulation and the

median, average (geometric mean), and maximum improvement ratios were 1.00, 1.06, and 1.65,

respectively.

136

Table 4. 15 Cost Comparison of Triples vs. Hybrid/Node-Arc W/ Node-Arc WO (1800s)

Data File
Node

s
Arcs

Commoditie

s

F/

V

L/

T

Triples vs.

Node-

Arc

WO

Node-

Arc

W

Hybrid

Setting

I II

data_s20_FL_01 20 380 380 F L 1.03 1.12 1.00 1.00

data_s20_FL_02 20 380 380 F L 1.02 1.01 1.00 1.00

data_s20_FL_03 20 380 380 F L 1.01 1.02 1.00 1.00

data_s20_FL_04 20 380 380 F L 1.02 1.01 1.00 1.00

data_s20_FT_01 20 380 380 F T 1.02 1.11 1.00 1.00

data_s20_FT_02 20 380 380 F T 1.00 1.01 1.00 1.00

data_s20_FT_03 20 380 380 F T 1.03 1.13 1.00 1.00

data_s20_FT_04 20 380 380 F T 1.01 1.03 1.00 1.00

data_s20_VL_01 20 380 380 V L 1.00 1.01 1.00 1.00

data_s20_VL_02 20 380 380 V L 1.00 1.01 1.00 1.00

data_s20_VL_03 20 380 380 V L 1.01 1.01 1.00 1.00

data_s20_VL_04 20 380 380 V L 1.01 1.01 1.00 1.00

data_s20_VT_01 20 380 380 V T 1.00 1.01 1.00 1.00

data_s20_VT_02 20 380 380 V T 1.00 1.01 1.00 1.00

data_s20_VT_03 20 380 380 V T 1.00 1.00 1.00 1.00

data_s20_VT_04 20 380 380 V T 1.00 1.00 1.00 1.00

data_s30_FL_01 30 870 870 F L 1.62 1.57 1.01 1.01

data_s30_FL_02 30 870 870 F L 1.68 1.50 1.00 1.00

data_s30_FL_03 30 870 870 F L 1.63 1.46 1.64 1.64

data_s30_FL_04 30 870 870 F L 1.75 1.51 1.01 1.01

data_s30_FT_01 30 870 870 F T 1.55 1.56 1.57 1.57

data_s30_FT_02 30 870 870 F T 1.50 2.88 1.52 1.52

data_s30_FT_03 30 870 870 F T 1.56 1.39 1.01 1.01

data_s30_FT_04 30 870 870 F T 1.56 2.71 1.54 1.54

data_s30_VL_01 30 870 870 V L 1.36 1.07 1.00 1.00

data_s30_VL_02 30 870 870 V L 1.18 1.09 1.02 1.02

data_s30_VL_03 30 870 870 V L 1.08 1.03 1.01 1.01

data_s30_VL_04 30 870 870 V L 1.34 1.27 1.01 1.01

data_s30_VT_01 30 870 870 V T 1.16 1.00 1.00 1.00

data_s30_VT_02 30 870 870 V T 1.00 1.03 1.00 1.00

data_s30_VT_03 30 870 870 V T 1.14 1.04 1.30 1.30

data_s30_VT_04 30 870 870 V T 1.02 1.04 1.00 1.00

137

Table 4. 16 Cost Comparison of Triples vs. Hybrid/Node-Arc W/ Node-Arc WO (7200s)

Data File Nodes Arcs Commodities
F/

V

L/

T

Triples vs

Node-

Arc

WO

Node

-Arc

W

Hybrid

Setting

I II

data_s20_FL_01 20 380 380 F L 1.00 1.01 1.00 1.00

data_s20_FL_02 20 380 380 F L 1.00 1.00 1.00 1.00

data_s20_FL_03 20 380 380 F L 1.00 1.00 1.00 1.00

data_s20_FL_04 20 380 380 F L 1.01 1.00 1.00 1.00

data_s20_FT_01 20 380 380 F T 1.01 1.00 1.00 1.00

data_s20_FT_02 20 380 380 F T 1.00 1.00 1.00 1.00

data_s20_FT_03 20 380 380 F T 1.00 1.00 1.00 1.00

data_s20_FT_04 20 380 380 F T 1.00 1.01 1.00 1.00

data_s20_VL_01 20 380 380 V L 1.00 1.00 1.00 1.00

data_s20_VL_02 20 380 380 V L 1.00 1.00 1.00 1.00

data_s20_VL_03 20 380 380 V L 1.00 1.00 1.00 1.00

data_s20_VL_04 20 380 380 V L 1.00 1.00 1.00 1.00

data_s20_VT_01 20 380 380 V T 1.00 1.00 1.00 1.00

data_s20_VT_02 20 380 380 V T 1.00 1.00 1.00 1.00

data_s20_VT_03 20 380 380 V T 1.00 1.00 1.00 1.00

data_s20_VT_04 20 380 380 V T 1.00 1.00 1.00 1.00

data_s30_FL_01 30 870 870 F L 1.03 1.12 1.00 1.01

data_s30_FL_02 30 870 870 F L 1.21 1.15 1.00 1.01

data_s30_FL_03 30 870 870 F L 1.11 1.12 1.10 1.65

data_s30_FL_04 30 870 870 F L 1.02 1.14 1.01 1.01

data_s30_FT_01 30 870 870 F T 1.01 1.01 1.00 1.57

data_s30_FT_02 30 870 870 F T 1.09 1.11 1.00 1.52

data_s30_FT_03 30 870 870 F T 1.16 1.05 1.00 1.01

data_s30_FT_04 30 870 870 F T 1.01 1.12 1.11 1.55

data_s30_VL_01 30 870 870 V L 1.01 1.00 1.00 1.00

data_s30_VL_02 30 870 870 V L 1.01 1.00 1.00 1.02

data_s30_VL_03 30 870 870 V L 1.00 1.00 1.00 1.01

data_s30_VL_04 30 870 870 V L 1.00 1.01 1.00 1.01

data_s30_VT_01 30 870 870 V T 1.00 1.00 1.00 1.00

data_s30_VT_02 30 870 870 V T 1.00 1.00 1.00 1.00

data_s30_VT_03 30 870 870 V T 1.00 1.00 1.00 1.04

data_s30_VT_04 30 870 870 V T 1.00 1.00 1.00 1.00

138

4.4 Conclusions

 The much smaller size of the triples formulation both in the number of variables and in the

number of constraints results in faster solution times for dense and complete multicommodity

FCNF. The hybrid procedure, which combines the property of both triples and node-arc

formulations can find better objective values for dense instances. For complete hard FCNF

instances for a given limited solution time, the triples formulation performs better than the two

forms of node-arc formulations and hybrid procedure.

139

CHAPTER 5

CONTRIBUTIONS AND FUTURE WORK

Contributions

 In this dissertation, we explore a compact formulation of the multicommodity network flow

problem, the triples formulation, with applications to the Backhaul Profit Maximization (BPMP)

and Fixed Charge Network Flow (FCNF) Problems. Through extensive computational testing, the

dissertation demonstrates the effectiveness of triples formulations for these difficult combinatorial

optimization problems. The dissertation also provides theoretical results about the triples

formulation that give new insight into its validity. Both the empirical and theoretical results

strengthen the case for including the triples in the network-optimization toolkit.

 The dissertation adapts techniques from related problems and new problem-specific techniques

to enhance both the node-arc and triples formulations of the BPMP and develops the Composite

Index Method (CIM) to determine the most effective combination of techniques. In [49] we

describe how the CIM fills a gap in the area of optimization benchmarking; parallel computing is

widely used in applied optimization, but has received little attention in the literature on

optimization benchmarking. By calculating a single Grand Composite Index, the CIM makes it

much easier to select the best solution approach among multiple candidates. This dissertation

demonstrates the step-by-step details of the CIM framework to find the most effective variants of

the node-arc and triples formulations for the BPMP. The resulting enhanced triples formulation is

then shown to significantly outperform the most effective node-arc variant. Although this

application focused on solution-time measures for finding a provably optimal solution, the CIM

can be easily adapted to consider other dimensions of concern such as memory usage and solution

140

quality (for heuristics). Furthermore, individual users can use their own weighting scheme to

emphasize their personal preferences for making trade-offs between performance measures.

 For dense problem instances, this dissertation demonstrates empirically that state-of-the-art

commercial MIP solvers can find high quality solutions much earlier in the branch-and-bound

process using the triples formulation of the FCNF than the node-arc formulations. Thus, the triples

formulation is an effective alternative when computing time is limited. Through testing the hybrid

procedure, this dissertation also demonstrates that the triples formulation can be used to speed up

the solution process with the node-arc formulations by quickly finding incumbent solutions that

provide good upper bounds on the optimal cost.

 In the literature, the proofs of the equivalence of the triples formulation to the node-arc and/or

arc-path formulations are complex and specialized to the BPMP and maximum concurrent flow

problems (MCFP). In Chapter 1, this dissertation provides a straightforward argument that the

triples constraints enforce aggregate flow balance at the nodes in the general multicommodity flow

problem. The proof that the stronger triples formulation of the FNCF with singleton nodes is

identical to the node-arc formulation in Chapter is similarly straightforward. These are potentially

first step towards a straightforward argument that in the triples constraints in the model for general

multicommodity flow enforce flow balance at the commodity level as well as at an aggregate level;

this would then eliminate the need for the types of proofs given in the literature for the BPMP and

MCFP.

Future Work

 One direction for future work based on this dissertation is to develop triples models for

generalizations of the BPMP that have multiple vehicles and/or individual time windows for the

141

requests.. In addition to modeling, this will likely involve decomposition, column-generation, or

algorithmic development. The straightforward and stronger triples formulations of FNCF can be

seen as two endpoints of a spectrum. Perhaps a strategic use of singletons for a subset of the

demands will produce a formulation that makes an “optimal” trade-off between compactness and

strength of formulation. Alternatively, it is possible that adding sink-node switching constraints

(i.e., 𝑧𝑖𝑗
𝑘 ≤ (∑ 𝑑𝑖𝑗𝑖∈𝑁) 𝑦𝑖𝑘) will improve the performance of the straightforward formulation. An

understanding of why the initial solutions CPLEX and Gurobi find for the triples formulation are

better than the solutions found for the node-arc W formulation could lead to new algorithms for

FCNF. Additional work with the CIM is needed to find best practices for determining the order

for testing alternative techniques.

142

Bibliography

[1] D. Matula, "A New Formulation of the Maximum Concurrent Flow Problem and Proof of the

Maximum-Concurrent-Flow/Max-Elongation Duality Theorem," Dallas, 1986.

[2] Y. Dong, E. V. Olinick, T. J. Kratz and D. W. Matula, "A Compact Linear Programming Formulation of

the Maximum Concurrent Flow Problem," Networks, pp. 68-87, 2015.

[3] S. Ketabi, "Network optimization with piecewise linear convex costs," Iran J Sci Technol Trans A ,

2006.

[4] I.-L. Wang, "Multicommodity network flows: A survey, part I: Applications and formulations,"

International Journal of Operations Research, vol. 15, no. 4, p. 145–153, 2018.

[5] F. D. Ford L Jr, "A suggested computation for maximal multicommodity network fows.," Management

Sceience, vol. 5, no. 1, pp. 97-101, 1958.

[6] H. TC, "Multicommodity network fows," Oper Res , vol. 11, no. 3, p. 344–360, 1963.

[7] M. &. W. C. Sarrafzadeh, An introduction to VLSI physical design., New York: McGraw Hill, 1996.

[8] I.-L. Wang, "Multicommodity Network Flows: A Survey, Part II: Solution Methods," International

Journal of Operations Research, vol. 15, no. 4, pp. 155-173, 2018.

[9] J. L. Kennington, "A Survey of Linear Cost Multicommodity Network Flows," OPERATIONS RE, vol.

26, no. 2, 1978.

143

[10] K. Salimifard and S. Bigharaz, "The multicommodity network flow problem: state of the art

classification, applications, and solution methods.," Oper Res Int J, 2020.

[11] J. A. Tomlin, "A Linear Programming Model for the Assignment of Traffic," in Proceedings of the Third

Conference of the Australian Road Research Board, Volume 3, Part 1, 263-271,, 1966.

[12] C. C. Swoveland, "Decomposition Algorithms for the Multi-Commodity Distribution Problem," Western

Management Science Institut, University of California, 1971.

[13] M. D. Grigoriadis and W. W. White, "A Partitioning Algorithm for the Multicommodity Network Flow

Problem," Math. Programming , vol. 3, pp. 157-177, 1972.

[14] C. Swoveland, "A Two-Stage Decomposition Algorithm for a Generalized Multi-Commodity Flow

Problem," INFOR, vol. 11, pp. 232-244 , 1973.

[15] H. Chen and C. G. Dewald, " A Generalized Chain Labelling Algorithm for Solving Multicommodity

Flow Problem," Comput. Opns. Res. , vol. 1, pp. 437-465, 1974.

[16] M. Held, P. Wolfe and H. Crowder, "Validation of Subgradient Optimization," Math. Programming, vol.

6, pp. 62-88 , 1974.

[17] J. Kennington, "Solving Multicommodity Transportation Problems Using a Primal Partitioning Simplex

Technique," Naval Research Logistics quarterly , vol. 24, no. 2, pp. 309-325, 1977.

[18] J. Kennington and M. Shalaby, "An Effective Subgradient Procedure for Minimal Cost Multicommodity

Flow Problems," Management Science, vol. 23, no. 9, pp. 994-1004, 1977.

144

[19] J. Castro, "A specialized interior-point algorithm for multicommodity network fows," SIAM J Optim,

vol. 10, no. 3, p. 852–877, 2000.

[20] F. Babonneau, D. M. O and J.-P. Vial, "Solving large-scale linear multicommodity fow problems with

an active set strategy and proximal-ACCPM," Oper Res , vol. 54, no. 1, p. 184–197, 2006.

[21] F. Alvelos and J. Valério de Carvalho, "An Extended Model and a Column Generation Algorithm for the

Planar Multicommodity Flow Problem," Networks, 2007.

[22] W. Dai, J. Zhang and X. Sun, "On solving Multi-Commodity Flow Problems: An experimental

evaluation," Chinese Journal of Aeronautics, 2015.

[23] C. Barnhart, C. Hane and P. Vance, "Using Branch-and-price-and-cut to solve origin-destination integer

multicommodity fow problems," Oper Res, vol. 48, no. 2, p. 318–326, 2000.

[24] M. Gamst, P. Jensen, D. Pisinger and C. Plum, "Two-and three-index formulations of the minimum cost

multicommodity k-splittable flow problem," Eur J Oper Res, vol. 202, no. 1, p. 82–89, 2010.

[25] B. Gendron and M. Larose, "Branch-and-price-and-cut for large-scale multicommodity capacitated fxed-

charge network design," EURO J Comput Optim, vol. 2, no. 1–2, p. 55–75, 2014.

[26] M. Chouman, T. Crainic and B. Gendron, " Commodity representations and cut-set-based inequalities

for multicommodity capacitated fxed-charge network design," Transp Sci, vol. 51, no. 2, p. 650–667,

2016.

[27] B. Gendron and L. Gouveia, "Reformulations by discretization for piecewise linear integer

multicommodity network fow problems," Transp Sci, vol. 51, no. 2, p. 629–649, 2016.

145

[28] A. Balakrishnan, G. Li and P. Mirchandani, "Optimal network design with end-to-end service

requirements," Oper Res, vol. 65, no. 3, p. 729–750, 2017.

[29] M. Mohammadi, P. Jula and R. Tavakkoli-Moghaddam, "Design of a reliable multi-modal

multicommodity model for hazardous materials transportation under uncertainty," Eur J Oper Res , vol.

257, no. 3, p. 792–809, 2017.

[30] M. Oğuz, T. Bektaş and J. Bennell, "Multicommodity fows and Benders decomposition for restricted

continuous location problems," Eur J Oper Res, vol. 266, no. 3, p. 851–863, 2018.

[31] E. Bartolini and M. Schneider, "A two-commodity fow formulation for the capacitated truck-andtrailer

routing problem," Discrete Appl Math , vol. 275, pp. 3-18, 2018.

[32] R. S. Barr, F. Glover, T. Huskinson and G. Kochenberger, "An extreme-point tabu-search algorithm for

fixed-charge network problems," Networks, vol. 77, pp. 322-340, 2021.

[33] R. S. Barr and T. McLoud, "The invisible‐hand heuristic for origin‐destination integer multicommodity

network flows," Networks, 2021.

[34] S. Ketabi, Network design and routing problems with piecewise linear costs, 1997.

[35] Y. Dong, Y. Bai, E. Olinick and A. Yu, "The Backhaul Profit Maximization Problem: Optimization

Models and Solution. https://arxiv.org/abs/2003.12918," 2020. [Online]. Available:

https://arxiv.org/abs/2003.12918.

146

[36] Y. Dong, Y. Bai, E. Olinick and J. Yu, "The Backhaul Profit Maximization Problem: Optimization

Models and Solution Procedures," INFORMS Journal on Optimization, p. Articles in advance, 28 7

2022.

[37] W. B. Powell and Y. Sheffi, "The load planning problem of motor carriers: Problem description and a

proposed solution approach," Transportation Research, vol. General 17.6 , pp. Part A: 471-480., 1983.

[38] K. Lindsey, A. Erera and M. Savelsbergh, "Improved Integer Programming-Based Neighborhood Search

for Less-Than-Truckload Load Plan Design," Transportation Science, vol. 50, no. 4, pp. 1360-1379,

2016.

[39] A. Baubaid, N. Boland and M. Savelsbergh, "The Value of Limited Flexibility in Service Network

Designs.," Transportation Science 55(1):52-74, vol. 55, no. 1, pp. 52-74, 2021.

[40] A. Erera, M. Hewitt, M. Savelsbergh and Y. Zhang, "Improved Load Plan Design Through Integer

Programming Based Local Search," Transportation Science, vol. 47, no. 3, pp. 412-427, 2013.

[41] Y. Bai and E. Olinick, "An Empirical Study of Mixed Integer Programming Formulations of the

Backhaul Profit Maximization Problem," 2019. [Online]. Available:

https://scholar.smu.edu/engineering_management_research/1/.

[42] Y. Dong, X. Tao and J. Zhou, "Optimization of Vehicle Routing and Pricing Model for the Transport

Problem with Backhaul," Modern Transportation Technology, no. 4, pp. 42-45, 2006.

[43] J. Yu and Y. Dong, "Maximizing Profit for Vehicle Routing under Time and Weight Constraints,"

International Journal of Production Economics, vol. 145, no. 2, pp. 573-583, 2013.

147

[44] Y. Dong, "The Stochastic Inventory Routing Problem," 2015. [Online].

[45] C. Miller, A. Tucker and R. Zemlin, "Integer Programming Formulation of Traveling Salesman

Problems," Journal of the ACM, vol. 7, no. 4, pp. 326-329, 1960.

[46] Y. Dong, Interviewee, private communication.. [Interview]. 2019.

[47] M. Desrochers and G. Laporte, "Improvements and Extensions to the Miller-Tucker-Zemlin Subtour

Elimination Constraints," Operations Research Letters, vol. 10, no. 1, pp. 27-36, 1991.

[48] H. Sherali and J. C. Smich, "Improving Discrete Model Representations via Symmetry Considerations,"

Management Science, vol. 47, no. 10, pp. 1396-1407, 2001.

[49] M. Fischetti, J. González and P. Toth, "Solving the Orienteering Problem Through Branch-and-Cut,"

INFORMS Journal on Computing, vol. 10, no. 2, pp. 133-148, 1998.

[50] R. Rardin, Optimization in operations research, second edition, 2017.

[51] R. Rardin and L. .. Wolsey, "Valid inequalities and projecting the multicommodity extended formulation

for uncapacitated fixed charge network flow problems," European Journal of Operational Research,

1993.

[52] R. Rardin, Email communication with Yulan Bai, 2020.

[54] IBM, "CPLEX User’s Manual Version 12 Release 6," [Online]. Available:

https://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.2/ilog.odms.studio.help/pdf/usrcplex.pdf..

[55] "Open Math Reference, Ellipse," [Online]. Available: https://www.mathopenref.com/ellipse.html..

148

[56] J. Kleinberg, Approximation algorithms for disjoint paths problems (Unpublished doctoral dissertation),

1996.

[57] J. Aronson, " A survey of dynamic network flows," Annals of Operations Research, 1989.

[58] A. Assad, "Modelling of rail networks: toward a routing/makeup model.," Transportation Research, p.

101–114, 1980.

[59] B. Golden, "A minimum-cost multicommodity network flow problem concerning imports and exports.,"

Networks, vol. 5, no. 4, p. 331–356..

[60] W. Jewell, " Warehousing and distribution of a seasonal product.," Naval Research Logistics Quarterly,

vol. 4, no. 4, p. 29–34, (1957)..

[61] J. Wardrop, "Some theoretical aspects of road traffic research.," in In Proceeding of the institute of civil

engineers, part ii (Vol. 1, pp. 325–378), (1952)..

[62] C. Albrecht, " Global routing by new approximation algorithms for multicommodity flow.," IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 20, no. 5, p. 622–632.,

2001.

[63] C. Albrecht, "Provably good global routing by a new approximation algorithm for multicommodity

flow.," in international symposium on physical design (pp. 19–25). New York, NY, USA: ACM Press.,

New York, 2000.

149

[64] N. Sensen, "Lower bounds and exact algorithms for the graph partitioning problem using

multicommodity flows.," in In F. M. auf der Heide (Ed. 9th annual european symposium, aarhus,

denmark, august 28-31, 2001 , 2001.

[65] J. Vygen, "Near-optimum global routing with coupling, delay bounds, and power consumption.," in In

D. Bienstock & G. Nemhauser (Eds.), Integer programming and combinatorial optimization,

proceedings of the 10th international conference, 2004.

[66] S. &. W. C. Albers, Minimizing stall time in single and parallel disk systems using multicommodity

network flows., berlin Heidelberg: Springer, 2001.

[67] P. Raghavan, " Integer programming in vlsi design.," Discrete Applied Mathematics,, vol. 40, no. 1, p.

29–43., (1992, Nov)..

[68] T. Crainic, "Service network design in freight transportation.," European Journal of Operational

Research,, vol. 122, no. 2, p. 272–288., 2000.

[69] C. Aikens, " Facility location models for distribution planning.," European Journal of Operational

Research,, vol. 22, no. 3, p. 263–279., (1985)..

[70] L. Gouveia, "Multicommodity flow models for spanning trees with hop constraints.," European Journal

of Operational Research,, vol. 95, no. 1, p. 178–190., 1996.

[71] T. Roughgarden, Selfish routing (Unpublished doctoral dissertation), 2002.

[72] R. Rardin, Yulan Bai qualifying exam package, 2020.

150

[73] Y. Dong, Y. Bai, E. Olinick and A. Yu, "Backhaul profit maximization problem instances," 2019.

[Online]. Available: https://scholar.smu.edu/engineering_management_research/2/.

[74] Y. Dong, X. Tao and J. Zhou, "Optimization of Vehicle Routing and Pricing Model for the Transport

Problem with Backhaul," Modern Transportation Technology, no. 4, pp. 42-45, 2006.

[75] F. Lin and J. Yee, "A new multiplier adjustment procedure for the distributed computation of routing

assignments in virtual circuit data networks," ORSA Journal on Computing, vol. 4, 1992.

[76] R. McBride and J. Mamer, "Solving the undirected multicommodity flow problem using a shortest

pathbased pricing algorithm," Networks, 2001.

[77] C. Barnhart, E. Johnson, C. Hane and G. Sigismondi, "An alternative formulation and solution strategy

for multicommodity network flow problems," Telecommunication Systems, 3,, p. 239–258, 1995.

[78] B. Shepherd and L. Zhang, "A cycle augmentation algorithm for minimum cost multicommodity flows

on a ring," Discrete Applied Mathematics, 2001.

[79] A. Haghani and S.-C. Oh, "Formulation and solution of a multi-commodity, multi-modal network flow

model for disaster relief operations," Transportation research, p. 231–250, 1996.

[80] C. Hane and C. Barnhart, "The fleet assignment problem: solving a large-scale integer program,"

Mathematical Programming, 1995.

[81] T. Crainic, J.-A. Ferland and J.-M. Rousseau, "A tactical planning model for rail freight transportation,"

Transportation Science, vol. 18, no. 2, pp. 165-184, 1984.

151

[82] L. Fleischer and M. Skutella, "The quickest multicommodity flow problem.," in In W. Cook & A. Schulz

(Eds.), Integer programming and combinatorial optimization, Berlin, 2002.

[83] O. Kwon, C. Martland and J. Sussman, "Routing and scheduling temporal and heterogeneous freight car

traffic on rail networks.," Transportation Research Part E: Logistics and Transportation Review, vol.

34, no. 2, pp. 101-115, 1998.

[84] J. Farvolden, W. Powell and I. Lustig, "A primal partitioning solution for the arc-chain formulation of a

multicommodity network flow problem.," Operations Research, vol. 41, no. 4, pp. 669-693, 1993.

[85] M. Bellmore, G. Bennington and Lubore, "A multivehicle tanker scheduling problem.," Transportation

Science, 1971.

[86] C. Barnhart and Y. Sheffi, "A network-based primal-dual heuristic for the solution of multicommodity

network flow problems.," Transportation Science, vol. 27, no. 2, p. 102–117, 1993.

[87] A. Ali, D. Barnett, K. Farhangian, J. Kennington, B. Patty, B. Shetty, B. McCarl and P. Wong,

"Multicommodity network problems: Applications and computations.," IIE Transactions, vol. 16, no. 2,

p. 127–134, 1984.

[88] P. Cappanera and G. Gallo, "On the airline crew rostering problem," 2001.

[89] D. Barnett, J. Binkley and B. McCarl, "Port elevator capacity and natioinal and world grain shipments.,"

Western Journal of Agricultural Economics, p. 77–84., 1984.

[90] E. Köhler, R. Möhring and M. Skutella, "Traffic networks and flows over time (Tech. Rep. No. 752-

2002).," Berliner Mathematishe Gesellschaft., 2002.

152

[91] A. Aggarwal, M. Oblak and R. Vemuganti, "A heuristic solution procedure for multicommodity integer

flows.," Computers & Operations Research, vol. 22, no. 10, p. 1075–1087, 1995.

[92] S. D’Amours, B. Montreuil and F. Soumis, "Price-based planning and scheduling of multiproduct orders

in symbiotic manufacturing networks.," European Journal of Operational Research, vol. 96, no. 1, p.

148–166., 1996.

[93] L. LeBlanc, E. Morlok and W. Pierskalla, "An efficient approach to solving the road network

equilibrium traffic assignment problem.," Transportation Research, vol. 9, no. 5, p. 309–318., 1975.

[94] J. Hu and S. Sapatnekar, "A survey on multi-net global routing for integrated circuits.," Integration, the

VLSI Journal, vol. 31, no. 1, p. 1–49., 2001.

[95] R. Carden and K. C. Cheng, "A global router using an efficient approximate multicommodity

multiterminal flow algorithm.," in In 28th acm/ieee design automation conference (pp. 316–321).

ACM/IEEE., 1991.

[96] S. Albers, N. Garg and S. Leonardi, "Minimizing stall time in single and parallel disk systems.," Journal

of the ACM, vol. 47, no. 6, p. 969–986., 2000.

[97] M. Ferris, A. Meeraus and T. Rutherford, "Computing wardropian equilibria in a complementarity

framework.," Optimization Methods and Software,, vol. 10, no. 5, p. 669–685., 1999.

[98] A. Geoffrion and G. Graves, "Multicommodity distribution system design by benders decomposition.,"

Management Science, vol. 20, no. 5, p. 822–844., 1974.

153

[99] B. Gendron, T. Crainic and A. Frangioni, Multicommodity capacitated network design. In P. Soriano &

B. Sansò (Eds.),, Boston: Telecommunications network planning. Boston: Kluwer Academic Publisher,

1999.

[100] D. Bienstock, S. Chopra, O. Günlük and C.-Y. Tsai, "Minimum cost capacity installation for

multicommodity network flows.," Mathematical Programming,, Vols. 81(2, Ser. B),, p. 177–199., 1998.

[101] T. Crainic, M. Gendreau, P. Soriano and e. al., "A tabu search procedure for multicommodity

location/allocation with balancing requirements.," Ann Oper Res, vol. 41, p. 359–383, 1993.

[102] V. Gabrela, A. Knippelb and M. Minoux, "Exact solution of multicommodity network optimization

problems with general step cost functions.," Operations Research Letters,, vol. 25, no. 1, p. 15–23.,

1999.

[103] D. Bienstock and O. Günlük, "Computational experience with a difficult mixed-integer multicommodity

flow problem.," Mathematical Programming,, Vols. 68(2, Ser. A),, p. 213–237, 1995.

[104] T. Crainic, P. Dejax and L. Delorme, "Models for multimode multicommodity location problems with

interdepot balancing requirements.," Models for multimode multicommodity location problAnn Oper

Res, vol. 18, p. 277–302 (, 1989.

[105] D. Bienstock and G. Muratore, "Strong inequalities for capacitated survivable network design

problems.," Mathematical Programming, vol. 89, p. 127–147., 2000.

[106] B. Bourbeau, T. Crainic and B. Gendron, "Branch-and-bound parallelization strategies applied to a depot

location and container fleet management problem.," Bourbeau, B., Crainic, T., & Gendron, B. (2000).

Branch-and-bound parallelization stra Parallel Computing, vol. 26, no. 1, p. 27–46., 2000.

154

[107] A. Girard and B. Sansò, "Multicommodity flow models, failure propagation, and reliable loss network

design.," IEEE/ACM Transactions on Networking, vol. 6, no. 1, p. 82–93., 1998.

[108] T. Crainic, L. Delorme and P. Dejax, "A branch-and-bound method for multicommodity location with

balancing requirements.," Crainic, T., Delorme, L., & Dejax, P. (1993). A branch-and-bound method for

European Journal of Operational Research, vol. 65, no. 3, p. 368–382., 1993.

[109] B. Gendron and T. Crainic, "A parallel branch-and-bound algorithm for multicommodity location with

balancing requirements.," Gendron, B., & Crainic, T. (1997). A parallel branch-and-bound

algComputers & Operations Research, vol. 24, no. 9, p. 829–847, 1997.

[110] J.-F. Maurras and Y. Vaxès, "Multicommodity network flow with jump constraints.," Discrete

Mathematics, pp. 165-166, 481–486., 1997.

[111] D. Bienstock and I. Saniee, "Atm network design: traffic models and optimization-based heuristics.,"

Telecommunication Systems - Modeling, Analysis, Design and Management, p. 399–421., 2001.

[112] M. Hadjiat, J. Maurras and Y. Vaxes, "A primal partitioning approach for single and non-simultaneous

multicommodity flow problems," European Journal of Operational Research, vol. 123, no. 2, pp. 382-

393, 2000.

[113] P. Klein, A. Agrawal, R. Ravi and S. Rao, "Approximation through multicommodity flow.," in 31th

annual ieee symposium on foundations of computer science (Vol. 2, pp. 726–737). IEEE, 1990.

[114] P. Klein, S. Rao, A. Agrawal and R. Ravi, "An approximate max-flow min-cut relation for undirected

multicommodity flow, with applications," Combinatorica, 1995.

155

[115] F. Leighton and S. Rao, "An approximate max-flow min-cut theorem for uniform multicommodity flow

problems with applications to approximation algorithms," in In Proceedings of the 29th annual ieee

symposium on foundations of computer IEEE, 1988.

[116] T. Leighton and S. Rao, "Leighton, T., & Rao, S. (1999, Nov). Multicommodity max-flow min-cut

theorems and their use in designing approximation algorithms," Journal of the ACM, vol. 46, no. 6, p.

787–832., 1999.

[117] [Online]. Available: http://groups.di.unipi.it/optimize/Data/MMCF.html#NetDesMMCF.

[118] M. N. S. Hewitt, "Combining Exact and Heuristic Approaches for the Capacitated Fixed-Charge

Network Flow Problem," INFORMS Journal on Computing, vol. 22, no. 2, pp. 314-325, 2010.

[119] Y. Bai and E. Olinick, "A Composite Index Method for Optimization Benchmarking," in LION 16,

Milos, Greece, 2022.

	COMPACT FORMULATION OF MULTICOMMODITY NETWORK FLOWS WITH APPLICATIONS TO THE BACKHAUL PROFIT MAXIMIZATION PROBLEM AND FIXED CHARGE NETWORK FLOW PROBLEM
	Recommended Citation

	tmp.1671642782.pdf.8Zriy

