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      The triples formulation is a compact formulation of multicommodity network flow problems 

that provides a different representation of flow than the traditional and widely used node-arc and 

arc-path approaches. In the literature, the triples formulation has been applied successfully to the 

maximum concurrent flow problem and to a network optimization problem with piecewise linear 

convex costs. This dissertation applies the triples formulation to the backhaul profit maximization 

problem (BPMP) and the fixed charge network flow problem (FCNF). It is shown that the triples 

representation of multicommodity flow significantly reduces the number of variables and 

constraints in the mixed integer programming formulations of the BPMP and FCNF. For the 

BPMP, this results in significantly faster solution times. For dense problem instances, the triples-

based formulation of FCNF is found to produce better solutions than the node-arc formulation 

early in the branch-and-bound process.  This observation leads to an effective hybrid method which 
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combines the respective advantages of the smaller size of the triples formulation and the stronger 

linear programming relaxation of the node-arc formulation. In addition to empirical studies, the 

dissertation presents new theoretical results supporting the equivalence of the triples formulation 

to the node-arc and arc-path formulations. 

      The dissertation also proposes a multi-criteria Composite Index Method (CIM) to compare the 

performance of alternative integer programming formulations of an optimization problem. Using 

the CIM, the decision maker assigns weights to problem instance sizes and multiple performance 

measures based on their relative importance for the given application. The weighting scheme is 

used to produce a single number that measures the relative improvement of one alternative over 

the other and provides a method to select the most effective approach when neither one dominates 

the other when tested on different sizes of problem instances.  The dissertation demonstrates a 

successful application of the CIM to evaluate a series of eleven techniques for improving the node-

arc and triples formulations of the BPMP previously proposed in the literature. 
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CHAPTER 1                                                                                                                   

MULTICOMMODITY NETWORK FLOWS  

 

Introduction 

        Multicommodity network flows are flows consisting of more than one commodity. While one 

commodity flow, also best known as single commodity flow, has been studied widely in the 

literature, multicommodity flows leave more space to be explored due to being relatively more 

complex. An interesting niche lies in the formulation. Apart from the two well-known standard 

multicommodity formulations, the node-arc formulation and the arc-path formulation, there is a 

little-known formulation, called the triples formulation.  The triples formulation originated about 

thirty years ago [1], but first appeared in a refereed journal publication about five years ago [2] (it 

appeared as the “overflow model” about ten plus years ago [3]). We think that, like a raw jade, the 

beauty of triples formulation was neglected and should be mined more profoundly. That is the 

major theme of this dissertation: to find more applicable and favorable scenarios for the triples 

formulation in multicommodity network flow problems.   

1.1 Multicommodity Network Flow Problem Description and Formulations 

1.1.1 Problem Description 

     The multicommodity network flow problem is defined as seeking optimal flow in a network 

while satisfying multicommodity demands and not violating the arc capacity constraints and 

possible other side constraints. In the real world, the commodities can be physical goods, such as 

parcels, packages, vehicles, etc.; they can also be intangible entities such as telecommunication 
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signals, data, etc. These commodities need to be transmitted via a common network from their 

source nodes to their sink nodes. Most of the time, these commodities have to interact with each 

other in some way, such as not exceeding the total arc capacity limit when appearing on the same 

arc at the same time, with the objective of minimizing the total cost or maximizing the total profit.    

1.1.2 Problem Formulations 

      There are two standard multicommodity formulations, node-arc formulation and arc-path 

formulation. 

1.1.2.1 Notation Common to Both formulations 

 

Sets and parameters 

𝐺 = (𝑁, 𝐴) The network 

𝑁 The set of all nodes in 𝐺 

𝐴 The set of all arcs in 𝐺 

𝐻 The set of all commodities  

𝑠ℎ The source or origin of commodity ℎ ∈ 𝐻 

𝑡ℎ The terminal or destination of commodity ℎ ∈ 𝐻 

𝑐𝑖𝑗
ℎ  Per unit flow cost on arc (𝑖, 𝑗) of commodity ℎ ∈ 𝐻 

 𝑑ℎ  The total demand units of commodity ℎ ∈ 𝐻 

𝑏𝑖
ℎ The supply/demand at node 𝑖 of commodity ℎ  

            (𝑏𝑖
ℎ  =  𝑑ℎ if  𝑖  =  𝑠ℎ, 𝑏𝑖

ℎ  =   − 𝑑ℎ if  𝑖  =  𝑡ℎ, and 𝑏𝑖
ℎ  =  0 otherwise). 

 

𝑢𝑖𝑗 The arc capacity on arc (𝑖, 𝑗) 

  



 

3 

 

 

1.1.2.2 Node-Arc Formulation 

Decision variables  

𝑥𝑖𝑗
ℎ  The flow on arc (𝑖, 𝑗) of commodity ℎ 

Objective  

                                     min ∑ ∑ 𝑐𝑖𝑗
ℎ 𝑥𝑖𝑗

ℎ
(𝑖,𝑗)∈𝐴ℎ∈𝐻                                                                              (1.1) 

Subject to 

∑ 𝑥𝑖𝑗
ℎ

(𝑖, 𝑗)∈𝐴 −  ∑ 𝑥𝑗𝑖
ℎ =  𝑏𝑖

ℎ
(𝑗, 𝑖)∈𝐴   ∀ 𝑖 ∈ 𝑁, ∀ ℎ ∈ 𝐻                                  (1.2) 

∑ 𝑥𝑖𝑗
ℎ

ℎ∈𝐻   ≤ 𝑢𝑖𝑗  ∀ (𝑖, 𝑗) ∈ 𝐴                                                                       (1.3) 

𝑥𝑖𝑗
ℎ ≥ 0  ∀ (𝑖, 𝑗) ∈ 𝐴 , ∀ ℎ ∈ 𝐻                                                                     (1.4) 

Formulation explanation  

    The objective function (1.1) minimizes the total cost, which is equal to the summation of the 

cost incurred by each commodity traversing each arc. Constraints (1.2) are node balance 

constraints ensuring that for each node and each commodity the total outgoing flow minus the total 

incoming flow is equal to the supply/demand of that node for that commodity; it is worthwhile to 

note that the supply/demand is zero if 𝑖 is not equal to 𝑠ℎ or 𝑡ℎ, and 𝑏𝑠ℎ
ℎ = −𝑏𝑡ℎ

ℎ = 𝑑ℎ. Constraints 

(1.3) state that for each arc the total flow for all commodities should be less than or equal to the 

arc capacity. Constraints (1.4) are to ensure non-negative arc flows. 
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1.1.2.3 Arc-Path formulation             

Sets and parameters 

𝑃ℎ The set of all directed paths from source node 𝑠ℎ to sink node 𝑡ℎ  of commodity ℎ 

𝛿𝑖𝑗(𝑝)  Arc-path indicator, equals 1 if arc (𝑖, 𝑗) is contained in path 𝑝 and 0 otherwise  

𝑐ℎ(𝑝)  Per unit cost of flow on path 𝑝 for commodity ℎ 

 

Decision variables 

 

𝑓(𝑝)  The units of flow on path 𝑝 ∈ 𝑃ℎ of commodity ℎ 

 

Objective  

 

min ∑ ∑ 𝑐ℎ(𝑝) 𝑓(𝑝) 𝑝∈𝑃ℎℎ∈𝐻                                                                                                      (1.5) 

Subject to 

∑ ∑ 𝛿𝑖𝑗(𝑝)𝑓(𝑝) 𝑝∈𝑃ℎℎ∈𝐻 ≤ 𝑢𝑖𝑗  
              ∀ (𝑖, 𝑗) ∈ 𝐴                                                                  (1.6) 

∑ 𝑓(𝑝)𝑝∈𝑃𝑘 = 𝑑ℎ                                    ∀ ℎ ∈  𝐻                                                                      (1.7) 

𝑓(𝑝)  ≥ 0           ∀ ℎ ∈  𝐻, ∀ 𝑝 ∈  𝑃ℎ                                                    (1.8) 

Formulation explanation  

      The objective function (1.5) minimizes the total cost, which is equal to the summation of the 

cost incurred by the flow on each commodity path. Constraints (1.6) state that for each arc the total 

flow for all commodity paths should be less than or equal to the arc capacity. Constraints (1.7) are 

demand constraints for each commodity.  Constraints (1.8) are to ensure non-negative path flows. 
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1.1.2.4 Comparison of Node-Arc and Arc-Path formulations          

     Problem size comparison [4]: The node-arc formulation has |𝐻||𝐴| variables and |𝑁||𝐻| + |𝐴| 

nontrivial constraints; while the arc-path formulation has ∑ |𝑃ℎ|ℎ∈𝐻  variables and |𝐻| + |𝐴|  

nontrivial constraints. Many applications regard origin-destination (OD) pairs as commodities; so 

the number of commodities |𝐻| can be as large as |𝑁|2 − |𝑁 | in the worst case. Under such 

circumstances, the node-arc formulation will have  𝑂(|𝑁|3) constraints. Even in the worst case, 

the arc-path formulation has 𝑂(|𝑁|2) constraints. Therefore, the node-arc formulation is suitable 

for problems of smaller size, whereas the arc-path formulation with column generation techniques 

can deal with large-scale problems. 

1.2 Literature Review 

    Since the introduction of the multicommodity network flow problems about 70 years ago by 

Ford and Fulkerson [5] and Hu [6], great progress has been made both in identifying a diversity of 

applications and effective solving methods. Applications can be categorized into network routing 

problems and network design problems [4] [7]; and network routing problems can be further 

divided into message routing in telecommunication, scheduling and routing in logistics and 

transportation, production scheduling and planning, and other routing problems. Solution methods 

include basis partitioning methods, resource-directive methods, price-directive methods, primal-

dual methods, approximation methods, interior-point methods, and convex programming methods, 

etc. [8].  

   Table 1.1 summarizes four major surveys [4] [8] [9] [10] covering over 500 papers published in 

the past 70 years. Table 1.2 is a representative summary of computational results of linear cost 

multicommodity network flow problems based on the Kennington’s [9] survey table I.  Table 1.3 
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is a representative summary of computational results of mixed integer multicommodity network 

flow problems. 

Table 1. 1 Major multicommodity network flow surveys 

 

Survey Number of Papers Years Spanning 

Kennington (1978) [9] 86 1952 1977 

Wang I (2018) [4] 65 1980 2018 

Wang II (2018) [8] 140 1978 2005 

Salimifard & Bigharaz (2020) [10] 266 2000 2020 

Total 557 1952 2020 
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Table 1. 2 Some computational results of linear multicommodity network flow problems 

 

No. Reference  Problem type 
Solution 

technique 
|N|/|A|/|K| 

Problem size for 

corresponding LP 
Machine 

Time 

(sec) 

No. of 

Rows  

No. of 

Columns 
 

1 
Tomlin 

(1966) [11] 
Minimal cost 

price-directive 

decomposition 
NR 

        

3,226  

          

4,788  
CDC3600 144 

2 
Swoveland 

(1971) [12] 

distribution 

problem 

price-directive 

decomposition 
NR 

        

3,011  

          

4,704  
IBM 360/67 608 

3 
Grigoriadis  

(1972) [13] 

multicommodity 

transportation 

partitioning (dual 

simplex) 
NR 

           

309  

          

1,078  
IBM 360 NR 

4 
Swoveland 

(1973) [14] 

distribution 

problem 

price-directive 

decomposition 
15/48/210 

        

3,438  

        

10,080  
IBM 360/67 383 

5 
Chen  

(1974) [15] 
maximal flow 

price-directive 

decomposition 
50/200/20 

        

1,200  

          

4,000  
CDC 6400 190 

6 
Held 
(1974) [16] 

maximal flow 
resource-directive 
decomposition 

30/870/10 
        

1,170  
          

8,700  
NR NR 

7 
Kennington 

(1977) [17] 

multicommodity 

transportation 

partitioning 

(primal  simplex) 
13/13/13 

           

507  

          

2,704  
CDC Cyber 72 1,536 

8 
Kennington 

(1977) [18] 

multicommodity 

transportation 

resource-directive 

heuristic 
12/12/2,012 

           

432  

          

2,160  
CDC Cyber 72 370 

9 
Castro 

(2000) [19] 

Minimal cost of 

multicommodity 
flow problem 

specialized 

interior-point 
algorithm 

13,366/49,742/11 2.E+05 7.E+05  Sun/Ultra2 2200 17,222 

10 
Babonneau 

(2006) [20] 

linear 

multicommodity 
flow problem 

partial Lagrangian 

relaxation 

13,389/40,003/ 

1,151,166 
2.E+10 5.E+10 

Pentium 4, 2.8 

GHz, 2 Gb  
619 

11 
Alvelos 
(2007) [21] 

planar 

multicommodity 

flow problem 

column generation 
algorithm 

600/2,400/1,800 1.E+06 4.E+06 
Pentium 4, 2 
GHz, 1 GB 

34 

12 
Dong 

(2015) [2] 

Maximum 
Concurrent 

Flow Problem 

dual simplex 

method and 

interior point 
method 

120/1,012/1,801 1.E+05 7.E+03 
Dell R710, 

3.4GHz , 96GB  
159 

13 
Dai (2015) 
[22] 

Multi-

commodity flow 

problems 

column 

generation;   
Lagrangian 

relaxation 

183/2,995/4,552 8.E+05 1.E+07 NR 4,481 
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Table 1. 3 Some computational results of mixed integer multicommodity network flow problems 

No

. 
Reference  

Problem 

type 

Solution 

technique 
|N|/|A|/|K| 

Problem size for 

corresponding LP 

Machine 

Sof

twa

re 

Heurist

ic gap 

(%) 

Time 

(sec) 
No. of 

Rows  

No. of 

Colum

ns 

1 
Barnhart 

(2000) [23] 

OD integer 
multicommo

dity flow 

column-

generation,br

anch-and-
price-and-cut 

50/130/585 69 5830 
IBM 

RS6000/590 

MINT

O 2.1 
and 

CPLE

X 3.0. 

- 3600 

2 
Gamst 

(2010) [24] 

minimum 
cost 

multicommo

dity k-
splittable 

flow 

branch-and-

price 

150/850/223

9 
NR NR 

 2.66 GHz 
Intel Xeon 8 

GB 

CPLE
X 

10.2 

NR NR 

3 
Gendron 

(2014) [25] 

multicommo
dity 

capacitated 

fixed-charge 
network 

design 

branch-and-

price-and-cut 
100/700/400 NR NR 

 Intel Xeon 
X5660 2.80 

GHz 

CPLE
X 

12.3 

NR NR 

4 
Chouman  

(2016)  [26] 

multicommo
dity 

capacitated 

fixed-charge 
network 

design 

cut-set-based 

inequalities 

in a cutting-
plane 

30/700/400 NR NR 

Dual-Core 

AMD Opteron 

(single thread)  
8 GB  

CPLE

X 12 
17.67 7.8 

5 
Gendron 

(2016) [27] 

Piecewise 

Linear 
Integer 

Multicommo

dity Network 

Flow 

discretization 25/150/100 NR NR 

Intel Xeon 
X5675, 3.07 

GHz, single-

thread 

CPLE
X 

12.5.1

.0 

1 353 

6 

Balakrishna

n (2017) 

[28] 

Minimal cost 

of network 

design 

polyhedral 80/320/240 2.E+05 8.E+04 
Intel Core i5  

4 GB 

 

CPLE
X  

12.5.1  

2.4 166 

7 

Mohammad

i (2017) 

[29]  

hazardous 

material 
transportatio

n 

integration 

of chance-
constrained 

programing 

with a 
possibilistic 

programing 

70/NA/NA NR NR NR 
GAM

S 
NR 3723 

8 
Oğuz 

(2018) [30] 

restricted 
continuous 

facility 

location 

Benders 

decompositio
n 

NR/NR/72 1.E+09 1.E+06 

 IRIDIS 4 dual 

2.6 GHz Intel 
64 GB 

CPLE

X 
12.5 

0 119.6 

9 
Bartolini 

(2018) [31] 

capacitated 

truck-and-

trailer 
routing 

 branch-and-

cut 
31/NR/2 NR NR 

Intel Core i7-

3770, 3.40 

GHz 16 GB 

CPLE

X 

12.7 

0 NR 

10 
Barr (2021) 

[32] 
fixed-charge 
network flow 

 Ghost Image 

with Tabu 

search 

5000/100000
/1 

1.E+05 1.E+05 

Dell R720 

Dual Six Core 

Intel Xeon @ 
3.5 GHz ,252 

GB,single-

thread 

CPLE

X 

12.8 

NR 23.56 

11 
Barr (2021) 

[33]  

Origin-
destination 

integer 

multicommo
dity flow 

 Invisible-

Hand 

Heuristic 

1920/23040/
106338 

2.E+08 
2.5E+0

9 

Dell R720 

Dual Six Core 

Intel Xeon @ 
3.5 GHz ,252 

GB,single-

thread 

CPLE

X 
12.6.0

.0 

NR 3200 
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       From Table 1.2, we can see that the scale of multicommodity flow LP’s that researchers 

attempt to solve has grown by multiple orders of magnitude since the 1970s. The number of nodes, 

arcs, and commodities in the tested LP instances grew from the tens to tens of thousands, and in 

the case of arcs, to more than 1 million.  From Table 1-3, we can see that the scale of 

multicommodity-flow-based MIPs has grown from tens of arcs, and hundreds of nodes and 

commodities in 2000 [23] to thousands of nodes and arcs, and hundreds of thousands of 

commodities in recent years. Our hope is that by adopting the triples formulation we can achieve 

an even greater increase in scale. 

1.3 The Triples Formulation 

1.3.1 The History of Triples 

      In 1986, the triples concept was first introduced in a formulation of the maximum concurrent 

flow problem (MCFP) by Matula in an unpublished manuscript [1]. In 1997, Ketabi applied the 

same concept to multicommodity flow in complete and undirected graphs,  but called it “overflow” 

in her Ph.D. thesis [34]. In 2006, Ketabi published the first peer-reviewed paper employing the 

triples concept [3]. Ketabi’s computational study showed that the revised simplex method solved 

the triples model at an average of about three times faster than the arc-path model. In 2015, it was 

rigorously proved by Dong et al. that the triples formulation was equivalent to the traditional edge-

path and node-edge formulation for the maximum concurrent problem [2]. This was an important 

contribution because it provided the first proof of equivalence between the triples and standard 

formulations.  Dong et al. found that CPLEX solved nearly 90% of the MCFP instances in their 

study faster with the triples formulation than with either the node-arc or arc-path formulations, and 

solved dense instances up to 10 times faster with the triples than with the traditional formulations.  
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In March 2020, Dong et al. posted a computational study comparing a node-arc and triples-based 

formulation of the backhaul profit maximization problem (BPMP) on arXiv  [35]. The study was 

subsequently accepted for publication in the INFORMS Journal On Optimization and published 

online on July 28, 2022 [36] . In summer 2020, Rardin, Bai and Olinick applied the triples concept 

to the fixed charge network flow problems (FCNF) and achieved some promising results. It should 

be noted that Powell and Sheffi [37] described an optimization problem involving the fundamental 

triples concept 1983. But as described in the next section, Matula’s 1986 manuscript appears to be 

the first to use that concept to derive a formulation for multicommodity flow. 

1.3.2 The Essence of Triples 

      In the node-arc and arc-path formulations, the primary decision variables represent the amount 

of flow of a particular commodity on a given arc or on an entire path, respectively. In the triples 

formulation, the primary decision variables are defined for node triples (i, j, k) where i, j, and k are 

distinct nodes and (i, k) is an arc in A, and 𝑗 is a destination node, that represent the total amount 

of flow sent from node 𝑖 destined to node 𝑗 along the set of paths composed of direct arc (i, k) 

followed by a path from node k to node j.  Note that the triples formulation of the multicommodity 

flow problem use the notation in 1.1.2 and the following additional notations: 

Sets and parameters 

𝐴̅ = {(𝑖, 𝑗): 𝑖 ≠  𝑗, 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, (𝑖, 𝑗)  ∉ 𝐴}                                         The set of virtual arcs 

𝜃𝑖𝑗                                     The total flow on arc (𝑖, 𝑗) 

𝐷 = {𝑡ℎ: ℎ ∈ 𝐻}             The set of all terminal/destination nodes 

𝑑𝑖𝑗           The demand from node 𝑖 to node 𝑗 (i.e., 𝑑𝑠ℎ𝑡ℎ
=  𝑑ℎ for commodity ℎ ∈  𝐻) 

𝑇 = {(𝑖,  𝑗,  𝑘):  𝑖 ∈ 𝑁,  𝑗 ∈ 𝐷\{𝑖}, 𝑘 ∈ 𝑁\{ 𝑖,  𝑗}, (𝑖, 𝑘) ∈ 𝐴}              The set of node triples 



 

11 

 

Decision variables 

𝑧𝑖𝑗
𝑘 ≥ 0  ∀(𝑖, 𝑗, 𝑘) ∈ 𝑇                           Triples variables 

For convenience, we define  𝑢𝑖𝑗 = 0 for (𝑖, 𝑗) ∈ 𝐴̅. Also, we use the term arc to refer to the 

ordered node pair (𝑖, 𝑗) even when (𝑖, 𝑗) is a virtual arc. 

Representing flow with Triples  

    The triples formulation is based on a description of flow where triples variable 𝑧𝑖𝑗
𝑘  for node triple 

(𝑖, 𝑗, 𝑘) represents the total flow on all paths from node 𝑖 to node 𝑗 with arc (𝑖, 𝑘) as the first arc. 

When 𝑧𝑖𝑗 
𝑘 is positive, we say that 𝑧𝑖𝑗

𝑘  units of flow from node 𝑖 to node 𝑗 are diverted through node 

𝑘. It is important to note that variable 𝑧𝑖𝑗
𝑘  does not specify how the flow travels from node 𝑘 to 

node 𝑗, and that flow that is not diverted (i.e., direct flow) is represented implicitly; that is, there 

is no variable in the triples formulation that explicitly represents the amount of flow from node 𝑖 

to node 𝑗 sent on arc (𝑖, 𝑗). Nodes 𝑖, 𝑗, and 𝑘 in triple (𝑖, 𝑗, 𝑘) ∈ 𝑇  correspond to the “from”, “to”, 

and “via” nodes, respectively. 

    Figure 3 illustrates the calculation of the total flow on arc (𝑖, 𝑗), which can be derived from the 

triples variables as follows:  

(1) Demand from node 𝑖 to node 𝑗 puts 𝑑𝑖𝑗 units of flow on arc (or virtual arc) (𝑖, 𝑗).  

(2) 𝑧𝑖𝑘
𝑗

 units of flow are diverted off arc (𝑖, 𝑘) onto arc (𝑖, 𝑗) (and paths from 𝑗 to 𝑘). 

(3) 𝑧𝑘𝑗
𝑖  units of flow are diverted off arc (𝑘, 𝑗) onto arc (𝑘, 𝑖) and paths from 𝑖 to 𝑗, including arc 

(𝑖, 𝑗) itself as a single-arc path.  

(4) 𝑧𝑖𝑗
𝑘  units of flow are diverted off arc (𝑖, 𝑗) onto arc (𝑖, 𝑘) and paths from node 𝑘 to node 𝑗.  

Therefore, the total flow on arc (𝑖, 𝑗) is: 

𝜃𝑖𝑗 = 𝑑𝑖𝑗 + ∑ 𝑧𝑖𝑘
𝑗

{𝑘∈𝑁:(𝑖,𝑘,𝑗)∈𝑇} + ∑ 𝑧𝑘𝑗
𝑖

{𝑘∈𝑁:(𝑘,𝑗,𝑖)∈𝑇} − ∑ 𝑧𝑖𝑗
𝑘

{𝑘∈𝑁:(𝑖,𝑗,𝑘)∈𝑇}   .            (1.9) 



 

12 

 

 

Figure 1 Four Scenarios for Flow on arc (𝑖, 𝑗) with Triples Variables. 

 

Arc (𝑖, 𝑗) is represented in solid black. Flow diversions contributing to the net flow on (𝑖, 𝑗) are 

represented in red with dashed arcs representing flow along paths between the end points.  

The triples formulation of multicommodity flow (for the special case where the cost per unit 

flow on arc (𝑖, 𝑗) is the same for all commodities) is: 

Objective 

min ∑  𝑐𝑖𝑗 𝜃𝑖𝑗(𝑖, 𝑗) ∈𝐴             (1.10) 

Subject to 

𝜃𝑖𝑗 = 𝑑𝑖𝑗 + ∑ 𝑧𝑖𝑘
𝑗

{𝑘∈𝑁:(𝑖,𝑘,𝑗)∈𝑇} + ∑ 𝑧𝑘𝑗
𝑖

{𝑘∈𝑁:(𝑘,𝑗,𝑖)∈𝑇} − ∑ 𝑧𝑖𝑗
𝑘

{𝑘∈𝑁:(𝑖,𝑗,𝑘)∈𝑇}     ∀(𝑖, 𝑗) ∈ 𝐴  ∪ 𝐴̅    (1.11) 

𝜃𝑖𝑗 ≤ 𝑢𝑖𝑗     ∀(𝑖, 𝑗) ∈ 𝐴  ∪ 𝐴̅            (1.12) 

𝜃𝑖𝑗 ≥ 0       ∀(𝑖, 𝑗) ∈ 𝐴 ∪ 𝐴̅            (1.13) 

𝑧𝑖𝑗
𝑘 ≥ 0        ∀ (𝑖, 𝑗, 𝑘) ∈ 𝑇           (1.14) 

The objective function (1.10) minimizes the total cost, which is equal to the summation of the 

cost incurred by the total flow on each arc. Constraints (1.11) state the relationship between arc 

flow, node pair demand, and triples. Constraints (1.12) state that for each arc the total arc flow 

should be less than or equal to the arc capacity. Constraints (1.13) are to ensure non-negative arc 

flows. Constraints (1.14) are to ensure non-negative triples flows. 
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It should be noted that the concept of flow diversion in the derivation of the triples formulation 

models a routing policy of using load plans in freight consolidation. As described in [38] [39] [40] 

[37], a load plan is essentially a binary triples variable that indicates whether or not flow from 

source node 𝑖 to sink node 𝑗 is diverted through intermediate node 𝑘. Typically, models in the 

node-plan literature constrain ∑ 𝑧𝑖𝑗
𝑘

𝑘 =  1 so that all flow from 𝑖 to 𝑗 is diverted through the same  

𝑘. This results in a routing plan in which all flow destined to a given source node 𝑗 is routed along 

an in-tree with node 𝑗 as the root, which is a practice used to simplify operations in the freight 

consolidation industry. In the context of this dissertation, this way of using triples is a heuristic for 

solving a particular type of multicommodity flow problem. 

  
Proof of node balance in the triples formulation 

     For the maximum concurrent flow problem, Dong et al. [2] describe algorithms that derive an 

equivalent solution to the arc-path formulation from the triples formulation, and vice versa.  Here 

we show that the triples constraints imply that the total flow at node 𝑖 is balanced. That is, 

∑ θ𝑖𝑗𝑗∈𝑁∖{𝑖} −   ∑ θ𝑗𝑖𝑗∈𝑁∖{𝑖} = ∑ 𝑑𝑖𝑗𝑗∈𝑁∖{𝑖}   −   ∑ 𝑑𝑗𝑖𝑗∈𝑁∖{𝑖} . 

Observe that for all (𝑖, 𝑗, 𝑘)  ∈  𝑇, triples variable zij
k appears in exactly three triples constraints: it 

has coefficient +1 in the constraints for (𝑖, 𝑘) and (𝑘, 𝑗) and coefficient -1 in the constraint for 

(𝑖, 𝑗). Now, consider the total flow going out of node 𝑖,  ∑ 𝜃𝑖𝑗𝑗∈𝑁∖{𝑖} .  From the observation above, 

triples variable 𝑧𝑖𝑗
𝑘  appears twice in the summation of the triples constraints corresponding to 

∑ 𝜃𝑖𝑗𝑗∈𝑁∖{𝑖} : the triples constraint for arc (𝑖, 𝑗) contributes −𝑧𝑖𝑗
𝑘  to the summation and the triples 

constraint for arc (𝑖, 𝑘) contributes 𝑧𝑖𝑗
𝑘 .  Likewise, arc (𝑖, 𝑗) contributes 𝑧𝑖𝑘

𝑗
 to the summation and 

the triples constraint for arc (𝑖, 𝑘) contributes −𝑧𝑖𝑘
𝑗

 . Thus, all triples variables of the form 𝑧𝑖𝑗
𝑘  or 
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𝑧𝑖𝑘
𝑗

 are cancelled out in the summation. This implies that the total flow going out of node 𝑖 is given 

by  ∑ θ𝑖𝑗𝑗∈𝑁∖{𝑖} = ∑ 𝑑𝑖𝑗𝑗∈𝑁∖{𝑖} + ∑ ∑ 𝑧𝑖
𝑣1𝑣2𝑣2∈𝑁∖{𝑖,𝑣1}𝑣1∈𝑁∖{𝑖} . 

By a similar argument, the total flow going into node 𝑖 is given by 

 ∑ θ𝑗𝑖𝑗∈𝑁∖{𝑖} = ∑ 𝑑𝑗𝑖𝑗∈𝑁∖{𝑖} + ∑ ∑ 𝑧𝑣1𝑣2
𝑖

𝑣2∈𝑁∖{𝑖,𝑣1}𝑣1∈𝑁∖{𝑖} . 

Therefore ∑ θ𝑖𝑗𝑗∈𝑁∖{𝑖} −   ∑ θ𝑗𝑖𝑗∈𝑁∖{𝑖} = ∑ 𝑑𝑖𝑗𝑗∈𝑁∖{𝑖}   −   ∑ 𝑑𝑗𝑖𝑗∈𝑁∖{𝑖}  as required for flow balance 

at node 𝑖. 

    The rest of this dissertation is structured as follows. In Chapter 2, we give a complete description 

of the BPMP results summarized in [35], and propose a new framework for multi-criteria 

performance evaluation of competing approaches to solving mixed integer programming 

problems, the Composite Index Method (CIM) [41]. In Chapter 3 we propose two triples-based 

formulations of the fixed charge network flow problem (FCNF). Chapter 4 summarizes a 

computational experiment comparing the triples formulation of FCNF to the node-arc formulation, 

and hybrid solution procedure that uses both formulations. Chapter 5 summarizes the contributions 

of the dissertation and gives directions for future research with the triples formulation.
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CHAPTER 2                                                                                                                   

BACKHAUL PROFIT MAXIMIZATION PROBLEM 

 

2.1 Introduction 

    The Backhaul Profit Maximization Problem (BPMP) requires simultaneously solving two 

problems: (1) determining how to route an empty delivery vehicle back from its current location 

to its depot by a scheduled arrival time, and (2) selecting a profit-maximizing subset of delivery 

requests between various locations on the route subject to the vehicle's capacity. Figure 1 illustrates 

a BPMP instance and solution. 

 
 

Figure 2 BPMP example. 

 

    Figure 1 shows a network representation of the problem with an empty vehicle at a location 

represented by node 1. The vehicle weighs 1 ton and has a carrying capacity of Q = 2 tons of cargo. 
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The vehicle needs to return to its depot, represented by node 6, within a fixed period of time. The 

vehicle’s average  traveling speed limits the route to node 6 to a maximum distance of 7 miles. 

The vehicle can make extra money by accepting delivery requests to pick up cargo at the locations 

represented by nodes 1 through 5, destined for locations represented by nodes 2 through 6 as long 

as it can get back to the depot on time. The tuple (dij, wij)
1 indicates the distance (in miles) and the 

size of the delivery request (in tons) from node i to node j. The solution indicated in Figure 1 routes 

the vehicle on the path represented by the arc sequence (1, 3), (3, 5), (5, 6).  The dashed, red arcs 

in the figure indicate that vehicle makes the following pickups and dropoffs: 

 

 Node 1: pick up 0.2 tons destined for node 3, 0.5 tons destined for node 5, and 0.3 tons destined 

for node 6. Carry one ton of cargo to one mile to Node 3. 

 Node 3: drop off 0.2 tons from node 1; pick up 0.6 tons destined for node 5 and another 0.6 

tons destined for node 6. Carry two tons of cargo three miles to Node 5. 

 Node 5: drop off 0.5 and 0.6 tons from nodes 1 and 3, respectively; Pick up 0.8 tons destined 

for node 6. Carry 1.7 tons of cargo 2.5 miles to Node 6. 

 Node 6: drop off 0.3, 0.6, and 0.8 tons from nodes 1, 3, and 5, respectively. 

   The net profit for the solution indicated in Figure 1 is the revenue generated from the accepted 

delivery requests minus the transportation costs.  In the literature, the revenue for delivering wij 

truckloads from location i to location j is assumed to be proportional to the direct distance, dij, and 

the transportation cost is assumed to be function of the total distance traveled (6.5 miles in the 

Figure 1 example), and the total ton-miles carried (e.g., 11.25 ton-miles in Figure 1). The time 

                                                 
1 For convenience this chapter uses the notation from [35] and [41]. The notation in this chapter should be 

considered separately from the notation in Chapters 1, 3, and 4.  



 

17 

 

constraint is treated as a distance constraint by assuming a given average driving speed for the 

vehicle, in our example the limit is a maximum distance of 7 miles. 

   To the best of our knowledge, BPMP was first introduced by Dong et al. (2006) [42] who 

presented a heuristic for a special case where wij = Q , for all delivery requests. Yu and Dong (2013) 

[43] considered the general case in which wij  Q ; the delivery requests are allowed to be equal to 

or less than the vehicle capacity (less than truck load, LTL). They proposed a genetic algorithm 

and a mixed integer programming formulation based on the traditional node-arc model of 

multicommodity flow that we refer to as the node-arc formulation of BPMP. In her dissertation, 

Dong (2015) [44] proposed an alternative mixed integer programming formulation of BPMP called 

the triples formulation based on a compact formulation of multicommodity flow originally 

proposed by Matula (1986) [1] for the maximum concurrent flow problem. Thus, there are two 

kinds of BPMP mixed integer programming formulations (also called models, used 

interchangeably hereinafter): node-arc and triples. Dong (2015) [44] showed that the triples 

formulation has a significantly smaller constraint matrix and stronger linear programming (LP) 

relaxation than the node-arc formulation, and presented computational results in which CPLEX 

solved problem instances with up to 20 locations 90 to 2,000 times faster with the triples 

formulation.  Dong (2015) [44]was unable to solve larger problems with the node-arc formulation, 

but solved problems with up to 40 locations in an average of 90 minutes of CPU time using the 

triples formulation. 

   In this study we enhance both models by adapting techniques from the literature on related 

problems and applying our own insights into BPMP, and present results from an extensive 

empirical study in order to make a more comprehensive comparison of the two models and 

strengthen the case for the triples model.  We review the models in Section 2 and describe the 
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design and analysis of our experiments in  Section 3. Sections 4 and 5 describe the development 

of our enhanced node-arc and triples formulations, respectively. In Section 6 we compare the 

performance of CPLEX with the two enhanced formulations.  

    Our study makes the following contributions to the BPMP literature: 

1. We solve larger problems than previously solved in the literature with our enhanced 

formulations: 40 vs. 20 locations and 50 vs. 40 locations for the node-arc and triples models, 

respectively. 

2. We show that our enhanced models require significantly less time to solve than the original 

models proposed in the literature. 

3. We develop a multi-criteria Composite Index Method (CIM) to compare the effectiveness 

of two models for the same problem. 

4. We strengthen the case made by Dong (2015) [44] and Dong et al. (2015) [2] for using the 

triples representation of multicommodity flow in other appropriate applications besides 

BPMP. 
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2.2 Original Formulations of BPMP 

    The following presentation of the node-arc and triples formulations is adapted from Yu and 

Dong (2013) [43] and Dong (2015) [44].  

 

2.2.1 Notation Common to Both Models 

 

Sets and parameters 

 

𝑉 A set of locations (nodes) including the origin (1) and destination (𝑛), {1,2,  ⋯ ,  𝑛} 

𝐴 A set of arcs, {(𝑖,  𝑗): 𝑖 ≠ 𝑗,  𝑖 ∈ 𝑉\{𝑛},  𝑗 ∈ 𝑉\{1}} 

𝑝          Unit price charged to accept delivery request, dollars/mile/ton 

 𝑐         Unit travel cost incurred, dollars/mile/ton 

Q The capacity of the vehicle, tons 

𝑣 The weight of the vehicle, tons 

D The maximum distance the vehicle can travel, miles  

𝑤𝑘𝑙 The weight of a customer’s delivery request from 𝑘 to 𝑙, tons 

𝑑𝑘𝑙 The Euclidean distance from 𝑘 to 𝑙, miles 

Common decision variables for both models 

 

𝑥𝑖𝑗 ∈ {0,1}： 1, if the vehicle travels directly from 𝑖 to 𝑗 on arc (𝑖,   𝑗) ∈ 𝐴; 0 otherwise 

𝑦𝑘𝑙 ∈ {0,1}:    1, if the delivery request from 𝑘 to 𝑙 is accepted; 0 otherwise  

𝜃𝑖𝑗: total flow on arc (𝑖,  𝑗) ∈ 𝐴 , tons (i.e., the load carried by the vehicle directly from i to j)  
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𝑠𝑖:  sequence number for location i∈ V 

 

2.2.2 Original Node-Arc Formulation 

 

Node-arc decision variables  

𝑧𝑘𝑙,𝑖𝑗    1, if the delivery from 𝑘 to 𝑙 is performed via arc (𝑖,  𝑗) ∈ 𝐴; 0 otherwise 

 

Objective 

Maximize  𝑝 [∑ 𝑑𝑘𝑙𝑤𝑘𝑙𝑦𝑘𝑙(𝑘, 𝑙)∈𝐴 ] − 𝑐 ∑ 𝑑𝑖𝑗𝜃𝑖𝑗(𝑖, 𝑗)∈A − 𝑐𝑣 ∑ 𝑑𝑖𝑗𝑥𝑖𝑗(𝑖, 𝑗)∈𝐴   (2.1) 

Subject to 

∑ 𝑧𝑘𝑙,𝑘𝑗 = 𝑦𝑘𝑙    ∀(𝑘, 𝑙) ∈ 𝐴𝑗∈𝑉                 (2.2) 

∑ 𝑧𝑘𝑙,𝑖𝑙 = 𝑦𝑘𝑙   ∀(𝑘, 𝑙) ∈ 𝐴𝑖∈𝑉                 (2.3) 

∑ 𝑧𝑘𝑙,𝑖𝑎𝑖∈𝑉, (𝑖, 𝑎)∈𝐴 = ∑ 𝑧𝑘𝑙,𝑎𝑗𝑗∈𝑉, (𝑎, 𝑗)∈𝐴   ∀(𝑘,  𝑙) ∈ 𝐴, 𝑎 ∈ 𝑉\{𝑘, 𝑙}           (2.4) 

∑ 𝑧𝑘𝑙,𝑖𝑗(𝑘, 𝑙)∈𝐴 ≤ 𝑀𝑥𝑖𝑗  ∀(𝑖,  𝑗) ∈ 𝐴                          (2.5) 

∑ 𝑥1,𝑗(1,𝑗)∈𝐴 = 1                 (2.6) 

∑ 𝑥𝑖,𝑛(𝑖,𝑛)∈𝐴 = 1                            (2.7) 

∑ 𝑥𝑖𝑘𝑖∈𝑉\{𝑘, 𝑛} = ∑ 𝑥𝑘𝑗𝑗∈𝑉\{1, 𝑘}   ∀𝑘 ∈ 𝑉\{1, 𝑛}                         (2.8) 

∑ 𝑥𝑖𝑘𝑖∈𝑉\{𝑘, 𝑛} ≤ 1  ∀𝑘 ∈ 𝑉\{1, 𝑛}                                                               (2.9) 

∑ 𝑑𝑖𝑗𝑥𝑖𝑗(𝑖, 𝑗)∈𝐴 ≤ 𝐷                 (2.10) 

𝜃𝑖𝑗 =  ∑ 𝑤𝑘𝑙𝑧𝑘𝑙,𝑖𝑗(𝑘,𝑙)∈𝐴  ∀(𝑖, 𝑗) ∈ 𝐴                           (2.11) 

𝜃𝑖𝑗 ≤ 𝑄  ∀(𝑖, 𝑗) ∈ 𝐴                                      (2.12) 

𝑠𝑖 − 𝑠𝑗 + (𝑛 + 1)𝑥𝑖𝑗 ≤ 𝑛   ∀(𝑖,  𝑗) ∈ 𝐴                        (2.13) 

𝑥𝑖𝑗 ∈ {0,  1}   ∀ (𝑖,  𝑗) ∈ 𝐴                          (2.14) 

𝑦𝑘𝑙 ∈ {0,  1}  ∀(𝑘,  𝑙) ∈ 𝐴                (2.15) 

𝑧𝑘𝑙,𝑖𝑗 ∈ {0,  1}    ∀(𝑘,  𝑙) ∈ 𝐴, (𝑖,  𝑗) ∈ 𝐴              (2.16) 

Formulation Explanation  
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Objective (2.1): to maximize net total profit, which is equal to revenue from accepted delivery 

requests minus travel costs related to delivery requests (cargo-carrying costs) and the vehicle-

related travel cost.  

Constraints:  

Constraints (2.2) and (2.3) define the relation between 𝑦𝑘𝑙 and 𝑧𝑘𝑙 ,𝑖𝑗. Constraints (2.2) and (2.3) 

are to ensure that if the request from 𝑘 to 𝑙 is satisfied, then the vehicle must stop at both  location 

𝑘 and location 𝑙. Constraint (2.4) states that the inbound and outbound traffic flows of a location 

for the delivery from k to l should be equal. Constraint (2.5) defines the relation between 𝑥𝑖𝑗 and 

𝑧𝑘𝑙,𝑖𝑗. Constraints (2.6) and (2.7) make sure that the vehicle will start from location 1 and end at 

location 𝑛. Constraint (2.8) states that the inbound and outbound traffic flows of a location should 

be equal (i.e., if the vehicle stops at location 𝑘 ∈ 𝑉 ∖ {1, 𝑛}, then it must leave that location) 

Constraint (2.9) states that each location can be visited once at most. Constraint (2.10) states that 

the total length of backhaul trip must not exceed D, the maximum allowed distance. Constraint 

(2.11) gives the total load of the vehicle traveling on the arc (𝑖, 𝑗). Constraint (2.12) enforces the 

vehicle capacity limit. Constraint (2.13) is the so-called MTZ subtour elimination constraint 

proposed by Miller, Tucker, and Zemlin (1960) [45].  
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2.2.3 Original Triples Formulation 

 

Notation for Triples formulation 

𝑇: set of node triples,       {(𝑖,  𝑗,  𝑘):  𝑖 ∈ 𝑉\{𝑛},  𝑗 ∈ 𝑉\{1, 𝑖},  𝑘 ∈ 𝑉\{1,  𝑛,  𝑖,  𝑗}} 

Triples decision Variables: 

𝑢𝑖𝑗
𝑘 ≥ 0, (𝑖,  𝑗,  𝑘) ∈ 𝑇: denotes the tons of cargo transported from node 𝑖 to node 𝑗 through node 𝑘 

(i.e., the flow from 𝑖 to 𝑗 diverted through 𝑘) followed by a path from 𝑘 to 𝑗.  Note that the triples 

formulation given below shares the objective function, and some of the same variables and 

constraints with the node-arc formulation (those with labels used before). The constraints with new 

labels are unique to the triples formulation. 

Objective 

Maximize  𝑝 [∑ 𝑑𝑘𝑙𝑤𝑘𝑙𝑦𝑘𝑙(𝑘, 𝑙)∈𝐴 ] − 𝑐 ∑ 𝑑𝑖𝑗𝜃𝑖𝑗(𝑖, 𝑗)∈A − 𝑐𝑣 ∑ 𝑑𝑖𝑗𝑥𝑖𝑗(𝑖, 𝑗)∈𝐴                             (2.1) 

Subject to 

∑ 𝑥1,𝑗(1,𝑗)∈𝐴 = 1                                                        (2.6)   

∑ 𝑥𝑖,𝑛(𝑖,𝑛)∈𝐴 = 1                                                        (2.7) 

∑ 𝑥𝑖𝑘𝑖∈𝑉\{𝑘, 𝑛} = ∑ 𝑥𝑘𝑗𝑗∈𝑉\{1, 𝑘} ,    ∀𝑘 ∈ 𝑉\{1, 𝑛}                                                    (2.8)     

∑ 𝑑𝑖𝑗𝑥𝑖𝑗(𝑖, 𝑗)∈𝐴 ≤ 𝐷                                                       (2.10) 

𝑠𝑖 − 𝑠𝑗 + (𝑛 + 1)𝑥𝑖𝑗 ≤ 𝑛      ∀ (𝑖,  𝑗) ∈ A                                                    (2.13) 

𝜃𝑖𝑗 = 𝑤𝑖𝑗𝑦𝑖𝑗 + ∑ 𝑢𝑖𝑘
𝑗

(𝑖, 𝑘, 𝑗)∈𝑇 + ∑ 𝑢𝑘𝑗
𝑖

(𝑘, 𝑗, 𝑖)∈𝑇 − ∑ 𝑢𝑖𝑗
𝑘

(𝑖, 𝑗, 𝑘)∈𝑇 ,  ∀(𝑖,  𝑗) ∈ 𝐴                

(2.17) 

𝜃𝑖𝑗 ≤ 𝑄𝑥𝑖𝑗  ∀(𝑖,  𝑗) ∈ 𝐴                                            (2.18) 

𝑢𝑖𝑗
𝑘 ≤ 𝑄𝑥𝑖𝑘  ∀(𝑖,  𝑗,  𝑘) ∈ 𝑇                                           (2.19) 

𝑢𝑖𝑗
𝑘 ≥ 0   ∀ (𝑖, 𝑗, 𝑘) ∈ 𝑇                                 (2.20) 

𝑥𝑖𝑗 ∈ {0,  1}    ∀(𝑖,  𝑗) ∈ 𝐴                                  (2.14) 

𝑦𝑘𝑙 ∈ {0,  1}    ∀(𝑘,  𝑙) ∈ 𝐴                                                                                                   (2.15) 



 

23 

 

 

Formulation explanation  

The Objective function is the same as that of the node-arc formulation.  

Constraints unique to the Triples formulation:  

     Constraint (2.17) gives the total load of the vehicle traveling on arc (𝑖, 𝑗). Constraint (2.18) 

defines the relationship between the arc flow and 𝑥𝑖𝑗  variables. Constraint (2.19) is the linking 

constraint in order to force (i, k) to be an arc on the vehicle's route if variable 𝑢𝑖𝑗
𝑘  is positive. 

Constraint (2.20) states that the triples flow must be nonnegative. 

2.2.4 Example Solutions 

 

       Recall that in the example solution in Figure 1, the vehicle follows the route corresponding to 

 𝑥13 = 𝑥35 = 𝑥56 = 1 , and accepts the delivery requests corresponding to 𝑦13 = 𝑦15 = 𝑦16 =

𝑦35 = 𝑦36 = 𝑦56 = 1 .  The following subsections show how each formulation represents the 

movement of cargo along the route as multicommodity flow.  

2.2.4.1 Node-Arc Representation of Solution in Figure 1  

𝑧13,13 = 1,  

𝑧15,13 = 𝑧15,35 = 1, 

𝑧16,13 = 𝑧16,35 = 𝑧16,56 = 1, 

𝑧35,35 = 1,  

𝑧36,35 = 𝑧36,56 = 1, 

𝑧56,56 = 1. 

𝜃13 = 𝑤13𝑧13,13 + 𝑤15𝑧15,13 + 𝑤16𝑧16,13 = 0.2 + 0.5 + 0.3 = 1 ton, 

𝜃35 = 𝑤15𝑧15,35 + 𝑤16𝑧16,35 + 𝑤35𝑧35,35 + 𝑤36𝑧36,35 = 0.5 + 0.3 + 0.6 + 0.6 = 2 tons, 

𝜃56 = 𝑤16𝑧16,56 + 𝑤36𝑧36,56 + 𝑤56𝑧56,56 = 0.3 + 0.6 + 0.8 = 1.7 tons. 
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2.2.4.2 Triples Representation of Solution in Figure 1 

𝑢15
3 = 𝑤15 = 0.5 tons, 

𝑢16
3 = 𝑤16 = 0.3 tons, 

𝑢36
5 = 𝑤16 + 𝑤36 = 0.3 + 0.6 = 0.9 tons. 

 

Note that the delivery requests from 1 to 3, 3 to 5, and 5 to 6 are sent as “direct flow” and therefore 

not represented by triples variables. The resulting arc flows are 

𝜃13 = 𝑤13 + 𝑢15
3 + 𝑢16

3 = 0.2 + 0.5 + 0.3 = 1 ton, 

𝜃35 = 𝑤35 + 𝑢15
3 + 𝑢36

5 = 0.6 + 0.5 + 0.9 = 2 tons, 

𝜃56 = 𝑤56 + 𝑢36
5 = 0.8 +  0.9 = 1.7 tons. 

2.3 Design and Analysis Methods of BPMP Experiments 

    In this section we summarize the process of how we design our experiments and develop a multi-

criteria Composite Index Method (CIM) to evaluate the results. 

 2.3.1 Data Generation 

 

    For our study we generate ten problem instances for each value of n = 10, 20, 30, 40, and 50. 

Following Yu and Dong (2013) [43] and Dong (2015) [44] , we assume that the price for delivery 

service is p = $1.20 per mile per ton. The travel cost is c = $1.00 per mile per ton. The maximum 

time allowed for the backhaul trip is 20 hours and the capacity of the vehicle is Q = 50 tons. The 

average traveling speed of the vehicle is 50 miles per hour and so the time constraint of 20 hours 

is equivalent to a distance constraint of D = 1,000 miles. The weight of vehicle itself is 𝑣 = 5 tons. 

The remainder of this subsection describes the process for randomly generating the location-to-



 

25 

 

location distance and weight parameters, dij and wij. This process was related to us by Dong (2019) 

[46]; it was not provided in Yu and Dong (2013) [43] and Dong (2015) [44]. 

    The delivery request between two different nodes (in tons) is generated by multiplying Q by a 

uniform random variable on the range [0, 1] and rounding the result to one decimal place. In this 

way we can ensure that the demands are randomly and uniformly distributed between zero and the 

vehicle capacity.  

   To ensure that all of the randomly generated locations are reachable without violating the 

distance constraint, we select points inside an ellipse that has nodes 1 and n as its foci. Specifically, 

we place node 1 and node n at points (500, 250), and (500, 750) in the X-Y plane, respectively as 

shown in Figure 2. We then select n-2 points at random from inside the ellipse to represent the 

subset of potential intermediate locations on the vehicle’s route from its starting location to its 

depot.  

 

 

 
 

Figure 3  BPMP location-generation diagram. 

 

    By construction (i.e., d1j + djn  1,000), the vehicle can potentially visit any point j on or inside 

the ellipse within the time limit and cannot visit any point outside the ellipse.  To generate a random 

Y 

X 
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point inside the ellipse we start by selecting a y value at random from the range [0, 1,000]. It 

follows that for the given Y value the points (X1, Y) and (X2, Y) are on the ellipse where 

 𝑋1 = 500 − 250√3 −
3∗(𝑌−500)

5002

2
  and 𝑋2 = 500 + 250√3 −

3∗(𝑌−500)

5002

2

 [Open Math Reference 

2019]. Thus, we randomly sample the uniform distribution on (X1, X2) to generate the X coordinate 

corresponding to Y.  After randomly generating n-2 points inside the ellipse, we let dij be the 

Euclidean distance between the corresponding points i and j rounded to three decimal places. 

 

 2.3.2 Computing Environment  

     

   The computations reported in Sections 2.4, 2.5, and 2.6 were performed on the SMU Lyle 

School’s general use Linux machines with the specifications listed below. The formulations were 

implemented in AMPL 10.00 and solved with CPLEX 12.6.0.0. We used the default settings for 

AMPL and CPLEX except where specified.  

Table 2. 1. Computer Hardware Specifications 

Make/Model Dell R730 

Processor Dual 12 Core Intel Xeon@2.6GHz 

RAM 320GB 

 

 

 2.3.3 Performance Evaluation Using Composite Index Method (CIM)  

 

     Following the long-standing standard practice in the literature, the plan for this study was to 

use solution time as the performance measure for comparing the node-arc and triples formulations 

of BPMP. However, now that computing environments like ours that support multiple users, and 

take advantage of multiple processors and multiple threads have become commonplace, measuring 

solution time is no longer straight-forward.  Furthermore, as is typically the case, we found that 



 

27 

 

there is often a “crossover point” in problem instance size below which one approach is generally 

“faster” than another, but above which the second approach is faster.  In this situation the second 

approach would usually be favored because the emphasis in the literature is on solution time as a 

function of problem instance size.  In this study, however, we consider the practical question of 

making a recommendation to a user who frequently solves problems that range in size around the 

crossover point, and propose a multi-criteria approach to comparing competing solution 

approaches.  In this section, we develop a Composite Index Method (CIM), which considers 

several weighted performance measure factors and calculates a single real number (a composite 

index) to measure the relative performance of two competing solution approaches.   

2.3.3.1 Composite Index for a Given Problem Size 

 

    There are three kinds of “solution time” in the CPLEX output: “CPU time”, “real time”, and 

“ticks”. CPU time is a measure of the total time used by CPLEX to find an optimal solution; it is 

the total time used by all threads. Real time (also called wall clock time) is the time that elapsed 

during the CPLEX run. Both measures can vary noticeably between runs with identical input on 

identical hardware. Therefore, we solve each problem instance three times in each experiment and 

report the average CPU and real time over the three runs. The tick metric, also called deterministic 

time, is a proprietary measure of computation effort based on counting the number of instructions 

executed by the CPLEX solver and therefore shows no variation between multiple runs with the 

same inputs on a given hardware configuration.  

    For each of the time measures describe above, we report speedup to compare the solution time 

of two models, model 1 versus model 2. Speedup is defined as the ratio 

Speedup = Model 1 solution time/Model 2 solution time 
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    If “Speedup”>1, model 2 is solved “Speedup” times faster than model 1; if “Speedup”=1, model 

2 has the same solution time as model 1,  and  if “Speedup”<1, model 1 is  solved “1/Speedup”  

times faster than model 2 (i.e., “Speedup” times slower than model 2).. 

    Due to the fact that CPU and real time are not completely reproducible, we suggest that neither 

one should be the sole basis for comparing solution approaches. Typically, ticks and real time are 

positively correlated (as are ticks and CPU time), however there doesn’t appear to be a fixed 

relationship between ticks and the two time measures. For this reason, we cannot use ticks as the 

single index to compare two models either. 

    In our experience, customers who use a model to solve a real world problem are much more 

concerned about real time as a performance measure than CPU time, and are often unaware of the 

tick measure. For our purposes, however, the reproducibility of the tick metric is quite important. 

Therefore, we adopt the following weights to each type of time speedup. 

Table 2. 2. Weights for Time Speedup 

 

CPU c 6 

Real Time r 8 

Ticks t 8 

  

    For a given problem size (i.e., number of nodes, n) and timing measure (CPU time, real time, or 

ticks), we calculate a composite index based on a weighted combination of the minimum, median, 

mean, and maximum speedups among 10 instances. Thus, we obtain three composite indices: 

CIn(C), CIn(R), CIn(t) for CPU time, real time, and ticks, respectively. To calculate these indices 

we denote the minimum, mean, median, and maximum speedups in CPU time by Cmin, Cmean, 

Cmedian, and Cmax, respectively, and define Rmin, Rmean, Rmedian, Rmax, tmin, tmean, tmedian, and tmax as 

the corresponding speedups for real time and ticks. Additionally, we define min, mean, median, 
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and max for different weighting of minimum, mean, median and maximum statistics. Using this 

notation, the three composite indices are calculated as follows: 

 

CIn(C) = (min*Cmin+mea*Cmean +med*Cmedian +max*Cmax)/(min+mea +med +max), 

CIn(R) = (min*Rmin+mea*Rmean +med*Rmedian +max*Rmax)/(min+mea +med +max), 

CIn(t) = (min*tmin+mea*tmean +med*tmedian +max*tmax)/(min+mea +med +max). 

 

    Next, we calculate a composite index, CIn, for problem size n as a weighted combination of 

indices CIn(C), CIn(R), and CIn(t):  

 

CIn = (c * CIn(C) + r * CIn(R) + t * CIn(t))/(c+ r + t ). 

 

Table 2.3 summarizes the process of calculating CIn for an experiment with 10 problem instances. 
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Table 2. 3. Composite Index Calculation Process for 10 Instances of Size n  

Problem 

Instance 

Speedup 

CPU Time  Real Time  Ticks 

1 C1 R1 t1 

2 C2 R2 t2 

3 C3 R3 t3 

4 C4 R4 t4 

5 C5 R5 t5 

6 C6 R6 t6 

7 C7 R7 t7 

8 C8 R8 t8 

9 C9 R9 t9 

10 C10 R10 t10 

Min 
Cmin = 

 min(C1, C2…, C10) 

Rmin =  

min(R1,R2 …, R10) 
tmin = min(t1, …, t10) 

Mean 
Cmean= 

 average(C1, C2…, C10) 

Rmean=  

average(R1, R2…, R10) 

tmean=  

average(t1, t2…, t10) 

Median 
Cmedian=  

median(C1, C2…, C10) 

Rmedian=  

median(R1, R2…, R10) 

tmedian=  

median(t1, t2…, t10) 

Max 
Cmax=  

max(C1, C2…, C10) 

Rmax=  

max(R1, R2…, R10) 
tmax= max(t1, t2…, t10) 

Composite 

Index  

CIn(C)= 

(min*Cmin+ mea*Cmean 

+med*Cmedian+max*Cmax

)/(min +meamed 

+max) 

CIn(R)= 

(min*Rmin+ mea*Rmean 

+med*Rmedian+max*Rmax

)/(min +meamed 

+max) 

CIn(t)= 

(min*tmin+ mea*tmean 

+med*tmedian+max*tmax)/(

min +meamed +max) 

CIn=(c*CIn(C)+r*CIn(R)+tCIn(t))/(c+r+t) 

 

2.3.3.2 Grand Composite Index for an Experiment with Multiple Problem Sizes 

 

    We solve ten BPMP instances for each of the five problem size n = 10, 20, 30, 40, 50. So we 

report five composite indices of speedups: CI10, CI20, CI30, CI40, and CI50, which are then 

transformed into the Grand Composite Index (GCI) using problem-size weights n. GCI is the 

final index we use to compare two models, and is defined as a weighted average of the CIn values 

for all sizes of the problem: 

GCI = (10*CI10 + 20*CI20 + 30*CI30 + 40*CI40 + 50*CI50)/(10 + 20 + 30 + 40 + 50). 
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    In our experiments, we use the weight parameters in Table 2.4 for the node-arc formulation and 

those in Table 2.5 for triples formulation, respectively. The difference in the problem-size weights 

is due to the fact that solving problem instances with more than 30 nodes using the node-arc model 

turned out to be impractical, while we could easily solve 50-node instances with the triples model.  

The selection principle of the weight parameter values is to try to match the results with our 

intuitive judgement of a relative ranking to apply techniques to a hypothetical logistics company’s 

model as best as possible.   

 

Table 2. 4. Weight Parameters for the Node-Arc Model 

 

Node-Arc Weight 

Parameters 

Min min 0.5 

Median med 40 

Max max 0.5 

Mean mea 10 

CPU c 6 

Ticks t 8 

Real Time r 8 

10-node 10 1 

20-node 20 10 

30-node 30 12 
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Table 2. 5. Weight Parameters for the Triples Model 

 

Triples Weight Parameters 

Min min 0.5 

Median med 40 

Max max 0.5 

Mean mea 10 

CPU c 6 

Ticks t 8 

Real Time r 8 

10-node 10 6 

20-node 20 10 

30-node 30 13 

40-node 40 14 

50-node 50 16 

     

2.3.3.3 Using GCI to Compare Models and Evaluate Techniques  

 

    In Sections 2.4 and 2.5 we use the GCI to evaluate the efficacy of various techniques (cuts, 

branching rules, etc.) designed to improve CPLEX’s performance using the node-arc and triples 

models given in Section 2. Using “model 1” to refer to a baseline solution approach and “model 

2” to refer to the application of a particular technique to model 1. We recommend adopting the 

technique if GCI > 1 and say, for convenience, that the model 2 is “GCI times faster” than model 

1. We recommend not adopting the technique if GCI ≤ 1. 

2.3.3.4 Using LP upper bound improvement to compare the strength of models  

 

   We denote the upper bounds on profit obtained from the LP relaxations of model 1 and model 2 

mentioned above as LP1 and LP2, and define LP improvement as (LP1-LP2)/LP1. Since the 

BPMP is a maximization problem, the smaller the LP upper bound, the stronger the model. Thus, 

a positive LP improvement indicates that the technique applied in model 2 makes model 1 stronger.  
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2.4 Enhancing the Node-Arc Formulation 

    In this section we present experimental results with nine techniques for enhancing the node-arc 

formulation. These techniques were selected and informally ranked by effectiveness from a larger 

set of candidates after preliminary experiments that we performed prior to developing the CIM. 

Before applying the first of the nine techniques, we establish an “incumbent” enhanced node-arc 

formulation by determining a tight Big-M value for the x-z linking constraint set (2.5).  We then 

apply the techniques sequentially according to the ranking from our preliminary experiments. If a 

particular technique in the sequence is found to improve performance based on the CIM, the 

combination of the incumbent with the technique becomes the new incumbent. Otherwise, the 

technique is not adopted and the incumbent remains as it is. Note that CPU and real time are 

reported in seconds, and LP bounds are scaled by $2,500 throughout this report. 

2.4.1 Tightening the Big-M Value 

 

    Before running the node-arc model experiments, first we need to decide the value of M in (2.5) 

of Section 2.2, ∑ 𝑧𝑘𝑙,𝑖𝑗(𝑘, 𝑙)∈𝐴 ≤ 𝑀𝑥𝑖𝑗  (𝑖,  𝑗) ∈ 𝐴. Yu and Dong (2013) [43] did not discuss the 

value of M. Here we prove that a value of M = 
𝑛2−𝑛

2
, where n is the total number of nodes in the 

network, is sufficient.  

Proof 

 

Observe that the left-hand side of (2.5) is less than or equal to the total number of accepted delivery 

requests, ∑ 𝑦𝑘𝑙(𝑘,𝑙)∈𝐴 . 

∑ 𝑧𝑘𝑙,𝑖𝑗

(𝑘, 𝑙)∈𝐴

≤ 𝑀𝑥𝑖𝑗  (𝑖,  𝑗) ∈ 𝐴 
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    Due to constraints (2.9) and (2.13), the vehicle can stop at most once at each node. Suppose that 

the vehicle visits every node and, without loss of generality, follows the route 1, 2, 3, …, n. At 

most, the vehicle can accept n-1 requests from node 1, n-2 from node 2, etc.  Thus, the maximum 

number of requests that the vehicle can accept is  

 

∑(𝑛 − 𝑘)

𝑛

𝑘=1

= ∑ 𝑘

𝑛−1

𝑘=1

=
(𝑛 − 1)(𝑛)

2
=

𝑛2 − 𝑛

2
. 

 

 

 

2.4.2 Initial Incumbent Formulation 

 

    In this section we present the results for our initial incumbent, the original node-arc model with 

the tightened Big-M value. The model was solved three times for each problem instance. The 

results are shown in Table 2.6 and Table 2.7 

Table 2. 6 Test Results of Original Node-Arc Model for n =10.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 5.22 3.54 2.88 3.88 1.09 0.89 1.03 1.00 58.64 345.86 

02 4.39 4.75 4.08 4.40 1.16 0.93 1.28 1.12 61.42 225.56 

03 3.83 4.29 4.05 4.06 0.94 0.76 0.85 0.85 57.95 291.53 

04 2.95 2.86 4.47 3.42 1.00 0.80 1.02 0.94 68.63 252.59 

05 3.54 2.23 2.84 2.87 0.82 0.66 0.81 0.76 77.40 237.66 

06 6.42 6.18 6.75 6.45 2.62 2.18 2.87 2.56 63.48 645.50 

07 6.99 4.97 3.79 5.25 1.42 1.22 1.43 1.36 63.24 496.25 

08 4.20 4.68 4.88 4.59 1.53 1.27 1.55 1.45 62.24 499.80 

09 6.61 3.88 3.12 4.54 1.06 0.83 1.03 0.97 66.86 214.21 

10 3.02 1.64 2.17 2.28 0.52 0.37 0.61 0.50 67.96 120.06 

Min 2.95 1.64 2.17 2.28 0.52 0.37 0.61 0.50 57.95 120.06 

Mean 4.72 3.90 3.90 4.17 1.22 0.99 1.25 1.15 64.78 332.90 

Median 4.30 4.08 3.92 4.23 1.08 0.86 1.03 0.99 63.36 272.06 

Max 6.99 6.18 6.75 6.45 2.62 2.18 2.87 2.56 77.40 645.50 

 

 

 



 

35 

 

 

Table 2. 7 Test Results of Original Node-Arc Model for n = 20.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 12,654 12,310 12,172 12,379 1,937 1,896 1,734 1,856 316 1,244,880 

02 1,745 1,757 1,716 1,739 355 372 344 357 330 272,703 

03 2,457 2,544 2,393 2,465 497 536 467 500 291 382,350 

04 24,954 26,053 27,313 26,106 1,891 2,044 1,943 1,960 293 1,211,197 

05 2,964 3,036 2,981 2,994 632 681 628 647 323 583,158 

06 32,635 35,586 34,566 34,262 1,720 1,859 1,778 1,786 277 1,005,079 

07 2,760 2,770 2,615 2,715 502 512 482 499 300 422,516 

08 5,873 5,888 5,738 5,833 845 857 806 836 272 674,853 

09 28,620 32,115 28,746 29,827 2,007 2,226 1,967 2,067 299 1,318,085 

10 17,096 17,745 18,202 17,681 1,571 1,749 1,606 1,642 340 1,091,225 

Min 1,745 1,757 1,716 1,739 355 372 344 357 272 272,703 

Mean 13,176 13,980 13,644 13,600 1,196 1,273 1,175 1,215 304 820,605 

Median 9,263 9,099 8,955 9,106 1,208 1,303 1,206 1,239 300 839,966 

Max 32,635 35,586 34,566 34,262 2,007 2,226 1,967 2,067 340 1,318,085 

 

 

    As shown in Tables 2.6 and 2.7, we were only able to solve 10-node and 20-node instances with 

the original node-arc model. Therefore, we list the results only for 10 and 20-node instances, and 

there are no speedups yet (no techniques applied yet). We can see that the median average real 

time for the 10-node instances was about 1 second, and the median average real time for the 20-

node instances was about 20 minutes. 
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2.4.3 Technique 1: Conditional Arc-Flow  

 

    The original node-arc model (Yu and Dong 2013) [43] uses constraint (2.12), 𝜃𝑖𝑗 ≤ 𝑄, to ensure 

that the total amount of flow, 𝜃𝑖𝑗 , on arc (i, j) is less than or equal to the vehicle capacity, Q. Notice 

that if the vehicle does not travel on arc (i, j), there should be no flow on the arc (i.e., if xij  = 0, 

then 𝜃𝑖𝑗 = 0). If the vehicle does travel on arc (i, j), the maximum flow on the arc is Q, (i.e., if xij 

=1, then 𝜃𝑖𝑗 ≤ 𝑄). Therefore, the arc flow constraints (2.12) can be replaced by the following 

constraint set which we call conditional arc-flow 

𝜃𝑖𝑗 ≤ 𝑄𝑥𝑖𝑗             ∀(𝑖,  𝑗) ∈ 𝐴       (2.21). 

    Yu and Dong (2013) [43] were unable to solve 30-node instances with the original node-arc 

model. We had a similar experience in our preliminary tests. After applying conditional arc-flow 

we can solve 30-node instances easily, but it is difficult to solve 40-node instances. Therefore, we 

tested this technique only on 10-, 20-, and 30-node instances. Table 2.8, 2.9 and 2.10 give detailed 

test results of three runs after applying the new technique on 10-, 20-, and 30-node instances. The 

complete speedup summary is given in Table 2.11.  Table 2.12 gives the CI and GCI. Speedups in 

bold are greater than 1. 
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Table 2. 8 Test Results of Incremental Effect of Conditional Arc-Flow for n =10.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 1.42 1.33 1.46 1.40 0.61 0.57 0.63 0.60 2.00 235.67 

02 3.47 3.79 1.90 3.05 0.62 0.59 0.58 0.60 2.00 248.86 

03 2.43 3.13 5.15 3.57 0.71 0.79 0.82 0.77 2.94 278.19 

04 4.06 2.14 2.13 2.78 0.63 0.61 0.62 0.62 5.01 188.38 

05 0.87 0.93 0.92 0.90 0.43 0.45 0.43 0.44 6.50 184.29 

06 3.23 4.94 4.93 4.37 1.00 0.94 0.93 0.96 8.29 247.70 

07 2.90 2.36 4.09 3.12 0.92 0.86 0.90 0.89 3.47 384.78 

08 3.39 4.64 6.44 4.82 0.92 0.90 1.02 0.95 3.87 366.32 

09 2.70 2.61 2.64 2.65 0.55 0.52 0.46 0.51 6.29 164.87 

10 1.51 1.59 2.37 1.83 0.22 0.26 0.31 0.26 9.72 74.61 

Min 0.87 0.93 0.92 0.90 0.22 0.26 0.31 0.26 2.00 74.61 

Mean 2.60 2.75 3.20 2.85 0.66 0.65 0.67 0.66 5.01 237.37 

Median 2.80 2.49 2.50 2.91 0.63 0.60 0.63 0.61 4.44 241.69 

Max 4.06 4.94 6.44 4.82 1.00 0.94 1.02 0.96 9.72 384.78 

 

Table 2. 9 Test Results of Incremental Effect of Conditional Arc-Flow for n = 20.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 1,306 1,258 1,266 1,276 96 100 97 98 16 54,992 

02 720 701 702 708 63 63 64 63 17 37,316 

03 1,974 1,689 1,729 1,797 143 146 134 141 22 81,335 

04 4,945 3,848 3,836 4,210 358 362 318 346 18 202,725 

05 450 409 408 422 94 94 92 93 22 70,847 

06 2,152 1,752 1,764 1,890 196 200 182 193 15 119,363 

07 1,243 1,105 1,120 1,156 81 81 77 80 18 39,778 

08 1,189 1,080 1,010 1,093 74 76 68 73 13 35,113 

09 673 630 620 641 127 130 125 128 19 96,582 

10 811 759 740 770 123 125 119 122 24 85,867 

Min 450 409 408 422 63 63 64 63 13 35,113 

Mean 1,546 1,323 1,320 1,396 136 138 128 134 19 82,392 

Median 1,216 1,093 1,065 1,125 110 112 108 110 18 76,091 

Max 4,945 3,848 3,836 4,210 358 362 318 346 24 202,725 
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Table 2. 10 Test Results of Incremental Effect of Conditional Arc-Flow for n = 30.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 236,367 237,258 212,689 228,771 12,301 12,474 11,552 12,109 33 3,442,157 

02 97,710 92,781 81,972 90,821 5,958 5,780 5,382 5,707 32 2,203,579 

03 155,158 156,250 137,272 149,560 8,349 8,451 7,660 8,153 32 2,738,406 

04 174,107 171,060 152,215 165,794 9,580 9,439 8,757 9,259 45 3,274,659 

05 78,981 77,249 68,914 75,048 5,301 5,241 4,941 5,161 24 2,074,290 

06 195,855 195,754 176,959 189,523 10,264 10,146 9,557 9,989 41 3,389,669 

07 57,534 56,502 50,478 54,838 4,506 4,485 4,271 4,421 27 2,104,806 

08 324,709 332,816 298,199 318,575 17,912 18,534 17,041 17,829 22 5,072,975 

09 99,423 106,375 87,302 97,700 5,697 6,221 5,228 5,716 22 2,177,300 

10 153,816 154,163 131,121 146,367 7,287 7,562 6,499 7,116 32 2,383,682 

Min 57,534 56,502 50,478 54,838 4,506 4,485 4,271 4,421 22 2,074,290 

Mean 157,366 158,021 139,712 151,700 8,716 8,833 8,089 8,546 31 2,886,152 

Median 154,487 155,207 134,197 147,963 7,818 8,006 7,079 7,635 32 2,561,044 

Max 324,709 332,816 298,199 318,575 17,912 18,534 17,041 17,829 45 5,072,975 

 

Table 2. 11 Summary of Incremental Effect of Conditional Arc Flow Constraints 

 

 Speedup LP Upper 

Bound 

Improvement 
Ave. CPU Time Ticks  Ave. Real Time 

n = 10 

Min  0.95 0.91 1.10 85.69% 

Mean 1.68 1.42 1.74 92.41% 

Median 1.46 1.32 1.71 93.24% 

Max 3.17 2.61 2.67 96.74% 

n = 20 

Min 1.37 4.70 3.55 93.32% 

Mean 12.21 11.35 9.74 93.94% 

Median 6.65 9.52 8.10 93.95% 

Max 46.52 22.64 19.01 95.08% 

 

 

Table 2. 12 CI and GCI of Conditional Arc-Flow Constraints 

n CPU Ticks Real Time CI GCI 

10 1.52 1.35 1.72 1.53 8.24 

20 8.08 9.96 8.48 8.91 

30 n/a n/a n/a n/a  

 

    Conclusion: After applying technique 1, conditional arc-flow, the grand composite index of 

speedups (GCI) was 8.24, which means, on average, the model with conditional arc-flow was 
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solved 8.24 times faster than the original model. Therefore, we adopted technique 1, replacing 

constraint set (2.12) with the conditional arc-flow constraints (2.21).  

 

2.4.4 Technique 2： Relax Node-Degree Constraints 

 

    Yu and Dong (2013) [43] used the following node-degree cuts to ensure that the vehicle visits 

each location at most once:  

∑ 𝑥𝑖𝑘

𝑖∈𝑉\{𝑘, 𝑛}

≤ 1  𝑘 ∈ 𝑉\{1, 𝑛}                            (2.9) 

At the same time the MTZ subtour elimination constraints (2.13) also ensure that vehicle visits 

each node at most once in an integer solution. Therefore, we can relax the node-degree constraints 

without losing validity of the integer model (the node-degree cuts can be violated in solutions to 

the LP relaxations). Table 2.13, 2.14 and 2.15 give detailed test results of three runs after applying 

the new technique (dropping/relaxing (2.9)) on 10-, 20-, and 30-node instances. Table 2.16 shows 

the effect of the relaxing the node-degree cuts on all of the 10-, 20-, and 30-node problem instances. 

Table 2.17 gives the CI and GCI. Speedups greater than 1 are in bold. 
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Table 2. 13 Test Results of Incremental Effect of Relax Node-Degree for n = 10.  

Instance CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 1.10 1.17 1.16 1.15 0.49 0.53 0.51 0.51 2.00 197.98 

02 2.20 2.89 6.01 3.70 0.44 0.42 0.56 0.47 2.00 153.40 

03 7.34 4.71 4.72 5.59 1.51 0.85 1.24 1.20 2.94 251.73 

04 4.87 2.79 2.04 3.23 0.69 0.78 0.76 0.74 5.01 195.15 

05 7.40 3.65 6.28 5.78 0.60 0.47 0.52 0.53 6.50 133.75 

06 8.66 3.00 7.26 6.31 1.26 0.98 1.19 1.14 8.60 334.68 

07 4.86 2.52 7.60 4.99 0.97 0.79 1.04 0.93 3.47 187.98 

08 8.81 2.05 7.84 6.23 1.09 0.75 1.05 0.96 3.92 313.69 

09 2.35 1.89 3.59 2.61 0.51 0.43 0.53 0.49 6.29 158.90 

10 6.53 1.92 1.51 3.32 0.40 0.51 0.35 0.42 9.84 66.23 

Min 1.10 1.17 1.16 1.15 0.40 0.42 0.35 0.42 2.00 66.23 

Mean 5.41 2.66 4.80 4.29 0.80 0.65 0.78 0.74 5.06 199.35 

Median 5.70 2.65 5.37 4.35 0.65 0.64 0.66 0.64 4.46 191.57 

Max 8.81 4.71 7.84 6.31 1.51 0.98 1.24 1.20 9.84 334.68 

 

 

Table 2. 14 Test Results of Incremental Effect of Relax Node-Degree for n = 20.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 1,354 1,373 1,368 1,365 82 83 82 82 18 42,788 

02 743 732 732 736 78 77 77 77 19 49,490 

03 1,203 1,123 1,145 1,157 76 73 75 75 22 38,808 

04 7,230 6,503 6,763 6,832 404 376 379 386 20 197,501 

05 379 334 350 355 42 40 41 41 24 28,931 

06 2,589 2,271 2,339 2,400 189 179 179 182 15 118,673 

07 1,055 1,118 1,009 1,061 67 71 64 67 18 32,021 

08 901 920 826 882 59 62 56 59 14 29,653 

09 1,591 1,498 1,462 1,517 186 198 184 189 19 134,464 

10 674 668 644 662 69 72 68 70 24 45,904 

Min 379 334 350 355 42 40 41 41 14 28,931 

Mean 1,772 1,654 1,664 1,697 125 123 120 123 19 71,823 

Median 1,129 1,121 1,077 1,109 77 75 76 76 19 44,346 

Max 7,230 6,503 6,763 6,832 404 376 379 386 24 197,501 
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Table 2. 15 Test Results of Incremental Effect of Relax Node-Degree for n = 30.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 150,867 160,878 157,288 156,344 8,626 9,369 8,760 8,919 35 2,927,573 

02 315,832 340,140 341,062 332,345 12,468 13,185 13,096 12,917 34 3,904,553 

03 51,365 52,736 53,121 52,407 2,959 3,190 3,043 3,064 32 1,504,484 

04 114,123 116,978 118,709 116,603 5,349 5,658 5,525 5,511 45 2,141,250 

05 107,272 109,664 110,180 109,039 5,080 5,285 5,173 5,179 24 2,082,700 

06 176,095 180,395 179,597 178,696 9,602 10,218 9,734 9,851 41 3,083,977 

07 118,167 120,838 123,134 120,713 5,163 5,416 5,316 5,298 27 1,889,653 

08 103,211 109,225 106,275 106,237 5,308 5,885 5,467 5,553 23 1,874,691 

09 42,476 43,265 43,337 43,026 2,301 2,405 2,317 2,341 23 1,142,160 

10 102,503 103,896 105,209 103,869 4,576 4,791 4,697 4,688 32 1,836,292 

Min 42,476 43,265 43,337 43,026 2,301 2,405 2,317 2,341 23 1,142,160 

Mean 128,191 133,802 133,791 131,928 6,143 6,540 6,313 6,332 32 2,238,733 

Median 110,698 113,321 114,445 112,821 5,235 5,537 5,391 5,404 32 1,986,176 

Max 315,832 340,140 341,062 332,345 12,468 13,185 13,096 12,917 45 3,904,553 

 

Table 2. 16 Summary of Incremental Effect of Relax Node-Degree Constraints 

 Speedup LP Upper 

Bound 

Improvement 
Ave. CPU Time Ticks  Ave. Real Time 

n = 10 

Min          0.16         0.74           0.63  -3.74% 

Mean         0.74         1.24           0.92  -0.63% 

Median         0.73         1.15           0.90  0.00% 

Max         1.23         2.05           1.26  0.00% 

n = 20 

Min         0.42           0.72           0.67  -11.18% 

Mean         1.00           1.36           1.30  -4.34% 

Median         1.03           1.21           1.19  -3.08% 

Max         1.55           2.45           2.25  0.00% 

n = 30 

Min         0.27           0.56           0.44  -5.45% 

Mean         1.49           1.42           1.62  -2.05% 

Median         1.42           1.24           1.44  -0.55% 

Max         3.00           2.71           3.21  0.00% 

 

Table 2. 17 CI and GCI of Relax Node-Degree Constraints 

n CPU Ticks Real Time CI GCI 

10 0.73 1.17 0.90 0.95  

1.28 20 1.02 1.25 1.22 1.17 

30 1.43 1.28 1.48 1.40 

 

    Conclusion: After applying technique 2, relax node-degree constraints, the grand composite 

index of speedups (GCI) was 1.28, which means, on average, the model relaxing the constraints 
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was solved 1.28 times faster than the incumbent model. Therefore, we adopted technique 2 and 

dropped constraint set (2.9) from the incumbent.  

2.4.5 Technique 3：Single-Node Demand Cuts 

 

    The single-node demand cuts state that the total weight of the delivery requests accepted from 

node i, or into node j, is at most the vehicle capacity, Q.  

∑ 𝑤𝑖𝑗𝑦𝑖𝑗𝑗∈𝑉∖{1,𝑖} ≤ 𝑄 ∀𝑖 ∈ 𝑉 ∖ {𝑛}(2.22)  

∑ 𝑤𝑖𝑗𝑦𝑖𝑗𝑖∈𝑉∖{𝑗,𝑛} ≤ 𝑄 ∀𝑗 ∈ 𝑉 ∖ {1}(2.23)  

The above are valid inequalities that are satisfied by any feasible solution because the vehicle 

cannot simultaneously hold cargoes with total weights more than its capacity Q. This condition is 

not necessarily enforced by solutions to the LP relaxation because of the fractional y values. Tables 

2.18, 2.19, and 2.20 give the results from applying single-node demand cuts to the incumbent 

model. 

Table 2. 18 Test Results of Incremental Effect of Single-Node Demand Cuts for n = 10.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 3.28 1.78 7.33 4.13 0.62 0.6 0.76 0.66 2.00 205.75 

02 5.71 3.71 2.79 4.07 0.54 0.49 0.42 0.48 2.00 162.91 

03 2.33 2.60 3.40 2.78 0.84 0.93 0.88 0.88 2.94 279.41 

04 6.21 2.67 4.60 4.49 0.73 0.59 0.68 0.67 5.01 218.26 

05 0.47 0.54 0.47 0.49 0.26 0.29 0.26 0.27 6.50 129.68 

06 8.78 4.57 5.05 6.13 1.13 0.87 0.97 0.99 8.60 287.70 

07 9.31 5.98 4.95 6.74 0.85 0.69 0.68 0.74 3.47 184.64 

08 1.91 1.75 1.60 1.75 0.78 0.71 0.68 0.72 3.92 287.99 

09 9.28 3.83 1.49 4.87 0.77 0.55 0.42 0.58 6.29 164.44 

10 5.55 3.96 0.68 3.40 0.37 0.32 0.19 0.29 9.84 95.58 

Min 0.47 0.54 0.47 0.49 0.26 0.29 0.19 0.27 2.00 95.58 

Mean 5.28 3.14 3.24 3.89 0.69 0.60 0.59 0.63 5.06 201.64 

Median 5.63 3.19 3.09 4.10 0.75 0.60 0.68 0.66 4.46 195.20 

Max 9.31 5.98 7.33 6.74 1.13 0.93 0.97 0.99 9.84 287.99 
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Table 2. 19 Test Results of Incremental Effect of Single-Node Demand Cuts for n = 20.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 1,501 1,579 1,532 1,537 86 89 88 88 18 39,814 

02 775 765 756 765 59 57 57 58 19 29,614 

03 2,074 2,136 2,167 2,126 149 153 152 151 22 79,696 

04 7,891 8,132 8,443 8,155 501 508 504 504 20 243,567 

05 385 394 414 397 55 54 56 55 24 38,703 

06 2,148 2,292 2,436 2,292 136 142 148 142 15 77,267 

07 1,249 1,283 1,290 1,274 89 91 89 89 18 44,079 

08 1,070 1,053 1,077 1,067 72 70 70 70 14 34,261 

09 2,042 2,127 2,204 2,124 210 208 209 209 19 135,340 

10 625 630 638 631 75 74 75 75 24 49,812 

Min 385 394 414 397 55 54 56 55 14 29,614 

Mean 1,976 2,039 2,096 2,037 143 145 145 144 19 77,215 

Median 1,375 1,431 1,411 1,405 87 90 89 88 19 46,945 

Max 7,891 8,132 8,443 8,155 501 508 504 504 24 243,567 

 

Table 2. 20 Test Results of Incremental Effect of Single-Node Demand Cuts for n = 30.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 131,326 133,475 129,676 131,492 11,016 10,934 10,484 10,811 35 4,211,599 

02 115,556 123,189 120,357 119,701 5,608 5,863 5,790 5,753 34 2,244,072 

03 53,661 56,906 56,559 55,708 3,308 3,356 3,296 3,320 32 1,625,743 

04 128,082 136,079 133,987 132,716 5,853 6,123 6,034 6,004 45 2,077,826 

05 93,717 99,684 98,291 97,231 4,617 4,835 4,760 4,737 24 1,806,019 

06 392,279 396,132 393,380 393,930 20,620 20,981 20,295 20,632 41 5,753,277 

07 124,600 131,991 129,916 130,954 5,563 5,832 5,668 5,750 27 1,967,062 

08 235,304 240,596 232,432 236,514 11,921 12,057 11,407 11,732 23 3,309,807 

09 41,558 43,813 43,397 42,923 2,703 2,750 2,727 2,727 23 1,386,778 

10 87,632 93,870 90,754 90,752 4,238 4,428 4,266 4,311 32 1,649,855 

Min 41,558 43,813 43,397 42,923 2,703 2,750 2,727 2,727 23 1,386,778 

Mean 140,371 145,573 142,875 143,192 7,545 7,716 7,473 7,578 32 2,603,204 

Median 120,078 127,590 125,017 125,327 5,585 5,847 5,729 5,752 32 2,022,444 

Max 392,279 396,132 393,380 393,930 20,620 20,981 20,295 20,632 45 5,753,277 
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Table 2. 21 Summary of Incremental Effect of Single-Node Demand Cuts 

 Speedup LP Upper 

Bound 

Improvement 
Ave. CPU Time Ticks  Ave. Real Time 

n = 10 

Min   0.28   0.69   0.77  0.00% 

Mean  2.25   0.97   1.22  0.00% 

Median  0.94   0.96   1.21  0.00% 

Max  11.76   1.16   1.96  0.00% 

n = 20 

Min  0.54   0.49   0.49  0.00% 

Mean  0.86   0.98   0.90  0.18% 

Median  0.86   0.89   0.87  0.00% 

Max  1.05   1.67   1.34  1.83% 

n = 30 

Min  0.45   0.54   0.47  0.00% 

Mean  1.09   0.95   0.98  0.00% 

Median  0.97   0.94   0.92  0.00% 

Max  2.78   1.74   2.25  0.00% 

 

Table 2. 22 CI and GCI of Single-Node Demand Cuts 

n CPU Ticks Real Time CI GCI 

10  1.30   0.96   1.21  1.15 

0.94 20  0.86   0.91   0.88  0.89 

30  1.01   0.95   0.94  0.96 

 

    Conclusion: After applying technique 3, single-node demand cuts, the grand composite index 

of speedups (GCI) was 0.94, which means that solving the incumbent model was faster. Therefore, 

we did not adopt technique 3.  

2.4.6 Technique 4：Relax x-z Linking Constraints 

 

    Since 𝜃𝑖𝑗 = ∑ 𝑤𝑘𝑙𝑧𝑘𝑙,𝑖𝑗(𝑘,𝑙)∈𝐴 , adopting the conditional arc-flow cuts, 𝜃𝑖𝑗 ≤ 𝑄𝑥𝑖𝑗 , makes the 

constrains (2.5) linking the x and z variables, ∑ 𝑧𝑘𝑙,𝑖𝑗(𝑘,𝑙)∈𝐴 ≤ 𝑀𝑥𝑖𝑗, redundant. Tables 2.23, 2.24, 

and 2.25 give the results from relaxing constraint set (2.5) in the incumbent node-arc model. 
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Table 2. 23 Test Results of Incremental Effect of Relax x-z Linking for n = 10.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 2.43 1.28 2.28 2.00 0.67 0.64 0.62 0.64 2.00 250.43 

02 3.30 3.45 7.08 4.61 0.82 0.78 0.72 0.77 2.00 96.32 

03 3.07 1.73 4.79 3.19 0.73 0.69 0.61 0.68 2.94 190.38 

04 4.19 2.48 5.53 4.07 0.76 0.59 0.95 0.77 5.01 199.94 

05 0.92 0.90 0.93 0.92 0.39 0.41 0.38 0.39 6.50 109.72 

06 4.00 2.03 1.87 2.64 0.98 0.95 0.80 0.91 8.60 326.40 

07 4.27 2.44 8.25 4.99 0.88 0.83 0.96 0.89 3.47 272.16 

08 3.48 2.30 3.20 2.99 0.71 0.63 0.66 0.67 3.92 229.48 

09 4.49 2.74 7.79 5.01 0.65 0.64 0.85 0.71 6.29 163.54 

10 2.13 1.41 2.05 1.86 0.25 0.23 0.25 0.24 9.84 41.91 

Min 0.92 0.90 0.93 0.92 0.25 0.23 0.25 0.24 2.00 41.91 

Mean 3.23 2.08 4.38 3.23 0.68 0.64 0.68 0.67 5.06 188.03 

Median 3.39 2.17 3.99 3.09 0.72 0.64 0.69 0.70 4.46 195.16 

Max 4.49 3.45 8.25 5.01 0.98 0.95 0.96 0.91 9.84 326.40 

 

Table 2. 24 Test Results of Incremental Effect of Relax x-z Linking for n = 20.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 1,036 1,070 1,059 1,055 71 71 70 70 18 37,045 

02 769 802 779 783 52 54 53 53 19 27,438 

03 1,687 1,735 1,767 1,730 130 133 132 131 22 74,716 

04 6,526 6,560 6,983 6,690 368 374 382 375 20 178,757 

05 202 208 213 208 40 40 40 40 24 29,129 

06 1,858 1,903 1,980 1,914 137 140 141 139 15 88,623 

07 1,064 1,121 1,078 1,088 77 80 78 79 18 41,022 

08 780 823 795 799 52 54 52 53 14 26,163 

09 1,136 1,126 1,218 1,160 119 121 122 121 19 80,477 

10 1,470 1,493 1,545 1,503 94 92 94 93 24 51,420 

Min 202 208 213 208 40 40 40 40 14 26,163 

Mean 1,653 1,684 1,742 1,693 114 116 116 115 19 63,479 

Median 1,100 1,123 1,148 1,124 85 86 86 86 19 46,221 

Max 6,526 6,560 6,983 6,690 368 374 382 375 24 178,757 
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Table 2. 25 Test Results of Incremental Effect of Relax x-z Linking for n = 30.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 

1 

Real 

Time 

Run 

2 

Real 

Time 

Run 

3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 120,138 117,252 118,408 118,599 7,915 7,821 7,772 7,836 35 2,902,468 

02 205,899 196,957 199,742 198,350 8,376 8,147 8,304 8,225 34 2,561,425 

03 75,956 72,568 74,091 74,205 4,131 3,969 4,128 4,076 32 1,590,695 

04 152,491 145,197 146,619 148,102 6,978 6,755 6,812 6,848 45 2,235,008 

05 41,576 39,272 40,190 40,346 2,184 2,151 2,140 2,159 24 895,895 

06 114,124 111,409 112,341 112,625 6,437 6,593 6,392 6,474 41 2,041,673 

07 41,915 41,252 41,678 41,615 2,601 2,561 2,578 2,580 27 1,209,631 

08 107,115 103,201 104,597 104,971 5,887 5,775 5,773 5,812 23 1,935,653 

09 52,570 48,790 50,296 50,552 2,838 2,780 2,769 2,796 23 1,151,985 

10 75,831 72,063 74,851 74,248 3,893 3,806 3,884 3,861 32 1,521,308 

Min 41,576 39,272 40,190 40,346 2,184 2,151 2,140 2,159 23 895,895 

Mean 98,761 94,796 96,281 96,361 5,124 5,036 5,055 5,067 32 1,804,574 

Median 91,536 87,884 89,724 89,610 5,009 4,872 4,950 4,944 32 1,763,174 

Max 205,899 196,957 199,742 198,350 8,376 8,147 8,304 8,225 45 2,902,468 

 

Table 2. 26 Summary of Incremental Effect of Relax x-z Linking Constraints 

 Speedup LP Upper 

Bound 

Improvement 
Ave. CPU Time Ticks  Ave. Real Time 

n = 10 

Min  0.52 0.69 0.61 0.00% 

Mean 1.80 1.15 1.17 0.00% 

Median 1.38 1.12 1.15 0.00% 

Max 6.29 1.59 1.77 0.00% 

n = 20 

Min  0.44   0.52   0.57  0.00% 

Mean  1.07   1.14   1.09  0.00% 

Median  1.06   1.12   1.08  0.00% 

Max  1.71   1.80   1.56  0.00% 

n = 30 

Min  0.71   0.95   0.75  0.00% 

Mean  1.49   1.30   1.32  0.00% 

Median  1.36   1.11   1.18  0.00% 

Max  2.90   2.32   2.40  0.00% 

 

Table 2. 27 CI and GCI of Relax x-z Linking Constraints 

n CPU Ticks Real Time CI GCI 

10  1.50   1.13   1.16  1.24 

1.18 20  1.06   1.12   1.08  1.09 

30  1.39   1.16   1.21  1.24 
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   Conclusion: After applying technique 4, Relax x-z Linking, the grand composite index of 

speedups (GCI) was 1.18, which means, on average, solving the model relaxing x-z linking 

constraints was 1.18 times faster than the incumbent model. Therefore, we adopted technique 4 

and dropped constraint set (2.5) from the incumbent.  

2.4.7 Technique 5：Branching Priority    

 

    In the node-arc model, there are three types of binary variables: xij, ykl, and zkl,ij which indicate 

whether the vehicle travels on arc (i, j), whether the delivery request from node k to node l is 

accepted, and whether the accepted demand from node k to node l is realized via arc (i, j), 

respectively. We suspected that prioritizing determining the vehicle’s route over deciding which 

delivery requests to accept would lead to faster solution times. Therefore, we tested solving the 

problem with a branching rule that stating that x variables are branched on before any other binary 

variables.  The results are given in Tables 2.28, 2.29, and 2.30. 

Table 2. 28 Test Results of Incremental Effect of Branching Priority for n =10.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 1.45 3.80 4.95 3.40 0.64 0.77 0.73 0.71 2.00 250.44 

02 3.28 5.19 9.40 5.95 0.73 0.62 0.67 0.67 2.00 96.33 

03 2.19 3.74 8.23 4.72 0.61 0.56 0.81 0.66 2.94 190.38 

04 3.85 3.41 10.57 5.94 0.58 0.64 0.92 0.71 5.01 199.95 

05 0.86 0.83 0.64 0.78 0.36 0.34 0.28 0.33 6.50 109.73 

06 4.42 5.55 4.78 4.92 0.99 0.87 0.87 0.91 8.60 326.41 

07 4.22 4.88 8.21 5.77 0.97 1.00 0.92 0.96 3.47 272.17 

08 3.92 5.36 6.52 5.27 0.71 0.79 0.82 0.77 3.92 229.49 

09 1.83 6.42 7.47 5.24 0.50 0.68 0.66 0.61 6.29 163.54 

10 1.07 2.26 1.37 1.57 0.18 0.27 0.19 0.21 9.84 41.91 

Min 0.86 0.83 0.64 0.78 0.18 0.27 0.19 0.21 2.00 41.91 

Mean 2.71 4.14 6.21 4.35 0.63 0.65 0.69 0.66 5.06 188.04 

Median 2.73 4.34 6.99 5.08 0.63 0.66 0.77 0.69 4.47 195.17 

Max 4.42 6.42 10.57 5.95 0.99 1.00 0.92 0.96 9.84 326.41 
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Table 2. 29 Test Results of Incremental Effect of Branching Priority for n =20.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 745 816 873 812 54 57 60 57 18 29,107 

02 720 811 867 800 43 46 48 46 19 20,459 

03 869 981 1,040 963 58 62 65 62 22 30,882 

04 1,125 1,297 1,366 1,262 95 104 109 102 20 57,075 

05 120 131 127 126 29 31 31 31 24 20,871 

06 737 887 799 807 98 110 107 105 15 72,647 

07 878 981 1,046 968 58 63 67 62 18 29,078 

08 656 687 780 708 40 42 45 42 14 18,475 

09 248 293 264 268 45 49 47 47 19 32,132 

10 497 559 544 533 51 55 54 54 24 33,485 

Min 497 131 127 126 29 31 31 31 14 18,475 

Mean 497 744 771 725 57 62 63 61 19 34,421 

Median 497 814 833 804 53 56 57 55 19 29,995 

Max 497 1,297 1,366 1,262 98 110 109 105 24 72,647 

 

Table 2. 30 Test Results of Incremental Effect of Branching Priority for n = 30.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 

1 

Real 

Time 

Run 

2 

Real 

Time 

Run 

3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 61,218 69,127 70,375 66,907 3,875 4,393 4,522 4,263 35 1,405,157 

02 128,243 149,091 143,728 140,354 5,027 5,778 5,687 5,497 34 1,546,461 

03 38,096 44,385 43,470 41,983 2,505 2,881 2,935 2,774 32 1,213,322 

04 18,483 21,745 21,133 20,454 1,464 1,656 1,662 1,594 45 812,789 

05 19,407 22,517 21,996 21,307 1,503 1,670 1,728 1,634 24 838,275 

06 33,504 37,132 40,321 36,986 1,917 2,118 2,284 2,106 41 863,673 

07 29,945 34,850 34,001 32,932 2,134 2,450 2,480 2,355 27 1,081,561 

08 84,287 94,156 98,523 92,322 5,545 6,479 6,474 6,166 23 1,966,885 

09 30,150 34,861 33,969 32,993 1,895 2,154 2,169 2,073 23 895,030 

10 62,213 72,909 69,948 68,357 3,207 3,704 3,645 3,518 32 1,303,688 

Min 18,483 21,745 21,133 20,454 1,464 1,656 1,662 1,594 23 812,789 

Mean 50,555 58,077 57,746 55,459 2,907 3,328 3,359 3,198 32 1,192,684 

Median 35,800 40,759 41,895 39,485 2,320 2,666 2,707 2,564 32 1,147,441 

Max 128,243 149,091 143,728 140,354 5,545 6,479 6,474 6,166 45 1,966,885 
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Table 2. 31 Summary of Incremental Effect of Branching Priority Constraints 

 Speedup LP Upper 

Bound 

Improvement 
Ave. CPU Time Ticks  Ave. Real Time 

n = 10 

Min   0.54  1.00  0.86  0.00% 

Mean  0.80  1.00  1.04  0.00% 

Median  0.73  1.00  1.05  0.00% 

Max  1.19  1.00  1.20  0.00% 

n = 20 

Min  0.98   1.22   1.16  0.00% 

Mean  2.28   1.76   1.76  0.00% 

Median  1.72   1.41   1.31  0.00% 

Max  5.30   3.13   3.67  0.00% 

n = 30 

Min  1.09   0.98   0.94  0.00% 

Mean  2.22   1.58   1.80  0.00% 

Median  1.65   1.30   1.41  0.00% 

Max  7.24   2.75   4.30  0.00% 

 

Table 2. 32 CI and GCI of Branching Priority Constraints 

n CPU Ticks Real Time CI GCI 

10   0.75   1.00   1.05  0.95 

1.5264 20  1.86   1.50   1.42  1.57 

30  1.81   1.36   1.51  1.54 

 

    Conclusion: After applying technique 5, Branching Priority, the grand composite index of 

speedups (GCI) was 1.5264, which means that using the branching rule was an improvement over 

solving the incumbent model with CPLEX’s default settings. Therefore, we adopted the branching 

priority on the x variables. Hereinafter we refer to the process of solving the incumbent model with 

the branching rule as the “incumbent model”. 
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2.4.8 Technique 6：Lifted MTZ     

 

    Desrochers and Laporte (1991) [47] proved that the MTZ subtour elimination constraints  

                     𝑠𝑖 − 𝑠𝑗 + (𝑛 + 1)𝑥𝑖𝑗 ≤ 𝑛  ∀ (𝑖,  𝑗) ∈ 𝐴                             (2.13)                                  

can be strengthened by lifting them to 

                 𝑠𝑖 − 𝑠𝑗 + (𝑛 − 1)𝑥𝑖𝑗 + (𝑛 − 3)𝑥𝑗𝑖 ≤ 𝑛 − 2  ∀ (𝑖,  𝑗) ∈ 𝐴: 𝑖 ≠ 1, 𝑗 ≠ 𝑛(2.24) 

 Tables 2.33, 2.34, and 2.35 summarize the effect of lifting the MTZ constraints on the 

incumbent model. 

Table 2. 33 Test Results of Incremental Effect of Lifted MTZ for n= 10.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 1.02 1.05 1.04 1.04 0.60 0.57 0.54 0.57 2.00 258.33 

02 1.82 5.84 4.40 4.02 0.54 0.51 0.64 0.56 2.00 81.92 

03 1.44 2.29 3.19 2.31 0.55 0.66 0.61 0.61 2.57 183.24 

04 2.59 1.99 2.16 2.25 0.69 0.69 0.68 0.69 4.04 207.22 

05 0.68 0.84 0.73 0.75 0.30 0.34 0.33 0.32 5.34 106.03 

06 4.99 2.87 2.30 3.39 0.68 0.75 0.61 0.68 6.32 196.30 

07 5.03 2.64 6.07 4.58 0.82 0.83 0.92 0.86 3.09 279.09 

08 1.63 1.94 1.72 1.76 0.63 0.73 0.65 0.67 3.29 230.68 

09 1.11 1.14 0.87 1.04 0.48 0.50 0.42 0.47 4.36 144.46 

10 1.73 1.60 1.80 1.71 0.26 0.27 0.26 0.26 6.58 43.37 

Min 0.68 0.84 0.73 0.75 0.26 0.27 0.26 0.26 2.00 43.37 

Mean 2.20 2.22 2.43 2.28 0.56 0.59 0.57 0.57 3.96 173.06 

Median 1.68 1.96 1.98 2.00 0.58 0.62 0.61 0.59 3.67 189.77 

Max 5.03 5.84 6.07 4.58 0.82 0.83 0.92 0.86 6.58 279.09 
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Table 2. 34 Test Results of Incremental Effect of Lifted MTZ for n = 20.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 865 827 875 856 59 56 59 58 15 30,043 

02 812 768 800 793 50 47 49 49 14 22,898 

03 1,028 987 1,042 1,019 64 61 65 63 14 30,069 

04 996 968 1,005 990 97 94 96 96 14 59,331 

05 87 88 93 89 31 30 31 30 18 22,892 

06 950 923 980 951 105 104 109 106 13 71,063 

07 1,038 998 1,026 1,021 62 60 61 61 13 27,165 

08 740 705 734 726 42 39 41 41 10 16,731 

09 326 321 337 328 43 41 42 42 14 29,293 

10 406 390 397 398 76 74 74 75 19 57,101 

Min 497 88 93 89 31 30 31 30 10 16,731 

Mean 497 698 729 717 63 61 63 62 14 36,659 

Median 497 798 838 825 61 58 60 60 14 29,668 

Max 497 998 1,042 1,021 105 104 109 106 19 71,063 

 

Table 2. 35 Test Results of Incremental Effect of Lifted MTZ for n = 30.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 109,652 143,250 114,980 122,627 7,342 8,538 7,606 7,829     28 2,434,610 

02 80,272 136,244 78,560 98,359 4,311 6,188 4,200 4,900 27 1,745,495 

03 27,701 45,590 27,481 33,591 2,636 3,401 2,625 2,888 25 1,436,603 

04 23,347 34,822 22,780 26,983 1,953 2,385 1,917 2,085 32 1,061,262 

05 10,405 13,412 10,256 11,358 1,924 1,956 1,871 1,917 20 1,380,103 

06 38,604 41,558 36,964 39,042 2,895 2,890 2,804 2,863 34 1,250,096 

07 27,540 33,841 27,711 29,697 2,354 2,544 2,321 2,406 22 1,340,991 

08 82,520 87,352 83,047 84,306 5,915 5,958 6,051 5,975 18 2,219,737 

09 17,824 19,097 17,794 18,238 1,704 1,685 1,719 1,702 19 1,016,520 

10 24,576 25,996 24,567 25,046 2,399 2,381 2,373 2,384 26 1,424,402 

Min 10,405 13,412 10,256 11,358 1,704 1,685 1,719 1,702 18 1,016,520 

Mean 44,244 58,116 44,414 48,925 3,343 3,792 3,349 3,495 25 1,530,982 

Median 27,620 38,190 27,596 31,644 2,518 2,717 2,499 2,635 25 1,402,253 

Max 109,652 143,250 114,980 122,627 7,342 8,538 7,606 7,829 34 2,434,610 
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Table 2. 36 Summary of Incremental Effect of Lifted MTZ Constraints 

 Speedup LP Upper 

Bound 

Improvement 
Ave. CPU Time Ticks  Ave. Real Time 

n = 10 

Min          0.92      0.96           0.81  0.00% 

Mean         2.21      1.09           1.13  16.70% 

Median         1.76      1.01           1.14  16.98% 

Max         5.03       1.66           1.34  33.13% 

n = 20 

Min         0.82  0.59           0.72  15.05% 

Mean         1.05  0.96           0.99  25.49% 

Median         0.96  1.00           1.00  26.20% 

Max         1.41   1.10           1.12  36.57% 

n = 30 

Min         0.55  0.58           0.54  14.32% 

Mean         1.35  0.79           0.97  20.42% 

Median         1.18  0.83           0.97  20.84% 

Max         2.73   0.92           1.48  29.41% 
 

Table 2. 37. CI and GCI of Lifted MTZ Constraints 

n CPU Ticks Real Time CI GCI 

10  1.88   1.04   1.14  1.30 

0.9991 20  0.98   0.99   0.99  0.99 

30  1.22   0.82   0.97  0.98 

 

    Conclusion:  After applying technique 6, Lifted MTZ, the grand composite index of speedups 

(GCI) was 0.9991, which means that the incumbent model was solved faster. Therefore, we did 

not adopt technique 6.  

2.4.9 Technique 7：MTZ upper bound 

 

In the original MTZ subtour elimination constraint by Miller et al. (1960) [45], there is no upper 

limit for the sequence variable si. As result any given tour has essentially an infinite number of 

representations in terms of the sequence variables. This type of symmetry can needlessly slow 

down the branch-and-bound process by causing it “to explore and eliminate such alternative 
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symmetric solutions” (Sherali and Smith (2001) [48])  .  Desrochers and Laporte (1991) [47] 

proved that constraining                     1 ≤ 𝑠𝑖 ≤ 𝑛 − 1      ∀𝑖 ∈ 𝑉 ∖ {1}                                         (2.25) 

ensures that there is only one representation of any given feasible tour. The effect of including 

upper bounds on the sequence variables are summarized in Tables 2.38, 2.39, and 2.40. 

Table 2. 38 Test Results of Incremental Effect of MTZ Upper Bound for n = 10.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 3.28 8.63 3.44 5.12 0.62 0.89 0.70 0.74 2.00 266.90 

02 3.63 1.51 2.48 2.54 0.48 0.41 0.49 0.46 2.00 128.12 

03 3.39 4.95 4.36 4.23 0.53 0.84 0.91 0.76 2.94 157.75 

04 2.21 2.72 3.20 2.71 0.79 0.85 0.61 0.75 5.01 189.11 

05 5.00 1.54 2.45 3.00 0.53 0.38 0.44 0.45 6.50 153.93 

06 3.80 1.47 2.27 2.52 0.51 0.42 0.49 0.47 8.60 174.29 

07 6.14 2.65 1.95 3.58 0.81 0.78 0.66 0.75 3.47 262.73 

08 4.92 5.21 3.05 4.39 0.88 1.04 0.90 0.94 3.92 401.28 

09 0.94 0.96 1.13 1.01 0.43 0.42 0.49 0.45 6.29 166.05 

10 2.50 1.89 1.84 2.08 0.47 0.33 0.26 0.35 9.84 47.70 

Min 0.94 0.96 1.13 1.01 0.43 0.33 0.26 0.35 2.00 47.70 

Mean 3.58 3.15 2.62 3.12 0.61 0.64 0.60 0.61 5.06 194.79 

Median 3.51 2.27 2.46 2.85 0.53 0.60 0.55 0.61 4.46 170.17 

Max 6.14 8.63 4.36 5.12 0.88 1.04 0.91 0.94 9.84 401.28 

 

Table 2. 39 Test Results of Incremental Effect of MTZ Upper Bound for n =2 0.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 1,013 786 838 879 85 67 70 74 18 39,289 

02 848 709 754 770 51 44 45 47 19 21,355 

03 1,102 891 939 977 76 65 67 69 22 34,606 

04 1,040 982 1,038 1,020 107 98 103 103 20 65,589 

05 185 168 184 179 31 27 29 29 24 19,799 

06 1,409 1,489 1,575 1,491 119 114 119 117 15 67,825 

07 1,098 906 969 991 68 54 58 60 18 24,179 

08 778 684 736 733 63 54 56 58 14 27,443 

09 240 205 219 221 53 42 44 46 19 28,029 

10 481 358 384 408 70 51 53 58 24 33,074 

Min 497 168 184 179 31 27 29 29 14 19,799 

Mean 497 718 764 767 72 62 65 66 19 36,119 

Median 497 747 796 825 69 54 57 59 19 30,551 

Max 497 1,489 1,575 1,491 119 114 119 117 24 67,825 
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Table 2. 40 Test Results of Incremental Effect of MTZ Upper Bound for n = 30.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 

2 

Real 

Time 

Run 

3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 188,264 111,239 119,017 139,507 20,113 8,741 9,860 12,904 35 3,053,978 

02 166,376 119,388 126,284 137,349 10,236 5,071 5,350 6,885 34 1,568,098 

03 49,362 26,448 27,838 34,549 5,159 2,361 2,485 3,335 32 1,372,190 

04 25,516 17,155 18,245 20,305 2,999 1,395 1,467 1,953 45 752,547 

05 56,931 43,182 44,965 48,359 5,286 2,561 2,627 3,491 24 1,056,220 

06 93,815 44,295 46,468 61,526 6,291 2,620 2,753 3,888 41 1,138,944 

07 71,092 50,987 53,842 58,640 6,691 2,899 3,056 4,216 27 1,249,116 

08 211,113 107,294 111,801 143,403 13,785 5,895 6,167 8,616 23 1,807,981 

09 29,726 17,404 18,199 21,776 3,133 1,513 1,584 2,077 23 823,056 

10 43,140 35,612 37,340 38,697 2,859 2,434 2,538 2,610 32 1,176,301 

Min 25,516 17,155 18,199 20,305 2,859 1,395 1,467 1,953 23 752,547 

Mean 93,533 57,300 60,400 70,411 7,655 3,549 3,789 4,998 32 1,399,843 

Median 64,012 43,738 45,716 53,500 5,788 2,591 2,690 3,690 32 1,212,708 

Max 211,113 119,388 126,284 143,403 20,113 8,741 9,860 12,904 45 3,053,978 

 

 

Table 2. 41 Summary of Incremental Effect of MTZ upper bound Constraints 

 Speedup LP Upper 

Bound 

Improvement 
Ave. CPU Time Ticks  Ave. Real Time 

n = 10 

Min          0.26   0.57           0.60  0.00% 

Mean         1.73  1.00           1.10  0.00% 

Median         1.40   0.96           0.96  0.00% 

Max         5.20    1.87           1.92  0.00% 

n = 20 

Min         0.54  0.67           0.73  0.00% 

Mean         0.99  0.96           0.93  0.00% 

Median         0.98  0.99           0.95  0.00% 

Max         1.31  1.20           1.05  0.00% 

n = 30 

Min         0.44  0.46           0.33  0.00% 

Mean         0.93   0.91           0.74  0.00% 

Median         0.83   0.94           0.76  0.00% 

Max         1.77   1.11           1.35  0.00% 
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Table 2. 42 CI and GCI of MTZ upper bound Constraints 

n CPU Ticks Real Time CI GCI 

10  1.49   0.97   0.99  1.12 

0.9096 20  0.98   0.98   0.94  0.97 

30  0.85   0.93   0.76  0.84 

 

    Conclusion: After applying technique 7, MTZ upper bound, the grand composite index of 

speedups (GCI) was 0.9096 indicating that it was more efficient to solve the incumbent model.  

Therefore, we did not adopt the upper bound constraints for the MTZ sequence variables.   

2.4.10 Technique 8：Cover Cuts 

 

   Fischetti et al. (1998) [49] found that cover cuts on sets of arcs whose total length is more than 

the maximum route distance D were effective for solving the Orienteering Problem, which is a 

special case of BPMP.  They also proposed solving a knapsack problem to determine if there is a 

set of arcs 𝑆 that violates the cover cut: 

∑ 𝑥𝑖𝑗(𝑖,𝑗)∈𝑆 ≤ |𝑆| − 1  ∀ 𝑆 ⊆ 𝐴  such that ∑ 𝑑𝑖𝑗(𝑖,𝑗)∈𝑆 > 𝐷 

in the LP relaxation.  We applied this technique iteratively to the BPMP adding violated cover cuts 

as necessary until no additional cover cuts are found at which point we solve the MIP. The results 

are given in Tables 2.43, 2.44, 2.45. 
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Table 2. 43 Test Results of Incremental Effect of Cover Cuts for n =10.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 3.91 2.16 1.92 2.66 0.89 0.841569 0.85 0.86 2.00 255.37 

02 4.91 5.89 4.18 4.99 0.90 0.77 1.04 0.91 2.00 91.28 

03 4.86 4.74 5.46 5.02 0.91 0.71 0.84 0.82 2.94 188.63 

04 3.23 2.63 5.25 3.70 0.73 1.03 1.07 0.94 5.01 206.10 

05 3.84 2.29 8.14 4.76 0.62 0.77 0.93 0.77 6.50 111.96 

06 5.66 5.66 12.58 7.97 1.02 1.59 1.49 1.37 8.60 333.89 

07 3.64 3.12 8.29 5.02 1.12 1.47 1.44 1.34 3.47 279.35 

08 2.70 2.79 3.97 3.15 0.91 0.83 0.94 0.89 3.92 235.57 

09 3.26 3.94 3.42 3.54 0.80 0.83 0.79 0.81 6.29 165.98 

10 1.88 0.76 1.13 1.26 0.40 0.33 0.38 0.37 9.84 43.82 

Min 2.70 0.76 1.13 1.26 0.62 0.33 0.38 0.37 2.00 43.82 

Mean 4.00 3.40 5.43 4.21 0.88 0.92 0.98 0.91 5.06 191.20 

Median 3.84 2.96 4.72 4.23 0.90 0.83 0.93 0.88 4.46 197.37 

Max 5.66 5.89 12.58 7.97 1.12 1.59 1.49 1.37 9.84 333.89 

 

Table 2. 44 Test Results of Incremental Effect of Cover Cuts for n = 20.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 1,201 803 750 918 81 57 55 65 18 28,721 

02 1,415 794 737 982 80 48 48 59 19 20,938 

03 1,331 985 887 1,068 97 73 68 79 22 33,802 

04 2,023 1,704 1,513 1,747 155 130 118 134 20 66,270 

05 52,811 52,381 50,306 51,833 7,399 7,244 7,082 7,242 24 24,233 

06 1,590 1,285 973 1,283 139 90 77 102 15 46,357 

07 1,301 974 884 1,053 82 63 59 68 18 26,624 

08 792 733 688 738 48 47 45 47 14 19,324 

09 375 345 279 333 65 62 57 61 19 38,576 

10 1,000 605 516 707 99 60 55 71 24 33,488 

Min 375 345 279 333 48 47 45 47 14 19,324 

Mean 6,384 6,061 5,753 6,066 825 787 767 793 19 33,833 

Median 1,316 888 817 1,017 89 62 58 70 19 31,105 

Max 52,811 52,381 50,306 51,833 7,399 7,244 7,082 7,242 24 66,270 

 

  



 

57 

 

Table 2. 45 Test Results of Incremental Effect of Cover Cuts for n = 30.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 163,814 110,014 100,087 124,638 11,210 7,650 6,978 8,613 35 2,471,321 

02 156,964 109,168 94,901 120,344 8,054 4,697 4,206 5,653 34 1,432,326 

03 53,951 37,454 32,678 41,361 4,084 2,793 2,516 3,131 32 1,246,448 

04 29,781 20,245 17,227 22,418 2,573 1,816 1,639 2,009 45 968,206 

05 36,947 29,370 25,515 30,611 3,062 1,996 1,793 2,283 24 936,560 

06 52,662 35,395 34,936 40,998 3,433 2,325 2,235 2,665 41 913,807 

07 35,181 25,640 22,331 27,717 3,549 2,375 2,200 2,708 27 1,268,084 

08 111,663 76,245 72,748 86,885 7,185 4,888 4,620 5,564 23 1,644,209 

09 31,972 30,566 26,140 29,559 2,716 2,022 1,801 2,179 23 874,020 

10 48,201 41,012 35,332 41,515 3,769 2,693 2,456 2,973 32 1,137,796 

Min 29,781 20,245 17,227 22,418 2,573 1,816 1,639 2,009 23 874,020 

Mean 72,114 51,511 46,189 56,605 4,964 3,326 3,044 3,778 32 1,289,278 

Median 50,431 36,425 33,807 41,179 3,659 2,534 2,345 2,840 32 1,192,122 

Max 163,814 110,014 100,087 124,638 11,210 7,650 6,978 8,613 45 2,471,321 

 

Table 2. 46 Summary of Incremental Effect of Cover Cuts Constraints 

 Speedup LP Upper 

Bound 

Improvement 
Ave. CPU Time Ticks  Ave. Real Time 

n = 10 

Min          0.16   0.69           0.42  0.00% 

Mean         1.13    0.96           0.71  0.00% 

Median         1.22    0.98           0.75  0.00% 

Max         1.67   1.06           0.87  0.00% 

n = 20 

Min         0.00    0.83           0.00  0.00% 

Mean         0.74     1.01           0.76  0.00% 

Median         0.81     0.97           0.78  0.00% 

Max         0.96    1.57           1.03  0.00% 

n = 30 

Min         0.54  0.57           0.50  0.00% 

Mean         1.02  0.95           0.88  0.00% 

Median         1.04  0.96           0.88  0.00% 

Max         1.65  1.20           1.18  0.00% 
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Table 2. 47 CI and GCI of Cover Cuts  

n CPU Ticks Real Time CI GCI 

10   1.20    0.97    0.74  0.95 

0.9069 20  0.79   0.98   0.77  0.85 

30  1.04   0.96   0.88  0.95 

 

    Conclusion: After applying technique 8, Cover Cuts, the grand composite index of speedups 

(GCI) is 0.9069 indicating that it was more efficient to solve the incumbent model.  Therefore, we 

did not adopt the technique of cover cuts.   

2.4.11 Technique 9：Pairwise Demand Cuts 

 

    Pairwise demand cuts state that pairs of delivery requests from the same node whose total 

weight exceeds the vehicle's capacity are mutually exclusive. 

𝑦𝑘𝑖 + 𝑦𝑘𝑗 ≤ 1          ∀{(𝑘, 𝑖), (𝑘, 𝑗) ∈ 𝐴: 𝑖 ≠ 𝑗, 𝑤𝑘𝑖 + 𝑤𝑘𝑗 > 𝑄 }                          (2.25) 

𝑦𝑖𝑘 + 𝑦𝑗𝑘 ≤ 1          ∀{(𝑖, 𝑘), (𝑗, 𝑘) ∈ 𝐴: 𝑖 ≠ 𝑗, 𝑤𝑖𝑘 + 𝑤𝑗𝑘 > 𝑄  }                          (2.26) 

The above are valid inequalities that are satisfied by any feasible solution to the MIP formulation. 

In our preliminary tests, we observed that these cuts were not present in every possible case. 

Therefore, instead of adding them as additional constraints to the whole node-arc model, we adopt 

a simple scheme to add them as necessary. That is, we check for violated pairwise demand cuts of 

the corresponding LP relaxation, add any violated cuts found to the model, and solve the LP again. 

This process is repeated until no more cuts are found in the LP relaxation problem, at which point 

we restore the integrality constraints and solve the MIP. In this way, we can use a minimal number 

of pairwise demand cuts.  We denote the set of node pairs for which pairwise demand cuts are 

added by B.  Tables 2.48, 2.49, and 2.50 give the results obtained from applying this technique to 

the incumbent model. 
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Table 2. 48 Test Results of Incremental Effect of Pairwise Demand Cuts for n = 10.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 1.91 1.60 1.71 1.74 1.38 1.02689 1.07 1.16 2.00 245.31 

02 3.96 4.22 3.34 3.84 0.79 0.95 0.73 0.82 2.00 91.28 

03 3.20 2.73 2.82 2.92 1.00 0.89 0.93 0.94 2.94 189.06 

04 2.69 1.81 3.07 2.52 0.93 0.88 0.83 0.88 4.65 197.43 

05 1.07 1.31 1.30 1.23 0.45 0.56 0.56 0.52 6.50 111.96 

06 2.06 2.38 2.39 2.28 1.05 1.16 1.20 1.14 8.48 343.63 

07 5.34 4.93 2.93 4.40 1.03 1.28 1.00 1.10 3.47 276.50 

08 1.75 3.13 4.57 3.15 0.69 1.14 0.95 0.93 3.88 242.67 

09 3.42 2.92 3.32 3.22 0.84 0.98 0.96 0.93 6.29 166.29 

10 1.02 0.82 0.82 0.89 0.61 0.53 0.56 0.57 9.80 50.95 

Min 1.07 0.82 0.82 0.89 0.45 0.53 0.56 0.52 2.00 50.95 

Mean 2.82 2.59 2.63 2.62 0.91 0.94 0.88 0.90 5.00 191.51 

Median 2.69 2.56 2.87 2.72 0.93 0.97 0.94 0.93 4.27 193.25 

Max 5.34 4.93 4.57 4.40 1.38 1.28 1.20 1.16 9.80 343.63 

 

 

Table 2. 49 Test Results of Incremental Effect of Pairwise Demand Cuts for n = 20.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 1,473 805 873 1,050 94 62 63 73 18 27,321 

02 1,212 736 763 903 75 50 52 59 19 22,714 

03 1,161 978 1,055 1,065 77 68 71 72 22 28,821 

04 1,237 1,170 1,232 1,213 118 117 124 120 20 59,825 

05 182 179 183 181 44 43 44 44 24 26,643 

06 1,265 1,148 1,234 1,216 120 117 123 120 15 73,393 

07 1,555 903 974 1,144 95 64 65 74 18 26,859 

08 1,345 855 918 1,039 97 69 72 79 14 26,292 

09 496 306 322 374 90 69 72 77 19 38,632 

10 390 340 361 364 56 51 53 53 24 30,898 

Min 182 179 183 181 44 43 44 44 14 22,714 

Mean 1,031 742 791 855 87 71 74 77 19 36,140 

Median 1,225 830 895 1,045 92 66 68 74 19 28,071 

Max 1,555 1,170 1,234 1,216 120 117 124 120 24 73,393 

 

  



 

60 

 

Table 2. 50 Test Results of Incremental Effect of Pairwise Demand Cuts for n =30.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 

1 

Real 

Time 

Run 

2 

Real 

Time 

Run 

3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 59,409 57,242 61,217 59,289 3,641 3,516 3,732 3,630 35 1,256,904 

02 33,662 31,838 28,706 31,402 2,414 2,347 2,537 2,433 33 1,050,958 

03 45,848 44,190 47,043 45,694 2,839 2,794 2,950 2,861 32 1,202,606 

04 31,271 29,742 34,339 31,784 2,232 2,129 2,431 2,264 45 826,145 

05 42,705 40,546 42,742 41,998 2,553 2,482 2,649 2,561 23 918,572 

06 42,163 43,748 45,662 43,858 2,715 2,783 2,902 2,800 41 1,082,116 

07 45,982 46,030 48,503 46,838 3,108 3,160 3,329 3,199 27 1,307,731 

08 79,578 79,015 82,460 80,351 5,164 5,177 5,377 5,239 23 1,775,436 

09 25,491 24,582 25,867 25,313 1,788 1,750 1,853 1,797 23 829,883 

10 39,401 38,339 40,187 39,309 2,604 2,539 2,656 2,600 32 1,137,796 

Min 25,491 24,582 25,867 25,313 1,788 1,750 1,853 1,797 23 826,145 

Mean 44,551 43,527 45,673 44,584 2,906 2,868 3,042 2,938 32 1,138,815 

Median 42,434 42,147 44,202 42,928 2,659 2,661 2,779 2,700 32 1,109,956 

Max 79,578 79,015 82,460 80,351 5,164 5,177 5,377 5,239 45 1,775,436 

 

Table 2. 51 Summary of Incremental Effect of Pairwise Demand Cuts 

 Speedup LP Upper 

Bound 

Improvement 
Ave. CPU Time Ticks  Ave. Real Time 

n = 10 

Min          0.63   0.67           0.38  0.00% 

Mean         1.66   0.95           0.71  1.00% 

Median         1.65  0.98           0.75  0.00% 

Max         2.35  1.06           0.88  7.06% 

n = 20 

Min         0.66   0.70           0.54  0.00% 

Mean         0.87   0.95           0.78  0.59% 

Median         0.81   0.97           0.81  0.29% 

Max         1.47   1.08           1.00  1.83% 

n = 30 

Min         0.51   0.80           0.64  0.00% 

Mean         1.34   1.05           1.09  0.32% 

Median         1.02  1.04           1.06  0.22% 

Max         4.47  1.47           2.26  1.09% 
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Table 2. 52 CI and GCI of Pairwise Demand Cuts  

n CPU Ticks Real Time CI GCI 

10  1.65      0.97    0.74  1.07 

0.9853 20  0.83     0.97    0.80  0.87 

30  1.11    1.05    1.07  1.08 

 

 

    Conclusion: After applying technique 9, Pairwise Demand Cuts, the grand composite index of 

speedups (GCI) was 0.9853, which means that the incumbent model was solved faster. Therefore, 

we did not adopt technique 9.  

2.4.12 Summary of Enhanced Node-Arc Model and Results for 40-Node Instance 

 

    We conclude this section by restating the enhanced model and applying it to the 40-node 

problem instances.  

 

Enhanced Node-Arc Model 

 

Objective 

Maximize  𝑝 [∑ 𝑑𝑘𝑙𝑤𝑘𝑙𝑦𝑘𝑙(𝑘, 𝑙)∈𝐸 ] − 𝑐 ∑ 𝜃𝑖𝑗𝑑𝑖𝑗(𝑖, 𝑗)∈𝐸 − 𝑐𝑣 ∑ 𝑑𝑖𝑗𝑥𝑖𝑗(𝑖, 𝑗)∈𝐸                              (2.1) 

Subject to 

∑ zkl,kjj∈V = ykl  (k,  l) ∈ A                                                                              (2.2) 

∑ zkl,ili∈V = ykl  (k,  l) ∈ A                                             (2.3) 

∑ 𝑧𝑘𝑙,𝑖𝑎𝑖∈𝑉, (𝑖, 𝑎)∈𝐴 = ∑ 𝑧𝑘𝑙,𝑎𝑗𝑗∈𝑉, (𝑎, 𝑗)∈𝐴   (𝑘,  𝑙) ∈ 𝐴, 𝑎 ∈ 𝑉\{𝑘, 𝑙}                                        (2.4) 

∑ 𝑥1,𝑗(1,𝑗)∈𝐴 = 1                                              (2.6) 

∑ 𝑥𝑖,𝑛(𝑖,𝑛)∈𝐴 = 1                                                         (2.7) 

∑ 𝑥𝑖𝑘𝑖∈𝑉\{𝑘, 𝑛} = ∑ 𝑥𝑘𝑗𝑗∈𝑉\{1, 𝑘}   𝑘 ∈ 𝑉\{1, 𝑛}                                                     (2.8) 

∑ 𝑑𝑖𝑗𝑥𝑖𝑗(𝑖, 𝑗)∈𝐴 ≤ 𝐷                                             (2.10) 

θij = ∑ wklzkl,ij(k, l)∈A   (i,  j) ∈ A                                            (2.11) 

θij ≤ Qxij  (i,  j) ∈ A                                                         (2.21) 

𝑠𝑖 − 𝑠𝑗 + (𝑛 + 1)𝑥𝑖𝑗 ≤ 𝑛  (𝑖,  𝑗) ∈ 𝐴                                                                               (2.13) 
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𝑥𝑖𝑗 ∈ {0,  1}  (𝑖,  𝑗) ∈ 𝐴                                                                             (2.14)                

𝑦𝑘𝑙 ∈ {0,  1}  (𝑘,  𝑙) ∈ 𝐴                                        (2.15) 

𝑧𝑘𝑙,𝑖𝑗 ∈ {0,  1}  (𝑘,  𝑙) ∈ 𝐴, (𝑖,  𝑗) ∈ 𝐴                                                                        (2.16)   

 

    We conclude this section with results from applying the enhanced node-arc model to 40-node 

BPMP instances. From Table 2.54, we can see that the median and average real time for 40-node 

instances was 56,428 seconds (15.7 hours) and 329,773 seconds (91.6 hours), which is probably 

impractical for real-world application. 

Table 2. 53 CPU Times for Enhanced Node-Arc Model for n = 40.  

 

Instance 

CPU  

Time  

Run 1 

CPU  

Time  

Run 2 

CPU  

Time 

 Run 3 

Ave.  

CPU  

Time 

01 1,642,420 1,609,370 1,624,790 1,625,527 

02 5,311,600 5,398,720 5,554,910 5,421,743 

03 2,279,190 2,279,210 2,294,180 2,284,193 

04 440,044 432,906 439,291 437,414 

05 504,116 501,716 506,084 503,972 

06 895,623 893,713 901,347 896,894 

07 1,322,480 1,309,680 1,320,570 1,317,577 

08 1,124,880 1,095,630 1,108,450 1,109,653 

09 334,320 331,986 335,769 334,025 

10 50,837,400 54,439,600 52,230,100 52,502,367 

Min 334,320 331,986 335,769 334,025 

Mean 6,469,207 6,829,253 6,631,549 6,643,337 

Median 1,223,680 1,202,655 1,214,510 1,213,615 

Max 50,837,400 54,439,600 52,230,100 52,502,367 
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Table 2. 54 Real Times for Enhanced Node-Arc Model for n = 40.  

 

Instance 

Real  

Time  

Run 1 

Real  

Time  

Run 2 

Real  

Time 

Run 3 

Ave.  

Real  

Time 

01 76,067 74,799 75,979 75,615 

02 190,590 193,773 200,240 194,868 

03 139,011 137,874 139,658 138,847 

04 23,039 22,795 23,035 22,956 

05 30,046 29,894 30,123 30,021 

06 57,037 57,189 57,075 57,100 

07 56,135 55,357 55,778 55,756 

08 52,482 50,920 51,489 51,630 

09 18,474 18,300 18,464 18,413 

10 2,557,613 2,762,254 2,637,688 2,652,518 

Min 18,474 18,300 18,464 18,413 

Mean 320,049 340,315 328,953 329,773 

Median 56,586 56,273 56,427 56,428 

Max 2,557,613 2,762,254 2,637,688 2,652,518 

 

 

 

Table 2. 55 LP Upper Bounds and Ticks for Enhanced Node-Arc Model for n = 40.  

 

Instance 

LP  

Upper 

Bound 

 

Ticks 

01 49 18,661,092 

02 57 38,797,945 

03 54 28,592,204 

04 37 8,250,144 

05 66 9,998,664 

06 52 13,904,434 

07 41 15,569,350 

08 38 16,177,156 

09 55 6,601,682 

10 61 463,811,772 

Min 37 6,601,682 

Mean 51 62,036,444 

Median 53 15,873,253 

Max 66 463,811,772 
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2.5 Enhancing the Triples Formulation 

2.5.1 Initial Incumbent Formulation 

    In this section we give the results for our initial incumbent, the original triples model. The model 

was solved three times for each problem instance. The results are shown in Tables 2.56 -2.60. 

Table 2. 56 Test Results of Original Triples Model for n = 10.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 3.15 1.91 2.69 2.58 0.68 0.62 0.74 0.68 2.00000 39.06 

02 3.14 4.70 0.71 2.85 0.56 0.47 0.39 0.47 2.00000 34.44 

03 2.69 2.82 3.61 3.04 0.42 0.48 0.48 0.46 2.00000 49.68 

04 4.55 5.58 2.73 4.29 0.97 0.87 0.90 0.91 2.00000 97.23 

05 2.53 3.66 2.61 2.93 0.54 0.59 0.54 0.56 2.00000 27.97 

06 2.41 2.07 4.43 2.97 0.41 0.45 0.54 0.47 2.00000 66.53 

07 2.80 3.69 2.69 3.06 0.76 0.49 0.57 0.61 2.00000 52.56 

08 1.52 1.09 3.05 1.89 0.37 0.39 0.40 0.39 2.00000 62.65 

09 5.24 2.48 1.87 3.20 0.47 0.45 0.51 0.48 2.00000 39.59 

10 1.13 1.23 0.58 0.98 0.10 0.11 0.15 0.12 2.00000 10.63 

Min 1.13 1.09 0.58 0.98 0.10 0.11 0.15 0.12 2.00000 10.63 

Mean 2.92 2.92 2.50 2.78 0.53 0.49 0.52 0.51 2.00000 48.03 

Median 2.75 2.65 2.69 2.95 0.51 0.48 0.53 0.48 2.00000 44.64 

Max 5.24 5.58 4.43 4.29 0.97 0.87 0.90 0.91 2.00000 97.23 

 

Table 2. 57 Test Results of Original Triples Model for n = 20.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 

1 

Real 

Time 

Run 

2 

Real 

Time 

Run 

3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 11.82 12.36 11.14 11.78 3.31 3.15 3.25 3.24 2.00024 1,382.92 

02 5.89 4.82 6.39 5.70 2.43 2.28 2.41 2.37 2.00012 705.12 

03 17.17 15.90 16.73 16.60 3.89 3.80 3.80 3.83 2.00060 1,776.09 

04 44.74 44.71 46.30 45.25 5.35 5.23 5.40 5.33 2.00063 2,600.35 

05 14.57 14.34 14.59 14.50 3.03 2.89 2.97 2.96 2.00000 1,441.45 

06 308.56 328.86 306.95 314.79 20.93 21.64 20.48 21.02 2.00180 13,753.46 

07 9.08 9.39 9.29 9.26 3.06 2.99 3.09 3.05 2.00024 1,136.33 

08 9.26 8.36 8.63 8.75 3.57 3.22 3.31 3.37 2.00000 1,313.38 

09 70.57 72.79 67.04 70.14 5.49 5.60 5.37 5.49 2.00204 2,809.86 

10 25.38 27.30 24.66 25.78 3.56 3.35 3.40 3.44 2.00000 1,572.45 

Min 5.89 4.82 6.39 5.70 2.43 2.28 2.41 2.37 2.00000 705.12 

Mean 51.70 53.88 51.17 52.25 5.46 5.42 5.35 5.41 2.00057 2,849.14 

Median 15.87 15.12 15.66 15.55 3.57 3.29 3.36 3.40 2.00024 1,506.95 

Max 308.56 328.86 306.95 314.79 20.93 21.64 20.48 21.02 2.00204 13,753.46 
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Table 2. 58 Test Results of Original Triples Model for n = 30.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 

1 

Real 

Time 

Run 

2 

Real 

Time 

Run 

3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 2,007 2,187 2,057 2,084 106 115 107 109 2.00000 57,767 

02 6,624 6,986 6,783 6,798 316 332 322 323 2.00084 190,088 

03 1,552 1,657 1,626 1,611 106 112 109 109 2.00076 64,027 

04 477 492 477 482 78 80 78 79 2.00103 60,791 

05 2,288 2,442 2,368 2,366 121 127 122 123 2.00104 63,157 

06 30 30 31 30 7 6 6 6 2.00146 4,318 

07 2,120 2,286 2,236 2,214 119 127 123 123 2.00219 65,146 

08 2,275 2,416 2,324 2,338 129 135 129 131 2.00124 71,547 

09 6,352 6,773 6,584 6,570 398 424 403 408 2.00151 259,044 

10 10,181 10,726 10,533 10,480 561 587 580 576 2.00116 248,936 

Min 30 30 31 30 7 6 6 6 2.00000 4,318 

Mean 3,390 3,600 3,502 3,497 194 205 198 199 2.00112 108,482 

Median 2,198 2,351 2,280 2,276 120 127 123 123 2.00110 64,586 

Max 10,181 10,726 10,533 10,480 561 587 580 576 2.00219 259,044 

Table 2. 59 Test Results of Original Triples Model for n = 40.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 9,159 9,485 9,424 9,356 505 522 510 512 2.00002 223,051 

02 230,646 233,806 233,457 232,636 12,633 12,967 12,762 12,787 2.00002 2,231,392 

03 9,941 10,380 10,221 10,181 464 485 474 474 2.00003 200,479 

04 4,924 5,099 5,097 5,040 357 384 363 368 2.00004 216,198 

05 30,709 31,393 31,534 31,212 1,532 1,578 1,551 1,553 2.00005 583,752 

06 110 115 110 112 16 17 16 17 2.00005 10,844 

07 52,311 53,147 53,447 52,968 2,495 2,566 2,529 2,530 2.00002 719,292 

08 117,263 120,211 120,584 119,353 5,383 5,500 5,464 5,449 2.00003 1,273,891 

09 84,683 86,619 86,434 85,912 3,481 3,565 3,559 3,535 2.00003 1,006,632 

10 102,631 105,095 104,735 104,154 5,021 5,141 5,088 5,083 2.00005 1,427,219 

Min 110 115 110 112 16 17 16 17 2.00002 10,844 

Mean 64,238 65,535 65,504 65,092 3,189 3,273 3,232 3,231 2.00003 789,275 

Median 41,510 42,270 42,490 42,090 2,013 2,072 2,040 2,042 2.00003 651,522 

Max 230,646 233,806 233,457 232,636 12,633 12,967 12,762 12,787 2.00005 2,231,392 
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Table 2. 60 Test Results of Original Triples Model for n = 50.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 265,863 266,362 267,515 266,580 10,802 10,868 10,891 10,853 2.00108 2,310,519 

02 810,851 800,358 794,515 801,908 38,720 39,002 38,191 38,638 2.00196 6,807,569 

03 678,901 680,901 670,418 676,740 28,237 28,427 27,970 28,211 2.00186 5,457,936 

04 76,866 76,762 76,741 76,790 3,293 3,360 3,296 3,316 2.00281 1,059,798 

05 127,561 127,923 127,392 127,625 5,659 5,767 5,719 5,715 2.00104 1,531,558 

06 295,880 293,908 296,457 295,415 13,551 13,573 13,561 13,562 2.00324 2,717,566 

07 598,680 599,843 598,380 598,968 25,062 25,265 25,062 25,130 2.00144 4,654,508 

08 101,607 102,628 101,456 101,897 4,148 4,238 4,169 4,185 2.00153 1,390,149 

09 265,103 264,168 264,372 264,548 11,312 11,400 11,337 11,350 2.00218 2,501,357 

10 1,162,570 1,172,530 1,178,230 1,171,110 46,822 47,669 47,508 47,333 2.00111 8,281,539 

Min 76,866 76,762 76,741 76,790 3,293 3,360 3,296 3,316 2.00104 1,059,798 

Mean 438,388 438,538 437,548 438,158 18,761 18,957 18,770 18,829 2.00183 3,671,250 

Median 280,872 280,135 281,986 280,998 12,432 12,487 12,449 12,456 2.00170 2,609,461 

Max 1,162,570 1,172,530 1,178,230 1,171,110 46,822 47,669 47,508 47,333 2.00324 8,281,539 

 

    As shown in Tables 2.56 -2.60, we were able to solve 10-node through 50-node instances with 

the original triples model. But the mean real time for 50-node instances was more than 5 hours, 

which is not practical in the real world.  There are no speedups yet (no techniques applied yet).  

2.5.2 Technique 1：Relax Linking Constraints 

 

    The linking constraint in section 2.2.3 (2.19) is to force (i, k) to be an arc on the vehicle's route 

if variable 𝑢𝑖𝑗
𝑘

 is positive. However, Dong (2015) showed that model remains valid even if this 

constraint is relaxed. Relaxing (2.19) significantly reduces the number of constraints in the triples 

model and consequently improves solution time as shown in Tables 2-36, 2-37, and 2-38. 
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Table 2. 61 Test Results of Incremental Effect of Relaxing Triples Linking Constraints for n =10.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP Upper 

Bound 

 

Ticks 

01 2.84 9.23 1.30 4.46 0.48 0.59 0.43 0.50 2.00000 52.93 

02 6.57 8.40 1.53 5.50 0.57 0.61 0.41 0.53 2.00000 27.67 

03 3.68 1.25 1.37 2.10 0.35 0.27 0.36 0.33 2.00000 39.63 

04 1.44 5.55 1.79 2.93 0.26 0.40 0.26 0.31 2.00000 58.17 

05 2.53 3.87 1.84 2.75 0.30 0.36 0.30 0.32 2.00000 35.92 

06 2.23 5.48 2.63 3.45 0.26 0.45 0.36 0.36 2.00000 55.46 

07 3.64 4.41 2.37 3.48 0.68 0.72 0.67 0.69 2.00000 43.87 

08 4.42 2.40 1.69 2.83 0.40 0.30 0.35 0.35 2.00000 94.04 

09 2.18 3.72 0.74 2.21 0.22 0.30 0.22 0.25 2.00000 32.39 

10 1.10 1.30 1.69 1.36 0.11 0.11 0.13 0.12 2.00000 20.06 

Min 1.10 1.25 0.74 1.36 0.11 0.11 0.13 0.12 2.00000 20.06 

Mean 3.06 4.56 1.69 3.11 0.36 0.41 0.35 0.37 2.00000 46.01 

Median 2.68 4.14 1.69 2.88 0.33 0.38 0.36 0.34 2.00000 41.75 

Max 6.57 9.23 2.63 5.50 0.68 0.72 0.67 0.69 2.00000 94.04 

 

Table 2. 62 Test Results of Incremental Effect of Relaxing Triples Linking Constraints for n = 

20.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP Upper 

Bound 

 

Ticks 

01 9.83 9.74 9.73 9.77 2.27 2.29 2.24 2.27 2.00024 994.84 

02 4.55 4.47 4.16 4.39 1.49 1.42 1.30 1.40 2.00012 549.77 

03 25.88 26.24 25.05 25.72 5.51 5.56 5.30 5.46 2.00060 3,354.07 

04 26.24 25.26 25.82 25.77 3.34 3.15 3.27 3.25 2.00063 1,374.97 

05 11.13 11.48 11.18 11.26 2.54 2.64 2.52 2.57 2.00000 1,161.77 

06 124.53 124.19 124.53 124.42 10.05 9.84 10.00 9.96 2.00180 6,194.38 

07 6.92 6.74 6.85 6.83 2.04 1.93 2.03 2.00 2.00024 807.62 

08 9.32 9.46 8.75 9.18 2.10 2.10 1.97 2.06 2.00000 834.06 

09 31.08 30.91 31.42 31.14 3.45 3.40 3.50 3.45 2.00204 1,646.54 

10 13.86 14.25 14.22 14.11 3.91 3.46 3.79 3.72 2.00000 1,216.68 

Min 4.55 4.47 4.16 4.39 1.49 1.42 1.30 1.40 2.00000 549.77 

Mean 26.33 26.27 26.17 26.26 3.67 3.58 3.59 3.61 2.00057 1,813.47 

Median 12.49 12.87 12.70 12.69 2.94 2.90 2.90 2.91 2.00024 1,189.23 

Max 124.53 124.19 124.53 124.42 10.05 9.84 10.00 9.96 2.00204 6,194.38 
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Table 2. 63 Test Results of Incremental Effect of Relaxing Triples Linking Constraints for n = 

30.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 1,393 1,393 1,395 1,393 65 64 64 64 2.00000 47,098 

02 761 759 757 759 50 49 49 49 2.00084 41,553 

03 540 543 540 541 31 32 31 31 2.00076 23,678 

04 53 53 52 52 10 10 10 10 2.00103 7,225 

05 640 635 636 637 36 35 36 36 2.00104 25,442 

06 38 38 38 38 8 8 8 8 2.00146 5,788 

07 757 756 764 759 43 43 43 43 2.00219 34,530 

08 674 676 674 675 39 40 40 39 2.00124 31,445 

09 1,220 1,216 1,214 1,217 63 63 63 63 2.00151 49,284 

10 3,246 3,257 3,262 3,255 168 168 166 167 2.00116 145,491 

Min 38 38 38 38 8 8 8 8 2.00000 5,788 

Mean 932 932 933 933 51 51 51 51 2.00112 41,153 

Median 716 716 715 717 41 41 41 41 2.00110 32,988 

Max 3,246 3,257 3,262 3,255 168 168 166 167 2.00219 145,491 

 

Table 2. 64 Test Results of Incremental Effect of Relaxing Triples Linking Constraints for n = 

40.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 7,201 7,125 7,129 7,152 295 294 297 295 2.00002 188,145 

02 83,958 83,701 83,890 83,850 3,065 3,057 3,041 3,054 2.00002 1,645,678 

03 1,805 1,813 1,825 1,814 111 110 111 111 2.00003 91,071 

04 1,238 1,226 1,235 1,233 111 110 112 111 2.00004 108,777 

05 4,190 4,210 4,191 4,197 197 197 197 197 2.00005 129,188 

06 110 108 107 108 15 15 15 15 2.00005 10,497 

07 26,473 26,518 26,435 26,475 1,024 1,025 1,024 1,024 2.00002 629,536 

08 29,710 29,807 29,837 29,784 1,223 1,223 1,227 1,224 2.00003 791,111 

09 27,626 27,744 27,602 27,657 1,076 1,089 1,080 1,082 2.00003 673,787 

10 45,022 45,058 44,980 45,020 1,827 1,833 1,820 1,827 2.00005 1,000,757 

Min 110 108 107 108 15 15 15 15 2.00002 10,497 

Mean 22,733 22,731 22,723 22,729 894 895 892 894 2.00003 526,855 

Median 16,837 16,821 16,782 16,813 660 660 661 660 2.00003 408,840 

Max 83,958 83,701 83,890 83,850 3,065 3,057 3,041 3,054 2.00005 1,645,678 
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Table 2. 65 Test Results of Incremental Effect of Relaxing Triples Linking Constraints for n = 

50.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 141,304 137,605 140,397 139,769 5,007 4,880 4,971 4,953 2.00108 2,058,914 

02 866,252 858,891 892,573 872,572 30,469 30,362 31,393 30,741 2.00196 10,599,888 

03 368,226 362,851 381,483 370,853 12,930 12,751 13,293 12,991 2.00186 4,595,967 

04 67,435 65,744 67,846 67,008 2,420 2,336 2,382 2,380 2.00281 977,185 

05 301,103 295,877 308,370 301,783 10,760 10,528 10,927 10,738 2.00104 3,735,936 

06 388,682 385,707 405,853 393,414 13,546 13,365 14,009 13,640 2.00324 4,646,419 

07 375,089 370,334 388,520 377,981 13,120 13,439 13,842 13,467 2.00144 4,614,224 

08 48,649 47,324 48,210 48,061 1,811 1,771 1,809 1,797 2.00153 780,865 

09 146,889 145,335 146,745 146,323 5,363 5,268 5,329 5,320 2.00218 2,140,370 

10 568,862 562,414 590,824 574,033 20,187 19,526 20,516 20,076 2.00111 7,221,995 

Min 48,649 47,324 48,210 48,061 1,811 1,771 1,809 1,797 2.00104 780,865 

Mean 327,249 323,208 337,082 329,180 11,561 11,423 11,847 11,610 2.00183 4,137,176 

Median 334,665 329,364 344,927 336,318 11,845 11,639 12,110 11,865 2.00170 4,165,951 

Max 866,252 858,891 892,573 872,572 30,469 30,362 31,393 30,741 2.00324 10,599,888 

 

Table 2. 66 Summary of Incremental Effect of Relaxing Triples Linking Constraints 

 Speedup LP Upper 

Bound 

Improvement 
Ave. CPU Time Ticks  Ave. Real Time 

n = 10 

Min          0.52           0.53           0.88  0.00% 

Mean         0.97           1.05           1.46  0.00% 

Median         0.87           1.20           1.33  0.00% 

Max         1.47           1.67           2.98  0.00% 

n = 20 

Min         0.65           0.53           0.70  0.00% 

Mean         1.51           1.45           1.44  0.00% 

Median         1.33           1.40           1.56  0.00% 

Max         2.53           2.22           2.11  0.00% 

n = 30 

Min         0.80           0.75           0.77  0.00% 

Mean         4.22           3.13           3.99  0.00% 

Median         3.34           2.38           3.46  0.00% 

Max         9.21           8.41           7.84  0.00% 

n = 40 

Min         1.03           1.03           1.10  0.00% 

Mean         3.37           1.80           3.55  0.00% 

Median         2.94           1.46           3.29  0.00% 

Max         7.44           4.52           7.87  0.00% 

n = 50 

Min         0.42           0.41           0.53  0.00% 

Mean         1.45           1.01           1.72  0.00% 

Median         1.70           1.10           2.00  0.00% 

Max         2.12           1.78           2.36  0.00% 
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Table 2. 67 CI and GCI of Relaxing Triples Linking Constraints  

n CPU Ticks Real Time CI GCI 

10 0.89 1.17 1.37 1.17 

2.11 

20 1.37 1.41 1.53 1.44 

30 3.55 2.57 3.58 3.20 

40 3.05 1.55 3.36 2.62 

50 1.64 1.09 1.93 1.55 

 

   Conclusion: After applying technique 1, relax linking constraints (2.19), the grand composite 

index of speedups (GCI) was 2.11, which means, on average, the model with relax linking 

constraints was solved 2.11 times faster than the incumbent model. Thus, we adopted it.  

 

2.5.3 Technique 2： Enforce Node-Degree  

 

    Unlike the node-arc model, the original triples model does not explicitly enforce the node-

degree constraints (2.9) because the MTZ subtour elimination constraints (2.13) ensure that vehicle 

visits each node at most once in an integer solution. However, the node-degree constraints can be 

violated in solutions to the LP relaxation of the triples model. Tables 2-39, 2-40, and 2-41 

summarize the effect of adding (2.13) to the triples model.  

Table 2. 68 Test Results of Incremental Effect of Enforcing Node-Degree Constraints for n =10.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP Upper 

Bound 

 

Ticks 

01 1.09 1.69 1.38 1.39 0.26 0.28 0.27 0.27 2.00000 42.03 

02 2.29 3.35 1.49 2.37 0.30 0.35 0.23 0.29 2.00000 79.55 

03 3.13 2.92 1.49 2.51 0.44 0.37 0.36 0.39 2.00000 70.13 

04 0.82 1.28 5.03 2.38 0.21 0.26 0.40 0.29 2.00000 29.74 

05 0.81 2.11 4.19 2.37 0.16 0.22 0.30 0.23 2.00000 35.50 

06 2.50 4.27 1.86 2.87 0.53 0.59 0.53 0.55 2.00000 69.55 

07 5.85 5.44 5.91 5.73 0.92 0.82 0.96 0.90 2.00000 41.21 

08 2.60 1.06 0.91 1.52 0.28 0.26 0.26 0.27 2.00000 85.26 

09 2.55 1.18 1.21 1.65 0.20 0.15 0.18 0.18 2.00000 29.72 

10 1.29 4.14 6.02 3.82 0.11 0.26 0.33 0.23 2.00000 21.72 

Min 0.81 1.06 0.91 1.39 0.11 0.15 0.18 0.18 2.00000 21.72 

Mean 2.29 2.74 2.95 2.66 0.34 0.36 0.38 0.36 2.00000 50.44 

Median 2.39 2.52 1.67 2.38 0.27 0.27 0.32 0.28 2.00000 41.62 

Max 5.85 5.44 6.02 5.73 0.92 0.82 0.96 0.90 2.00000 85.26 
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Table 2. 69 Test Results of Incremental Effect of Enforcing Node-Degree Constraints for n = 20.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 

1 

Real 

Time 

Run 

2 

Real 

Time 

Run 

3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 7.73 7.80 8.02 7.85 1.88 1.85 2.00 1.91 2.00024 806.69 

02 4.53 5.11 4.13 4.59 1.83 1.93 1.62 1.79 2.00012 641.58 

03 25.86 25.80 26.19 25.95 6.38 6.42 6.23 6.34 2.00060 3,539.62 

04 19.64 18.96 18.67 19.09 2.21 2.14 2.01 2.12 2.00063 952.86 

05 9.98 9.52 9.90 9.80 2.41 2.42 2.44 2.42 2.00000 1,080.53 

06 101.83 102.91 101.94 102.22 9.59 9.63 9.71 9.64 2.00120 5,003.73 

07 6.04 6.23 5.90 6.06 1.21 1.23 1.19 1.21 2.00024 955.74 

08 7.56 7.63 7.85 7.68 2.43 2.42 2.47 2.44 2.00000 870.83 

09 48.88 48.37 47.77 48.34 5.41 5.26 5.11 5.26 2.00120 3,190.62 

10 12.69 12.16 11.99 12.28 2.76 2.71 2.85 2.77 2.00000 1,224.06 

Min 4.53 5.11 4.13 4.59 1.21 1.23 1.19 1.21 2.00000 641.58 

Mean 24.48 24.45 24.24 24.39 3.61 3.60 3.56 3.59 2.00042 1,826.63 

Median 11.34 10.84 10.94 11.04 2.42 2.42 2.46 2.43 2.00024 1,018.14 

Max 101.83 102.91 101.94 102.22 9.59 9.63 9.71 9.64 2.00120 5,003.73 

 

Table 2. 70 Test Results of Incremental Effect of Enforcing Node-Degree Constraints for n = 30.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 428 431 432 430 29 29 29 29 2.00000 22,102 

02 758 758 753 756 45 45 45 45 2.00084 36,254 

03 401 406 406 405 32 33 32 32 2.00076 26,200 

04 84 83 83 83 23 22 22 22 2.00103 13,248 

05 386 388 388 387 29 29 29 29 2.00104 19,896 

06 34 34 34 34 7 7 7 7 2.00146 4,460 

07 440 440 439 440 33 33 32 32 2.00201 27,300 

08 476 477 476 476 30 30 30 30 2.00124 22,649 

09 767 760 764 764 47 46 47 47 2.00151 37,883 

10 1,188 1,192 1,206 1,195 71 72 71 71 2.00116 57,959 

Min 34 34 34 34 7 7 7 7 2.00000 4,460 

Mean 496 497 498 497 34 35 34 34 2.00111 26,795 

Median 434 436 435 435 31 32 31 31 2.00110 24,424 

Max 1,188 1,192 1,206 1,195 71 72 71 71 2.00201 57,959 

 

  



 

72 

 

Table 2. 71 Test Results of Incremental Effect of Enforcing Node-Degree Constraints for = 40.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 3,475 3,493 3,502 3,490 190 191 189 190 2.00002 142,912 

02 58,456 58,441 58,390 58,429 2,156 2,154 2,154 2,154 2.00002 1,162,683 

03 1,304 1,296 1,334 1,312 83 84 83 83 2.00003 71,249 

04 850 854 865 856 85 85 86 85 2.00004 82,715 

05 4,511 4,486 4,514 4,504 241 239 240 240 2.00005 179,905 

06 122 116 119 119 14 14 14 14 2.00005 10,638 

07 5,476 5,459 5,492 5,476 251 251 251 251 2.00002 165,771 

08 22,031 21,988 22,052 22,024 917 907 912 912 2.00003 600,851 

09 18,202 18,130 18,220 18,184 748 754 753 752 2.00003 499,628 

10 19,572 19,480 19,512 19,521 897 887 892 892 2.00004 486,885 

Min 122 116 119 119 14 14 14 14 2.00002 10,638 

Mean 13,400 13,374 13,400 13,391 558 556 558 557 2.00003 340,324 

Median 4,994 4,973 5,003 4,990 246 245 246 245 2.00003 172,838 

Max 58,456 58,441 58,390 58,429 2,156 2,154 2,154 2,154 2.00005 1,162,683 

 

Table 2. 72 Test Results of Incremental Effect of Enforcing Node-Degree Constraints for = 50.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 108,028 110,449 137,951 118,809 3,842 3,923 6,987 4,917 2.00108 1,508,032 

02 629,754 635,799 663,146 642,900 22,121 22,275 32,607 25,667 2.00196 7,596,212 

03 480,592 480,103 492,276 484,324 16,426 16,394 23,767 18,862 2.00186 5,513,749 

04 6,643 6,710 8,307 7,220 418 417 663 499 2.00267 306,845 

05 155,699 156,200 174,768 162,222 5,447 5,472 9,194 6,705 2.00104 1,965,157 

06 138,762 137,979 177,974 151,572 4,976 4,980 9,334 6,430 2.00258 2,007,687 

07 181,113 181,222 183,882 182,072 6,439 6,441 9,610 7,497 2.00144 2,273,111 

08 43,367 43,234 40,384 42,328 1,589 1,600 2,404 1,864 2.00150 677,770 

09 92,820 1,600 97,970 64,130 3,306 3,314 5,173 3,931 2.00218 1,280,190 

10 235,560 234,574 235,669 235,268 8,175 8,201 11,947 9,441 2.00111 2,822,918 

Min 6,643 1,600 8,307 7,220 418 417 663 499 2.00104 306,845 

Mean 207,234 198,787 221,233 209,084 7,274 7,302 11,169 8,581 2.00174 2,595,167 

Median 147,231 147,090 176,371 156,897 5,211 5,226 9,264 6,567 2.00168 1,986,422 

Max 629,754 635,799 663,146 642,900 22,121 22,275 32,607 25,667 2.00267 7,596,212 
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Table 2. 73 Summary of Incremental Effect of Enforcing Node-Degree Constraints 

 Speedup LP Upper 

Bound 

Improvement 
Ave. CPU Time Ticks  Ave. Real Time 

n = 10 

Min  0.36 0.35 0.50 0.00% 

Mean 1.41 1.01 1.16 0.00% 

Median 1.22 1.04 1.18 0.00% 

Max 3.21 1.96 1.85 0.00% 

n = 20 

Min  0.64   0.52   0.66  0.00% 

Mean  1.10   1.01   1.09  0.01% 

Median  1.15   0.98   1.05  0.00% 

Max  1.35   1.44   1.65  0.04% 

n = 30 

Min  0.63   0.55   0.45  0.00% 

Mean  1.64   1.38   1.35  0.00% 

Median  1.51   1.29   1.27  0.00% 

Max  3.24   2.51   2.34  0.01% 

n = 40 

Min  0.91   0.72   0.82  0.00% 

Mean  1.82   1.55   1.64  0.00% 

Median  1.44   1.32   1.38  0.00% 

Max  4.84   3.80   4.08  0.00% 

n = 50 

Min 0.77 0.83 0.69 0.00% 

Mean 2.50 1.84 1.76 0.00% 

Median 1.97 1.79 1.48 0.00% 

Max 9.28 3.18 4.76 0.03% 

 

Table 2. 74 CI and GCI of Enforcing Node-Degree Constraints 

n CPU Ticks Real Time CI GCI 

10 1.27 1.04 1.18 1.15 

1.43 

20 1.14 0.98 1.06 1.05 

30 1.54 1.31 1.29 1.37 

40 1.54 1.38 1.45 1.45 

50 2.13 1.80 1.56 1.80 

 

    Conclusion: After applying technique 2, enforce node-degree constraints, the grand composite 

index of speedups (GCI) was 1.43, which means, on average, the model with enforce node-degree 

constraints was solved 1.43 times faster than the incumbent model. Thus, we adopted it.  
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2.5.4 Technique 3：Single-Node Demand Cuts 

 

    Tables 2-42, 2-43, and 2-44 summarize the results of applying the single-node demand cuts 

described in Section 2.4.5 to the incumbent triples model. 

Table 2. 75 Incremental Effect Single-Node Demand Cuts for Triples Model n =10.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP Upper 

Bound 

 

Ticks 

01 1.60 1.91 2.69 2.07 0.31 0.36 0.40 0.36 2.00000 40.38 

02 1.88 1.27 2.74 1.96 0.20 0.26 0.32 0.26 2.00000 70.39 

03 2.21 0.93 1.35 1.50 0.22 0.21 0.31 0.25 2.00000 51.98 

04 2.84 1.57 2.83 2.42 0.24 0.26 0.30 0.27 2.00000 49.50 

05 1.68 1.59 3.57 2.28 0.30 0.26 0.33 0.30 2.00000 52.67 

06 3.00 3.35 2.05 2.80 0.66 0.55 0.49 0.57 2.00000 56.49 

07 1.74 1.65 2.61 2.00 0.57 0.67 0.43 0.56 2.00000 45.07 

08 4.62 1.25 0.70 2.19 0.36 0.30 0.16 0.27 2.00000 91.48 

09 3.84 2.80 1.85 2.83 0.60 0.59 0.57 0.59 2.00000 28.55 

10 0.49 2.57 3.00 2.02 0.08 0.15 0.18 0.14 2.00000 19.43 

Min 0.49 0.93 0.70 1.50 0.08 0.15 0.16 0.14 2.00000 19.43 

Mean 2.39 1.89 2.34 2.21 0.35 0.36 0.35 0.35 2.00000 50.59 

Median 2.04 1.62 2.65 2.13 0.31 0.28 0.33 0.29 2.00000 50.74 

Max 4.62 3.35 3.57 2.83 0.66 0.67 0.57 0.59 2.00000 91.48 

 

Table 2. 76 Incremental Effect Single-Node Demand Cuts for Triples Model n = 20.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP Upper 

Bound 

 

Ticks 

01 8.36 8.18 8.01 8.18 2.52 2.44 2.48 2.48 2.00024 1,017.50 

02 6.04 6.60 6.62 6.42 2.92 3.08 3.23 3.08 2.00012 887.88 

03 18.25 18.66 18.64 18.52 4.71 4.89 4.80 4.80 2.00060 3,190.64 

04 23.01 21.58 21.54 22.04 2.94 2.82 2.85 2.87 2.00063 1,293.59 

05 7.97 7.61 7.71 7.76 3.85 3.53 3.76 3.71 2.00000 1,098.06 

06 40.74 40.57 39.77 40.36 5.14 5.02 4.77 4.98 2.00120 2,652.09 

07 6.25 6.38 6.45 6.36 1.19 1.25 1.24 1.23 2.00024 912.88 

08 7.04 7.14 6.22 6.80 2.59 2.51 2.15 2.42 2.00000 903.82 

09 33.34 33.59 34.38 33.77 5.49 5.56 5.65 5.57 2.00120 3,731.75 

10 15.47 15.66 15.58 15.57 4.92 5.02 4.86 4.93 2.00000 1,746.58 

Min 6.04 6.38 6.22 6.36 1.19 1.25 1.24 1.23 2.00000 887.88 

Mean 16.65 16.60 16.49 16.58 3.63 3.61 3.58 3.61 2.00042 1,743.48 

Median 11.92 11.92 11.79 11.88 3.40 3.31 3.50 3.40 2.00024 1,195.83 

Max 40.74 40.57 39.77 40.36 5.49 5.56 5.65 5.57 2.00120 3,731.75 
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Table 2. 77 Incremental Effect Single-Node Demand Cuts for Triples Model n = 30.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP Upper 

Bound 

 

Ticks 

01 503.72 509.13 522.53 511.79 45.47 46.07 46.49 46.01 2.00000 38,712.14 

02 515.72 525.54 537.24 526.16 42.70 43.32 44.02 43.35 2.00084 37,530.25 

03 610.56 614.69 627.78 617.68 53.95 54.39 54.91 54.42 2.00076 50,643.76 

04 64.27 65.50 65.27 65.01 11.98 12.02 12.04 12.01 2.00103 9,870.53 

05 359.08 361.42 374.17 364.89 32.04 32.29 32.90 32.41 2.00104 26,453.56 

06 42.00 43.85 43.89 43.25 10.01 10.94 10.89 10.61 2.00146 6,480.00 

07 200.72 202.79 205.35 202.95 17.85 17.85 18.21 17.97 2.00201 15,115.31 

08 247.45 249.41 250.16 249.01 27.44 27.85 27.71 27.67 2.00124 25,631.55 

09 937.22 936.55 945.48 939.75 76.53 76.65 76.70 76.63 2.00151 72,046.28 

10 639.46 652.14 668.38 653.33 38.27 38.76 38.71 38.58 2.00116 28,822.55 

Min 42.00 43.85 43.89 43.25 10.01 10.94 10.89 10.61 2.00000 6,480.00 

Mean 412.02 416.10 424.03 417.38 35.62 36.01 36.26 35.97 2.00110 31,130.59 

Median 431.40 435.28 448.35 438.34 35.16 35.53 35.81 35.50 2.00110 27,638.06 

Max 937.22 936.55 945.48 939.75 76.53 76.65 76.70 76.63 2.00201 72,046.28 

 

Table 2. 78 Incremental Effect Single-Node Demand Cuts for Triples Model n = 40.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 1,789 1,857 1,975 1,874 117 121 124 121 2.00002 93,185 

02 39,662 41,683 43,428 41,591 1,504 1,555 1,607 1,555 2.00002 838,400 

03 1,310 1,359 1,443 1,371 93 96 99 96 2.00003 78,457 

04 1,184 1,206 1,227 1,206 153 153 153 153 2.00004 153,586 

05 1,600 1,657 1,791 1,683 134 134 140 136 2.00005 116,150 

06 120 123 123 122 16 17 17 17 2.00005 11,778 

07 5,701 5,975 6,452 6,043 278 291 306 292 2.00002 190,329 

08 16,448 17,265 18,197 17,303 702 723 759 728 2.00003 469,779 

09 10,445 10,902 11,571 10,973 457 478 503 479 2.00003 315,020 

10 17,805 18,599 19,503 18,636 750 779 806 778 2.00004 480,756 

Min 120 123 123 122 16 17 17 17 2.00002 11,778 

Mean 9,606 10,063 10,571 10,080 420 435 451 435 2.00003 274,744 

Median 3,745 3,916 4,214 3,958 215 222 230 222 2.00003 171,958 

Max 39,662 41,683 43,428 41,591 1,504 1,555 1,607 1,555 2.00005 838,400 
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Table 2. 79 Incremental Effect Single-Node Demand Cuts for Triples Model n = 50.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 84,724 88,331 92,498 88,518 3,040 3,170 3,320 3,176 2.00108 1,295,474 

02 159,434 164,355 171,481 165,090 5,568 5,735 5,969 5,757 2.00196 2,310,404 

03 72,500 75,529 78,732 75,587 2,689 2,721 2,850 2,753 2.00186 1,209,763 

04 8,252 8,883 9,592 8,909 467 492 508 489 2.00267 329,474 

05 14,645 15,460 16,519 15,541 609 645 679 644 2.00104 316,748 

06 77,032 80,702 85,150 80,961 2,745 2,837 3,006 2,863 2.00258 1,194,310 

07 65,166 68,697 71,285 68,383 2,413 2,515 2,625 2,518 2.00144 1,218,643 

08 6,860 7,246 7,703 7,270 347 359 378 361 2.00150 215,113 

09 18,669 19,809 21,402 19,960 769 806 859 811 2.00218 400,788 

10 114,244 118,440 123,559 118,748 4,079 4,198 4,412 4,229 2.00111 1,855,890 

Min 6,860 7,246 7,703 7,270 347 359 378 361 2.00104 215,113 

Mean 62,153 64,745 67,792 64,897 2,272 2,348 2,460 2,360 2.00174 1,034,661 

Median 68,833 72,113 75,009 71,985 2,551 2,618 2,737 2,635 2.00168 1,202,037 

Max 159,434 164,355 171,481 165,090 5,568 5,735 5,969 5,757 2.00267 2,310,404 

 

Table 2. 80 Summary of Incremental Effect Single-Node Demand Cuts for Triples Model 

 Speedup LP Upper 

Bound 

Improvement 
Ave. CPU Time Ticks  Ave. Real Time 

n = 10 

Min          0.58           0.60           0.30  0.00% 

Mean         1.26           1.00           1.09  0.00% 

Median         1.03           1.04           1.03  0.00% 

Max         2.87           1.35           1.71  0.00% 

n = 20 

Min         0.72           0.70           0.56  0.00% 

Mean         1.20           0.98           0.95  0.00% 

Median         1.04           0.91           0.86  0.00% 

Max         2.53           1.89           1.94  0.00% 

n = 30 

Min         0.66           0.52           0.59  0.00% 

Mean         1.28           1.01           1.10  0.00% 

Median         1.17           0.82           0.97  0.00% 

Max         2.17           2.01           1.86  0.00% 

n = 40 

Min         0.71           0.54           0.56  0.00% 

Mean         1.35           1.16           1.18  0.00% 

Median         1.16           1.15           1.20  0.00% 

Max         2.68           1.59           1.77  0.00% 

n = 50 

Min         0.81           0.93           1.02  0.00% 

Mean         3.84           2.76           4.17  0.00% 

Median         2.94           2.51           3.72  0.00% 

Max       10.44           6.20         10.40  0.00% 
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Table 2. 81 CI and GCI of Incremental Effect Single-Node Demand Cuts for Triples Model  

n CPU Ticks Real Time CI GCI 

10 1.09 1.03 1.04 1.05 

1.64 

20 1.09 0.93 0.88 0.96 

30 1.20 0.86 1.00 1.00 

40 1.21 1.15 1.20 1.18 

50 3.17 2.58 3.85 3.20 

 

    Conclusion: After applying technique 3, single-node demand cuts, the grand composite index 

of speedups (GCI) was 1.64, which means, on average, the model with single-node demand cuts 

was solved 1.64 times faster than the incumbent model. Thus, we adopted it.  

2.5.5 Technique 4：Branching Priority  

 

    Tables 2-45, 2-46, and 2-47 summarize the results of applying the branching priority described 

in Section 2.4.7 to the incumbent triples model. 

Table 2. 82 Incremental Effect of Branching Priority for Triples Model n = 10.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP Upper 

Bound 

 

Ticks 

01 1.16 1.73 2.51 1.80 0.23 0.38 0.39 0.33 2.00000 40.39 

02 2.83 1.57 2.81 2.41 0.26 0.28 0.33 0.29 2.00000 70.39 

03 2.39 3.44 2.41 2.75 0.30 0.50 0.31 0.37 2.00000 51.98 

04 2.03 1.14 1.61 1.59 0.34 0.20 0.22 0.25 2.00000 49.51 

05 2.76 1.65 3.61 2.67 0.30 0.29 0.34 0.31 2.00000 52.68 

06 2.39 2.13 1.55 2.02 0.33 0.50 0.36 0.40 2.00000 56.50 

07 3.62 1.51 4.19 3.11 0.59 0.73 0.55 0.62 2.00000 40.45 

08 0.95 1.97 1.58 1.50 0.20 0.25 0.23 0.23 2.00000 91.48 

09 3.63 1.83 1.89 2.45 0.53 0.57 0.33 0.48 2.00000 28.55 

10 1.09 0.97 1.21 1.09 0.08 0.11 0.10 0.10 2.00000 19.43 

Min 0.95 0.97 1.21 1.09 0.08 0.11 0.10 0.10 2.00000 19.43 

Mean 2.28 1.79 2.34 2.14 0.32 0.38 0.32 0.34 2.00000 50.14 

Median 2.39 1.69 2.15 2.22 0.30 0.34 0.33 0.32 2.00000 50.75 

Max 3.63 3.44 4.19 3.11 0.59 0.73 0.55 0.62 2.00000 91.48 
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Table 2. 83 Incremental Effect of Branching Priority for Triples Model n = 20.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 7.35 8.02 8.32 7.90 2.28 2.59 2.62 2.50 2.00024 1,029.24 

02 6.94 6.64 6.53 6.70 2.55 3.34 3.42 3.10 2.00012 1,025.05 

03 17.95 18.36 18.70 18.34 4.54 4.85 4.82 4.74 2.00060 2,986.63 

04 33.84 15.74 16.91 22.16 3.56 2.96 3.29 3.27 2.00063 1,191.60 

05 7.79 9.10 9.20 8.70 2.41 4.02 4.10 3.51 2.00000 1,134.01 

06 59.24 39.31 38.65 45.73 7.16 5.21 5.32 5.90 2.00120 2,975.40 

07 40.33 6.56 6.07 17.65 3.36 1.21 1.16 1.91 2.00024 912.91 

08 7.50 7.38 7.76 7.55 2.08 2.69 2.98 2.58 2.00000 983.31 

09 86.61 35.69 34.16 52.15 8.78 5.86 5.53 6.72 2.00120 3,901.59 

10 59.73 14.57 14.96 29.75 5.90 4.34 4.68 4.97 2.00000 1,428.35 

Min 6.94 6.56 6.07 6.70 2.08 1.21 1.16 1.91 2.00000 912.91 

Mean 32.73 16.14 16.13 21.66 4.26 3.71 3.79 3.92 2.00042 1,756.81 

Median 25.89 11.84 12.08 17.99 3.46 3.68 3.76 3.39 2.00024 1,162.81 

Max 86.61 39.31 38.65 52.15 8.78 5.86 5.53 6.72 2.00120 3,901.59 

 

Table 2. 84 Incremental Effect of Branching Priority for Triples Model n = 30.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 501 428 419 449 55 45 44 48 2.00000 36,550 

02 579 513 512 535 53 46 46 49 2.00084 42,555 

03 912 485 481 626 89 43 43 58 2.00076 38,059 

04 63 64 64 64 14 15 15 15 2.00103 12,265 

05 412 333 328 358 40 33 32 35 2.00104 23,784 

06 49 43 42 45 10 10 10 10 2.00146 6,348 

07 507 475 472 485 47 44 43 45 2.00201 36,954 

08 266 246 247 253 26 25 25 25 2.00124 22,520 

09 1,223 831 836 963 96 68 70 78 2.00151 61,052 

10 1,771 1,353 1,346 1,490 103 74 75 84 2.00116 60,572 

Min 49 43 42 45 10 10 10 10 2.00000 6,348 

Mean 629 477 475 527 53 40 40 45 2.00110 34,066 

Median 504 451 445 467 50 43 43 46 2.00110 36,752 

Max 1,771 1,353 1,346 1,490 103 74 75 84 2.00201 61,052 
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Table 2. 85 Incremental Effect of Branching Priority for Triples Model n = 40.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 3,229 2,770 2,688 2,895 184 157 155 165 2.00002 112,430 

02 663 450 438 517 53 32 31 39 2.00002 24,087 

03 1,993 1,549 1,537 1,693 179 136 134 150 2.00003 115,872 

04 2,721 1,465 1,437 1,875 297 155 153 202 2.00004 147,957 

05 3,676 1,907 1,860 2,481 307 128 126 187 2.00005 99,149 

06 410 144 145 233 41 17 18 25 2.00005 13,648 

07 9,354 5,751 5,480 6,862 506 262 253 340 2.00002 158,469 

08 14,316 9,293 8,959 10,856 697 368 356 474 2.00003 192,972 

09 21,827 13,467 13,085 16,126 1,091 569 556 739 2.00003 346,382 

10 23,637 14,657 14,377 17,557 1,302 623 613 846 2.00004 374,733 

Min 410 144 145 233 41 17 18 25 2.00002 13,648 

Mean 8,182 5,145 5,001 6,109 466 245 240 317 2.00003 158,570 

Median 3,452 2,338 2,274 2,688 302 156 154 194 2.00003 131,915 

Max 23,637 14,657 14,377 17,557 1,302 623 613 846 2.00005 374,733 

 

Table 2. 86 Incremental Effect of Branching Priority for Triples Model for n = 50.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 

2 

Real 

Time 

Run 

3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 158,883 91,719 90,821 113,808 7,776 3,292 3,319 4,796 2.00108 1,493,511 

02 266,752 157,822 159,416 194,663 12,546 5,548 5,543 7,879 2.00196 2,114,350 

03 109,610 77,547 77,711 88,289 4,893 2,738 2,745 3,459 2.00186 1,047,296 

04 6,231 3,849 3,736 4,605 646 329 324 433 2.00267 280,329 

05 32,187 18,066 17,589 22,614 2,015 717 699 1,144 2.00104 327,999 

06 132,681 79,786 79,954 97,474 6,108 2,805 2,778 3,897 2.00258 1,105,471 

07 132,983 86,835 87,378 102,399 5,820 3,011 3,003 3,945 2.00144 1,111,524 

08 16,382 7,360 7,055 10,266 1,425 433 418 759 2.00150 293,061 

09 143,116 89,635 89,482 107,411 6,886 3,131 3,105 4,374 2.00218 1,361,881 

10 215,784 136,825 138,530 163,713 9,414 4,949 5,025 6,463 2.00111 2,112,308 

Min 6,231 3,849 3,736 4,605 646 329 324 433 2.00104 280,329 

Mean 121,461 74,944 75,167 90,524 5,753 2,695 2,696 3,715 2.00174 1,124,773 

Median 132,832 83,310 83,666 99,936 5,964 2,908 2,890 3,921 2.00168 1,108,497 

Max 266,752 157,822 159,416 194,663 12,546 5,548 5,543 7,879 2.00267 2,114,350 
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Table 2. 87 Summary of Incremental Effect of Branching Priority for Triples Model 

 Speedup LP Upper 

Bound 

Improvement 
Ave. CPU Time Ticks  Ave. Real Time 

n = 10 

Min          0.55           1.00           0.69  0.00% 

Mean         1.14           1.01           1.11  0.00% 

Median         1.15           1.00           1.14  0.00% 

Max         1.85           1.11           1.86  0.00% 

n = 20 

Min         0.36           0.87           0.64  0.00% 

Mean         0.82           1.00           0.92  0.00% 

Median         0.90           0.98           0.96  0.00% 

Max         1.04           1.22           1.06  0.00% 

n = 30 

Min         0.42           0.41           0.40  0.00% 

Mean         0.89           0.94           0.85  0.00% 

Median         0.98           1.04           0.93  0.00% 

Max         1.14           1.33           1.10  0.00% 

n = 40 

Min         0.52           0.68           0.64  0.00% 

Mean         0.84           1.16           0.83  0.00% 

Median         0.68           1.04           0.73  0.00% 

Max         1.59           2.43           1.54  0.00% 

n = 50 

Min         0.19           0.29           0.19  0.00% 

Mean         0.82           0.93           0.66  0.00% 

Median         0.75           1.02           0.66  0.00% 

Max         1.93           1.18           1.13  0.00% 

 

Table 2. 88 CI and GCI of Incremental Effect of Branching Priority for Triples Model  

n CPU Ticks Real Time CI GCI 

10 1.15 1.00 1.14 1.09 

0.91 

20 0.88 0.98 0.95 0.94 

30 0.96 1.02 0.91 0.96 

40 0.72 1.07 0.76 0.86 

50 0.77 1.00 0.66 0.81 

 

   Conclusion: After applying technique 4, branching priority, the grand composite index of 

speedups (GCI) was 0.91, indicating that was more efficient to solve the incumbent model.  

Therefore, we did not adopt this technique. 

  



 

81 

 

2.5.6 Technique 5：Lifted MTZ     

 

    Tables 2-48, 2-49, and 2-50 summarize the results of lifting the MTZ constraints as described 

in section 2.4.8 in the incumbent triples model. 

Table 2. 89 Incremental Effect of Lifted MTZ in Triples Model for n =10.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP Upper 

Bound 

 

Ticks 

01 5.16 1.27 1.98 2.80 0.51 0.32 0.35 0.39 2.00000 32.35 

02 1.78 1.47 2.36 1.87 0.27 0.32 0.36 0.32 2.00000 71.29 

03 1.28 2.20 2.65 2.05 0.32 0.50 0.35 0.39 2.00000 69.81 

04 1.32 1.39 2.56 1.76 0.32 0.18 0.20 0.23 2.00000 29.01 

05 1.38 2.05 2.21 1.88 0.45 0.55 0.21 0.40 2.00000 40.50 

06 3.49 1.76 4.20 3.15 0.44 0.49 0.51 0.48 2.00000 32.80 

07 0.97 1.29 1.80 1.35 0.21 0.26 0.31 0.26 2.00000 62.57 

08 1.17 1.56 2.92 1.88 0.31 0.25 0.31 0.29 2.00000 97.91 

09 3.08 2.24 3.11 2.81 0.62 0.57 0.55 0.58 2.00000 35.28 

10 3.16 0.91 1.27 1.78 0.18 0.11 0.12 0.14 2.00000 17.82 

Min 0.97 0.91 1.27 1.35 0.18 0.11 0.12 0.14 2.00000 17.82 

Mean 2.28 1.61 2.51 2.13 0.36 0.36 0.33 0.35 2.00000 48.93 

Median 1.58 1.52 2.46 1.88 0.32 0.32 0.33 0.35 2.00000 37.89 

Max 5.16 2.24 4.20 3.15 0.62 0.57 0.55 0.58 2.00000 97.91 

 

Table 2. 90 Incremental Effect of Lifted MTZ in Triples Model for n =20.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 7.88 7.86 7.56 7.77 1.48 1.41 1.35 1.41 2.00024 1,153.88 

02 5.45 5.57 5.55 5.52 2.53 2.71 2.56 2.60 2.00012 768.35 

03 22.64 22.77 23.15 22.85 5.75 5.84 5.93 5.84 2.00060 3,184.01 

04 21.46 20.31 20.55 20.77 3.25 3.24 3.25 3.25 2.00063 1,299.20 

05 9.96 9.71 9.78 9.82 3.62 3.46 3.58 3.55 2.00000 1,198.43 

06 47.84 47.01 46.94 47.27 5.19 4.99 4.92 5.03 2.00120 2,598.90 

07 6.08 5.89 5.43 5.80 1.31 1.27 1.20 1.26 2.00024 1,015.31 

08 10.45 11.43 11.33 11.07 2.22 2.31 2.38 2.30 2.00000 946.58 

09 38.13 37.83 38.49 38.15 5.42 5.02 5.38 5.27 2.00120 3,228.06 

10 20.65 20.32 20.64 20.54 7.70 7.59 7.81 7.70 2.00000 2,082.89 

Min 5.45 5.57 5.43 5.52 1.31 1.27 1.20 1.26 2.00000 768.35 

Mean 19.05 18.87 18.94 18.96 3.85 3.78 3.84 3.82 2.00042 1,747.56 

Median 15.55 15.87 15.94 15.80 3.44 3.35 3.42 3.40 2.00024 1,248.82 

Max 47.84 47.01 46.94 47.27 7.70 7.59 7.81 7.70 2.00120 3,228.06 

 

  



 

82 

 

Table 2. 91 Incremental Effect of Lifted MTZ in Triples Model for n = 30.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 

1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 415 411 414 413 50 49 50 50 2.00000 38,411 

02 510 511 517 513 42 42 43 42 2.00084 35,978 

03 393 391 397 394 42 41 42 42 2.00076 36,968 

04 62 61 64 63 17 17 17 17 2.00103 12,387 

05 296 302 304 300 32 32 33 32 2.00104 24,524 

06 43 44 43 43 12 13 12 12 2.00146 6,585 

07 238 235 235 236 20 20 21 20 2.00201 18,269 

08 305 307 309 307 31 31 32 31 2.00124 29,221 

09 1,188 1,201 1,208 1,199 80 81 80 80 2.00151 70,949 

10 1,070 1,089 1,101 1,087 64 64 65 64 2.00116 50,361 

Min 43 44 43 43 12 13 12 12 2.00000 6,585 

Mean 452 455 459 456 39 39 39 39 2.00111 32,365 

Median 349 349 353 350 37 37 37 37 2.00110 32,600 

Max 1,188 1,201 1,208 1,199 80 81 80 80 2.00201 70,949 

 

Table 2. 92 Incremental Effect of Lifted MTZ in Triples Model for n = 40.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 3,566 3,752 3,805 3,708 215 222 225 221 2.00002 171,624 

02 38,795 40,334 40,529 39,886 1,469 1,531 1,528 1,510 2.00002 827,796 

03 167 172 170 170 18 18 18 18 2.00003 13,932 

04 403 401 406 403 36 35 36 35 2.00004 29,858 

05 2,409 2,541 2,601 2,517 155 156 160 157 2.00005 121,821 

06 106 110 110 109 13 13 13 13 2.00005 10,090 

07 5,539 5,819 5,933 5,764 251 260 268 260 2.00002 162,603 

08 16,462 17,096 17,370 16,976 672 692 709 691 2.00003 422,257 

09 11,816 12,297 12,487 12,200 495 510 521 509 2.00003 314,160 

10 13,900 14,297 14,535 14,244 678 689 697 688 2.00004 498,871 

Min 106 110 110 109 13 13 13 13 2.00002 10,090 

Mean 9,316 9,682 9,795 9,598 400 413 418 410 2.00003 257,301 

Median 4,552 4,786 4,869 4,736 233 241 247 240 2.00003 167,114 

Max 38,795 40,334 40,529 39,886 1,469 1,531 1,528 1,510 2.00005 827,796 
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Table 2. 93 Incremental Effect of Lifted MTZ in Triples Model for n = 50.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 59,542 61,296 61,796 60,878 2,180 2,206 2,252 2,213 2.00108 989,870 
02 151,536 153,830 151,638 152,335 5,239 5,375 5,336 5,317 2.00196 2,234,792 
03 85,861 88,013 88,642 87,505 3,049 3,121 3,132 3,101 2.00186 1,384,630 
04 3,025 3,104 3,186 3,105 295 293 298 295 2.00267 258,223 
05 59,747 62,436 62,635 61,606 2,317 2,387 2,421 2,375 2.00104 1,258,846 
06 73,880 76,684 77,022 75,862 2,638 2,711 2,737 2,695 2.00248 1,177,145 
07 72,171 74,723 75,077 73,990 2,688 2,769 2,801 2,753 2.00144 1,298,540 
08 5,454 5,634 5,766 5,618 342 352 356 350 2.00150 249,632 
09 75,334 77,390 77,516 76,747 2,818 2,882 2,874 2,858 2.00218 1,603,195 
10 136,861 139,016 143,006 139,628 4,865 4,965 5,090 4,973 2.00111 2,258,454 
Min 3,025 3,104 3,186 3,105 295 293 298 295 2.00104 249,632 
Mean 72,341 74,213 74,628 73,727 2,643 2,706 2,730 2,693 2.00173 1,271,333 
Median 73,026 75,703 76,050 74,926 2,663 2,740 2,769 2,724 2.00168 1,278,693 
Max 151,536 153,830 151,638 152,335 5,239 5,375 5,336 5,317 2.00267 2,258,454 

 

Table 2. 94 Summary of Incremental Effect of Lifted MTZ Constraints on Triples Model 

 Speedup LP Upper 

Bound 

Improvement 
Ave. CPU Time Ticks  Ave. Real Time 

n = 10 

Min          0.73         0.72           0.55  0.00% 

Mean         1.08         1.13           1.05  0.00% 

Median         1.09          1.04           1.01  0.00% 

Max         1.48          1.72           1.65  0.00% 

n = 20 

Min         0.61          0.84           0.64  0.00% 

Mean         0.91          0.98           1.04  0.00% 

Median         0.87          0.98           1.02  0.00% 

Max         1.16          1.16           1.75  0.00% 

n = 30 

Min         0.60          0.57           0.60  0.00% 

Mean         1.01          0.96           0.91  0.00% 

Median         1.01          1.00           0.90  0.00% 

Max         1.57          1.37           1.31  0.00% 

n = 40 

Min         0.51          0.54           0.55  0.00% 

Mean         1.87          1.87           1.75  0.00% 

Median         1.05          1.06           1.09  0.00% 

Max         8.08          5.63           5.28  0.00% 

n = 50 

Min         0.25          0.25           0.27  0.00% 

Mean         1.09          0.86           0.95  0.00% 

Median         1.00          0.91           0.97  0.00% 

Max         2.87          1.31           1.65  0.00% 
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Table 2. 95 CI and GCI of Lifted MTZ in Triples Model 

n CPU Ticks Real Time CI GCI 

10 1.09 1.06 1.02 1.05 

1.04 

20 0.88 0.98 1.02 0.97 

30 1.02 0.99 0.91 0.97 

40 1.27 1.26 1.25 1.26 

50 1.03 0.90 0.97 0.96 

 

    Conclusion: After applying technique 5, lifted MTZ, the grand composite index of speedups 

(GCI) is 1.04, which means, on average, the model with lifted MTZ was 1.04 times faster than the 

incumbent model. Thus, we adopted it. 

2.5.7 Technique 6：MTZ upper bound 

 

   Tables 2-51, 2-52, and 2-53 summarize the effects of imposing a bound on the MTZ sequence 

variables as described in Section 2.4.9 on the triples model. 

Table 2. 96 Incremental Effect of MTZ upper bound in Triples Model for n =10.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP Upper 

Bound 

 

Ticks 

01 1.79 2.31 1.06 1.72 0.30 0.32 0.29 0.30 2.00000 34.71 

02 1.53 2.48 1.56 1.85 0.21 0.25 0.29 0.25 2.00000 65.64 

03 3.32 3.93 1.74 3.00 0.49 0.49 0.48 0.49 2.00000 54.90 

04 2.15 2.31 1.83 2.10 0.35 0.36 0.31 0.34 2.00000 42.70 

05 2.03 2.79 1.18 2.00 0.20 0.23 0.15 0.19 2.00000 41.03 

06 3.56 2.94 1.88 2.79 1.02 1.15 1.01 1.06 2.00000 38.94 

07 1.62 1.71 2.55 1.96 0.42 0.54 0.53 0.50 2.00000 41.14 

08 1.56 2.50 1.42 1.83 0.21 0.24 0.18 0.21 2.00000 84.09 

09 1.23 0.66 1.61 1.16 0.16 0.11 0.19 0.15 2.00000 29.73 

10 1.06 1.16 0.44 0.89 0.10 0.09 0.07 0.09 2.00000 21.80 

Min 1.06 0.66 0.44 0.89 0.10 0.09 0.07 0.09 2.00000 21.80 

Mean 1.98 2.28 1.53 1.93 0.35 0.38 0.35 0.36 2.00000 45.47 

Median 1.71 2.39 1.58 1.91 0.26 0.29 0.29 0.28 2.00000 41.09 

Max 3.56 3.93 2.55 3.00 1.02 1.15 1.01 1.06 2.00000 84.09 
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Table 2. 97 Incremental Effect of MTZ upper bound in Triples Model for n =20.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 12.25 13.10 10.24 11.87 3.90 4.01 3.62 3.84 2.00024 1,864.56 

02 6.60 9.28 5.56 7.15 2.25 2.30 2.37 2.31 2.00012 757.58 

03 10.70 10.99 11.33 11.00 2.86 2.90 2.88 2.88 2.00060 1,298.64 

04 17.76 18.00 17.43 17.73 3.01 3.17 3.31 3.16 2.00063 1,335.02 

05 7.92 10.42 9.52 9.29 3.41 3.32 3.83 3.52 2.00000 1,355.41 

06 51.04 50.22 51.01 50.76 3.90 3.93 3.79 3.87 2.00120 2,239.13 

07 7.03 7.15 7.01 7.06 1.34 1.35 1.36 1.35 2.00024 1,002.93 

08 9.47 10.87 10.20 10.18 2.64 2.71 2.64 2.66 2.00000 1,079.31 

09 41.62 43.28 42.21 42.37 5.97 5.76 5.95 5.89 2.00120 3,614.30 

10 11.82 12.22 13.31 12.45 2.55 2.61 2.77 2.64 2.00000 1,186.95 

Min 6.60 7.15 5.56 7.06 1.34 1.35 1.36 1.35 2.00000 757.58 

Mean 17.62 18.55 17.78 17.99 3.18 3.21 3.25 3.21 2.00042 1,573.38 

Median 11.26 11.60 10.79 11.43 2.94 3.04 3.10 3.02 2.00024 1,316.83 

Max 51.04 50.22 51.01 50.76 5.97 5.76 5.95 5.89 2.00120 3,614.30 

 

Table 2. 98 Incremental Effect of MTZ upper bound in Triples Model for  n = 30.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 386 388 403 392 35 35 35 35 2.00000 26,475 

02 555 570 570 565 52 53 52 52 2.00084 43,281 

03 435 432 433 433 45 45 44 45 2.00076 38,164 

04 82 80 79 80 15 15 15 15 2.00103 12,938 

05 340 346 348 345 33 34 33 33 2.00104 24,637 

06 42 43 42 42 10 10 10 10 2.00146 6,263 

07 208 210 212 210 19 20 20 20 2.00201 17,145 

08 598 604 637 613 38 39 40 39 2.00124 29,961 

09 932 967 983 961 65 68 68 67 2.00151 55,735 

10 1,124 1,160 1,190 1,158 72 74 75 73 2.00116 58,062 

Min 42 43 42 42 10 10 10 10 2.00000 6,263 

Mean 470 480 490 480 38 39 39 39 2.00110 31,266 

Median 410 410 418 413 36 37 37 37 2.00110 28,218 

Max 1,124 1,160 1,190 1,158 72 74 75 73 2.00201 58,062 
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Table 2. 99 Incremental Effect of MTZ upper bound in Triples Model for n = 40.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 3,473 3,642 3,753 3,623 216 226 228 223 2.00002 166,015 

02 48,563 50,988 52,396 50,649 1,805 1,865 1,918 1,863 2.00002 977,826 

03 1,706 1,783 1,778 1,756 154 159 158 157 2.00003 136,353 

04 334 342 342 339 83 86 86 85 2.00004 52,850 

05 2,350 2,460 2,526 2,445 171 177 179 176 2.00005 140,095 

06 76 76 74 75 13 14 13 13 2.00005 9,808 

07 6,458 6,701 6,945 6,701 298 307 316 307 2.00002 193,303 

08 10,798 11,093 11,577 11,156 433 438 460 444 2.00003 245,850 

09 7,285 7,506 7,746 7,512 317 325 334 325 2.00003 189,765 

10 13,229 13,844 14,225 13,766 626 649 662 645 2.00004 462,913 

Min 76 76 74 75 13 14 13 13 2.00002 9,808 

Mean 9,427 9,843 10,136 9,802 412 424 436 424 2.00003 257,478 

Median 4,966 5,172 5,349 5,162 257 266 272 265 2.00003 177,890 

Max 48,563 50,988 52,396 50,649 1,805 1,865 1,918 1,863 2.00005 977,826 

 

Table 2. 100 Incremental Effect of MTZ upper bound in Triples Model for n = 50.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 57,085 60,619 62,352 60,019 2,146 2,263 2,280 2,230 2.00108 1,154,436 

02 136,413 146,583 148,175 143,724 4,767 5,104 5,178 5,016 2.00196 1,988,723 

03 74,924 80,044 80,395 78,454 2,781 2,899 2,934 2,871 2.00186 1,304,192 

04 3,098 3,216 3,242 3,185 356 363 360 359 2.00267 338,100 

05 19,397 20,037 20,602 20,012 801 825 860 829 2.00104 404,223 

06 15,499 16,313 16,550 16,121 760 792 818 790 2.00248 467,217 

07 67,595 71,849 73,539 70,994 2,601 2,751 2,795 2,716 2.00144 1,398,034 

08 8,482 8,857 9,227 8,855 438 455 464 453 2.00150 274,003 

09 66,965 67,367 68,774 67,702 2,432 2,437 2,497 2,455 2.00218 1,214,504 

10 98,926 95,167 96,668 96,920 4,007 3,930 3,970 3,969 2.00111 2,270,514 

Min 3,098 3,216 3,242 3,185 356 363 360 359 2.00104 274,003 

Mean 54,838 57,005 57,952 56,599 2,109 2,182 2,216 2,169 2.00173 1,081,395 

Median 62,025 63,993 65,563 63,860 2,289 2,350 2,388 2,342 2.00168 1,184,470 

Max 136,413 146,583 148,175 143,724 4,767 5,104 5,178 5,016 2.00267 2,270,514 
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Table 2. 101 Summary of Incremental Effect of MTZ upper bound Constraints 

 Speedup LP Upper 

Bound 

Improvement 
Ave. CPU Time Ticks  Ave. Real Time 

n = 10 

Min          0.68          0.68           0.45  0.00% 

Mean         1.24          1.05           1.39  0.00% 

Median         1.02          1.04           1.28  0.00% 

Max         2.41          1.52           3.78  0.00% 

n = 20 

Min         0.65          0.62           0.37  0.00% 

Mean         1.11          1.16           1.25  0.00% 

Median         0.99          0.99           1.02  0.00% 

Max         2.08          2.45           2.91  0.00% 

n = 30 

Min         0.50          0.83           0.81  0.00% 

Mean         0.93          1.04           1.04  0.00% 

Median         0.92          0.99           1.00  0.00% 

Max         1.25          1.45           1.44  0.01% 

n = 40 

Min         0.10          0.10           0.12  0.00% 

Mean         1.06          0.97           0.93  0.00% 

Median         1.03          0.95           0.94  0.00% 

Max         1.62          1.72           1.56  0.00% 

n = 50 

Min         0.63          0.76           0.77  0.01% 

Mean         1.62          1.36           1.44  0.01% 

Median         1.09          1.03           1.07  0.01% 

Max         4.71          3.11           3.41  0.03% 

 

Table 2. 102 CI and GCI of MTZ Upper Bound in Triples Model 

n CPU Ticks Real Time CI GCI 

10 1.07 1.04 1.32 1.15 

1.06 

20 1.02 1.04 1.07 1.05 

30 0.92 1.00 1.01 0.98 

40 1.03 0.95 0.94 0.97 

50 1.22 1.11 1.16 1.16 

 

    Conclusion: After applying technique 6, MTZ upper bound, the grand composite index of 

speedups (GCI) was 1.06, which means, on average, the model with MTZ upper bound was 1.06 

times faster than the incumbent model. Thus, we adopted it.   
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2.5.8 Technique 7：Pairwise Demand Cuts 

 

   Tables 2-54, 2-55, and 2-56 summarize the effects of the pairwise demand cuts described in 

Section 2.4.11 on the incumbent triples model.  

Table 2. 103 Incremental Effect of Pairwise Demand Cuts in Triples Model for n = 10.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP Upper 

Bound 

 

Ticks 

01 1.64 1.95 1.94 1.84 0.49 0.55 0.61 0.55 2.00000 43.04 

02 1.66 1.26 1.00 1.31 0.37 0.34 0.34 0.35 2.00000 72.64 

03 2.35 2.30 5.73 3.46 0.38 0.52 0.48 0.46 2.00000 58.14 

04 2.42 1.35 1.16 1.64 0.29 0.35 0.28 0.30 2.00000 39.17 

05 2.27 1.45 1.05 1.59 0.29 0.36 0.33 0.33 2.00000 43.40 

06 3.56 1.55 1.82 2.31 0.48 0.47 0.44 0.46 2.00000 44.02 

07 1.65 1.91 3.66 2.41 0.30 0.50 0.44 0.41 2.00000 77.99 

08 2.61 1.36 1.19 1.72 0.32 0.43 0.38 0.38 2.00000 67.88 

09 1.99 1.20 1.79 1.66 0.39 0.35 0.38 0.38 2.00000 32.95 

10 0.85 0.95 1.20 1.00 0.17 0.18 0.21 0.19 2.00000 21.30 

Min 0.85 0.95 1.00 1.00 0.17 0.18 0.21 0.19 2.00000 21.30 

Mean 2.10 1.53 2.05 1.89 0.35 0.41 0.39 0.38 2.00000 50.05 

Median 2.13 1.41 1.50 1.69 0.35 0.39 0.38 0.38 2.00000 43.71 

Max 3.56 2.30 5.73 3.46 0.49 0.55 0.61 0.55 2.00000 77.99 

 

Table 2. 104 Incremental Effect of Pairwise Demand Cuts in Triples Model for n = 20.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 11.93 10.84 10.72 11.16 2.62 2.36 2.36 2.44 2.00024 1,195.60 

02 8.61 8.70 8.56 8.62 3.09 3.42 3.31 3.28 2.00012 871.91 

03 24.87 24.59 24.25 24.57 6.05 6.24 6.10 6.13 2.00060 3,359.75 

04 24.18 23.93 23.97 24.03 3.04 3.10 2.98 3.04 2.00063 1,276.76 

05 11.44 12.13 10.72 11.43 4.02 4.57 4.30 4.29 2.00000 1,326.97 

06 52.51 50.90 53.63 52.34 4.94 5.09 4.97 5.00 2.00120 2,393.68 

07 9.30 9.08 9.57 9.32 1.89 1.86 1.77 1.84 2.00024 1,069.51 

08 10.43 11.38 10.54 10.78 2.74 2.99 2.87 2.87 2.00000 971.54 

09 44.77 43.63 44.01 44.13 7.84 7.56 7.54 7.65 2.00120 4,668.66 

10 13.50 13.22 13.46 13.39 3.17 3.09 3.15 3.14 2.00000 1,231.83 

Min 8.61 8.70 8.56 8.62 1.89 1.86 1.77 1.84 2.00000 871.91 

Mean 21.15 20.84 20.94 20.98 3.94 4.03 3.93 3.97 2.00042 1,836.62 

Median 12.71 12.68 12.09 12.41 3.13 3.26 3.23 3.21 2.00024 1,254.30 

Max 52.51 50.90 53.63 52.34 7.84 7.56 7.54 7.65 2.00120 4,668.66 
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Table 2. 105 Incremental Effect of Pairwise Demand Cuts in Triples Model for n = 30.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 407 396 397 400 36 36 36 36 2.00000 24,127 

02 550 537 542 543 48 47 47 47 2.00084 38,595 

03 331 324 324 326 30 30 29 29 2.00076 21,074 

04 80 83 82 82 17 19 18 18 2.00102 9,623 

05 330 316 324 324 32 31 31 31 2.00103 22,346 

06 67 66 66 66 14 14 14 14 2.00143 7,710 

07 579 569 568 572 58 57 57 58 2.00195 51,896 

08 308 306 306 306 28 28 28 28 2.00124 21,740 

09 866 852 855 857 62 61 62 62 2.00144 50,339 

10 1,271 1,236 1,250 1,252 78 76 76 76 2.00115 61,032 

Min 67 66 66 66 14 14 14 14 2.00000 7,710 

Mean 479 468 471 473 40 40 40 40 2.00109 30,848 

Median 369 360 360 363 34 33 33 34 2.00109 23,236 

Max 1,271 1,236 1,250 1,252 78 76 76 76 2.00195 61,032 

 

Table 2. 106 Incremental Effect of Pairwise Demand Cuts in Triples Model for n = 40.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 4,771 4,686 4,754 4,737 254 248 256 253 2.00002 174,779 

02 47,036 47,029 48,382 47,482 1,797 1,791 1,833 1,807 2.00002 1,009,754 

03 1,227 1,190 1,220 1,212 107 105 106 106 2.00003 83,875 

04 390 386 382 386 40 40 39 40 2.00004 26,484 

05 3,539 3,458 3,547 3,515 220 214 216 217 2.00005 160,177 

06 164 156 159 160 21 20 21 21 2.00005 10,982 

07 13,218 13,023 13,337 13,192 621 604 613 613 2.00002 420,735 

08 16,042 15,841 16,370 16,084 704 690 712 702 2.00003 461,088 

09 7,730 7,603 7,825 7,719 386 379 388 385 2.00003 256,009 

10 16,209 16,074 16,566 16,283 650 638 657 648 2.00004 381,025 

Min 164 156 159 160 21 20 21 21 2.00002 10,982 

Mean 11,033 10,944 11,254 11,077 480 473 484 479 2.00003 298,491 

Median 6,251 6,144 6,290 6,228 320 313 322 319 2.00003 215,394 

Max 47,036 47,029 48,382 47,482 1,797 1,791 1,833 1,807 2.00005 1,009,754 
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Table 2. 107 Incremental Effect of Pairwise Demand Cuts in Triples Model for n = 50.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 54,936 55,220 57,277 55,811 2,078 2,127 2,162 2,122 2.00108 1,012,679 
02 171,945 177,419 179,265 176,210 6,019 6,169 6,288 6,159 2.00196 2,517,416 
03 75,874 77,582 81,860 78,439 2,807 2,850 2,994 2,884 2.00186 1,356,211 
04 5,226 5,180 5,420 5,275 403 390 402 398 2.00262 294,987 
05 54,709 54,706 58,117 55,844 2,126 2,105 2,257 2,163 2.00098 1,044,172 
06 16,469 16,458 17,068 16,665 783 779 794 785 2.00247 443,939 
07 78,189 79,629 82,554 80,124 2,944 2,974 3,076 2,998 2.00143 1,418,407 
08 10,651 10,780 11,130 10,854 525 526 537 529 2.00149 297,638 
09 69,195 70,762 72,988 70,982 2,527 2,565 2,646 2,579 2.00214 1,222,352 
10 28,431 28,755 29,753 28,979 1,213 1,214 1,239 1,222 2.00110 624,504 
Min 5,226 5,180 5,420 5,275 403 390 402 398 2.00098 294,987 
Mean 56,562 57,649 59,543 57,918 2,142 2,170 2,239 2,184 2.00171 1,023,231 
Median 54,822 54,963 57,697 55,827 2,102 2,116 2,210 2,142 2.00167 1,028,426 
Max 171,945 177,419 179,265 176,210 6,019 6,169 6,288 6,159 2.00262 2,517,416 

 

Table 2. 108 Summary of Incremental Effect of Pairwise Demand Cuts in Triples Model 

 Speedup LP Upper 

Bound 

Improvement 
Ave. CPU Time Ticks  Ave. Real Time 

n = 10 

Min          0.70          0.53           0.41  0.00% 

Mean         1.04          0.93           0.90  0.00% 

Median         1.00          0.92           0.65  0.00% 

Max         1.42          1.24           2.29  0.00% 

n = 20 

Min         0.45          0.39           0.47  0.00% 

Mean         0.85          0.96           0.87  0.00% 

Median         0.88          0.95           0.80  0.00% 

Max         1.06          1.56           1.57  0.00% 

n = 30 

Min         0.37          0.33           0.34  0.00% 

Mean         1.05          1.11           1.00  0.00% 

Median         1.01          1.10           1.02  0.00% 

Max         2.00          1.81           1.52  0.00% 

n = 40 

Min         0.47          0.46           0.50  0.00% 

Mean         0.83          1.03           1.00  0.00% 

Median         0.81          0.92           0.86  0.00% 

Max         1.45          2.00           2.15  0.00% 

n = 50 

Min         0.36          0.39           0.38  0.00% 

Mean         1.08          1.20           1.11  0.00% 

Median         0.92          0.99           0.93  0.00% 

Max         3.34          3.64           3.25  0.00% 

 



 

91 

 

Table 2. 109 CI and GCI of Pairwise Demand Cuts Constraints 

n CPU Ticks Real Time CI GCI 

10  1.01   0.92   0.72   0.87  

0.95 

20  0.87   0.95   0.82   0.88  

30  1.02   1.10   1.01   1.05  

40  0.81   0.95   0.90   0.89  

50  0.97   1.05   0.98   1.00  

 

    Conclusion: After applying technique 7, pairwise demand cuts, the grand composite index of 

speedups (GCI) was 0.95, indicating that was more efficient to solve the incumbent model.  

Therefore, we did not adopt this technique. 

2.5.9 Technique 8：Cover Cuts 

 

    Tables 2-57, 2-58, and 2-59 summarize the effects of including the cover cuts described in 

Section 2.4.10 in the incumbent triples model. 

Table 2. 110 Incremental Effect of Cover Cuts in Triples Model for n =10.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP Upper 

Bound 

 

Ticks 

01 2.73 1.65 1.72 2.03 0.52 0.55 0.58 0.55 2.00000 38.95 

02 3.34 1.98 2.93 2.75 0.35 0.37 0.42 0.38 2.00000 69.22 

03 3.75 2.98 1.26 2.66 0.38 0.44 0.33 0.38 2.00000 58.14 

04 1.93 1.65 3.29 2.29 0.27 0.33 0.32 0.30 2.00000 47.03 

05 3.15 2.63 3.44 3.07 0.30 0.39 0.42 0.37 2.00000 58.05 

06 3.26 2.62 2.47 2.78 1.17 1.05 1.27 1.16 2.00000 39.63 

07 3.44 4.35 3.42 3.74 0.64 0.67 0.82 0.71 2.00000 42.73 

08 2.99 1.79 2.82 2.53 0.46 0.37 0.53 0.46 2.00000 91.32 

09 3.55 1.94 2.14 2.54 0.39 0.42 0.43 0.41 2.00000 32.97 

10 2.88 2.24 1.31 2.14 0.22 0.25 0.18 0.22 2.00000 25.75 

Min 1.93 1.65 1.26 2.03 0.22 0.25 0.18 0.22 2.00000 25.75 

Mean 3.10 2.38 2.48 2.65 0.47 0.48 0.53 0.49 2.00000 50.38 

Median 3.20 2.11 2.65 2.60 0.39 0.41 0.43 0.40 2.00000 44.88 

Max 3.75 4.35 3.44 3.74 1.17 1.05 1.27 1.16 2.00000 91.32 
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Table 2. 111 Incremental Effect of Cover Cuts in Triples Model for n = 20.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP Upper 

Bound 

 

Ticks 

01 10.08 10.08 9.80 9.99 1.74 1.50 1.69 1.64 2.00024 1,091.96 

02 9.50 8.15 7.16 8.27 2.84 3.15 2.64 2.88 2.00012 830.11 

03 14.87 14.06 13.24 14.06 3.60 3.66 3.51 3.59 2.00060 1,281.55 

04 24.68 24.28 24.26 24.41 3.16 3.15 3.14 3.15 2.00063 1,278.14 

05 12.70 11.18 11.19 11.69 3.61 3.65 3.61 3.62 2.00000 1,236.54 

06 50.72 50.33 49.39 50.15 5.05 5.18 5.04 5.09 2.00120 2,633.05 

07 9.15 9.48 9.33 9.32 1.59 1.53 1.45 1.53 2.00024 848.01 

08 16.11 13.72 13.88 14.57 3.47 3.44 3.36 3.42 2.00000 1,124.51 

09 44.87 45.46 43.65 44.66 6.34 6.51 6.21 6.35 2.00120 3,640.30 

10 16.32 16.87 16.31 16.50 3.27 3.53 3.47 3.42 2.00000 1,379.11 

Min 9.15 8.15 7.16 8.27 1.59 1.50 1.45 1.53 2.00000 830.11 

Mean 20.90 20.36 19.82 20.36 3.47 3.53 3.41 3.47 2.00042 1,534.33 

Median 15.49 13.89 13.56 14.31 3.37 3.49 3.41 3.42 2.00024 1,257.34 

Max 50.72 50.33 49.39 50.15 6.34 6.51 6.21 6.35 2.00120 3,640.30 

 

Table 2. 112 Incremental Effect of Cover Cuts in Triples Model for n = 30.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 390 368 374 377 32 31 32 32 2.00000 22,285 

02 551 540 530 540 46 45 44 45 2.00084 35,298 

03 325 325 319 323 31 31 31 31 2.00076 26,605 

04 82 82 82 82 14 14 14 14 2.00103 9,625 

05 356 339 342 346 32 31 31 31 2.00104 22,640 

06 63 62 60 61 12 12 12 12 2.00146 6,969 

07 345 332 334 337 24 23 23 23 2.00201 17,597 

08 517 504 506 509 37 37 36 37 2.00124 27,866 

09 1,044 1,022 1,029 1,032 71 70 70 70 2.00151 58,433 

10 1,274 1,258 1,255 1,262 73 72 72 72 2.00116 57,087 

Min 63 62 60 61 12 12 12 12 2.00000 6,969 

Mean 495 483 483 487 37 37 36 37 2.00110 28,440 

Median 373 353 358 362 32 31 31 31 2.00110 24,623 

Max 1,274 1,258 1,255 1,262 73 72 72 72 2.00201 58,433 
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Table 2. 113 Incremental Effect of Cover Cuts in Triples Model for n = 40.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 4,300 4,188 4,276 4,255 230 226 229 228 2.00002 159,697 

02 40,902 40,761 41,903 41,189 1,537 1,518 1,557 1,537 2.00002 825,500 

03 1,465 1,443 1,477 1,462 138 135 137 137 2.00003 116,597 

04 410 397 402 403 84 87 87 86 2.00004 54,108 

05 1,926 1,893 1,924 1,914 124 120 122 122 2.00005 90,208 

06 147 146 145 146 21 21 21 21 2.00005 10,434 

07 5,745 5,603 5,772 5,707 267 263 270 267 2.00002 169,254 

08 8,963 8,876 9,151 8,997 375 370 380 375 2.00003 217,200 

09 8,859 8,639 9,046 8,848 365 362 370 365 2.00003 209,020 

10 12,840 12,663 13,009 12,837 594 583 598 592 2.00004 403,339 

Min 147 146 145 146 21 21 21 21 2.00002 10,434 

Mean 8,556 8,461 8,710 8,576 374 368 377 373 2.00003 225,536 

Median 5,022 4,896 5,024 4,981 249 244 249 247 2.00003 164,476 

Max 40,902 40,761 41,903 41,189 1,537 1,518 1,557 1,537 2.00005 825,500 

 

Table 2. 114 Incremental Effect of Cover Cuts in Triples Model for n = 50.  

 

Instance 

CPU 

Time 

Run 1 

CPU 

Time 

Run 2 

CPU 

Time 

Run 3 

Ave. 

CPU 

Time 

Real 

Time 

Run 1 

Real 

Time 

Run 2 

Real 

Time 

Run 3 

Ave. 

Real 

Time 

LP 

Upper 

Bound 

 

Ticks 

01 68,297 69,609 71,206 69,704 2,867 2,913 2,944 2,908 2.00108 1,820,955 

02 138,769 141,921 146,276 142,322 4,924 5,011 5,129 5,022 2.00196 2,229,416 

03 75,719 77,300 80,848 77,956 2,682 2,746 2,814 2,747 2.00186 1,142,579 

04 5,809 5,806 6,066 5,894 411 404 415 410 2.00267 302,474 

05 64,022 64,760 67,875 65,552 2,348 2,346 2,478 2,391 2.00104 1,205,026 

06 14,488 14,613 15,450 14,850 730 733 761 741 2.00248 438,844 

07 71,361 72,741 76,292 73,465 2,727 2,742 2,870 2,779 2.00144 1,361,864 

08 8,312 8,382 8,802 8,499 457 454 467 459 2.00150 277,007 

09 67,345 68,589 72,547 69,494 2,453 2,472 2,610 2,512 2.00218 1,146,126 

10 98,784 101,344 105,507 101,878 3,808 3,819 3,991 3,873 2.00111 2,014,816 

Min 5,809 5,806 6,066 5,894 411 404 415 410 2.00104 277,007 

Mean 61,290 62,507 65,087 62,961 2,341 2,364 2,448 2,384 2.00173 1,193,911 

Median 67,821 69,099 71,876 69,599 2,567 2,607 2,712 2,629 2.00168 1,175,576 

Max 138,769 141,921 146,276 142,322 4,924 5,011 5,129 5,022 2.00267 2,229,416 
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Table 2. 115 Summary of Incremental Effect of Cover Cuts in the Triples Model 

 Speedup LP Upper 

Bound 

Improvement 
Ave. CPU Time Ticks  Ave. Real Time 

n = 10 

Min          0.41          0.71           0.37  0.00% 

Mean         0.73          0.90           0.70  0.00% 

Median         0.70          0.91           0.61  0.00% 

Max         1.12          0.98           1.27  0.00% 

n = 20 

Min         0.70          0.85           0.76  0.00% 

Mean         0.85          1.06           1.00  0.00% 

Median         0.79          1.00           0.84  0.00% 

Max         1.19          1.71           2.34  0.00% 

n = 30 

Min         0.62          0.90           0.83  0.00% 

Mean         0.98          1.12           1.05  0.00% 

Median         0.99          1.08           1.05  0.00% 

Max         1.34          1.43           1.45  0.00% 

n = 40 

Min         0.52          0.91           0.65  0.00% 

Mean         1.00          1.11           1.06  0.00% 

Median         1.07          1.13           1.09  0.00% 

Max         1.28          1.55           1.44  0.00% 

n = 50 

Min         0.31          0.34           0.35  0.00% 

Mean         0.87          0.94           0.91  0.00% 

Median         0.97          1.04           0.98  0.00% 

Max         1.09          1.14           1.07  0.00% 

 

 

 

Table 2. 116 CI and GCI of Cover cut Constraints 

n CPU Ticks Real Time CI GCI 

10  0.71   0.91   0.63   0.75  

0.99 

20  0.80   1.02   0.89   0.91  

30  0.98   1.09   1.06   1.05  

40  1.06   1.13   1.08   1.09  

50  0.95   1.02   0.96   0.98  

 

    Conclusion: After applying technique 8, cover cut, the grand composite index of speedups (GCI) 

was 0.99, indicating that was more efficient to solve the incumbent model.  Therefore, we did not 

adopt this technique.  
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2.5.10 Summary of Enhanced Triples Model  

 

    We conclude this section by restating the enhanced triples model: 

 

Objective 

Maximize  𝑝 [∑ 𝑑𝑘𝑙𝑤𝑘𝑙𝑦𝑘𝑙(𝑘, 𝑙)∈𝐴 ] − 𝑐 ∑ 𝜃𝑖𝑗𝑑𝑖𝑗(𝑖, 𝑗)∈A − 𝑐𝑣 ∑ 𝑑𝑖𝑗𝑥𝑖𝑗(𝑖, 𝑗)∈𝐴                              (2.1) 

Subject to 

∑ 𝑥1,𝑗(1,𝑗)∈𝐴 = 1                                               (2.6) 

∑ 𝑥𝑖,𝑛(𝑖,𝑛)∈𝐴 = 1                                                         (2.7) 

∑ 𝑥𝑖𝑘𝑖∈𝑉\{𝑘, 𝑛} = ∑ 𝑥𝑘𝑗𝑗∈𝑉\{1, 𝑘} ,    𝑘 ∈ 𝑉\{1, 𝑛}                                                     (2.8) 

∑ 𝑥𝑖𝑘𝑖∈𝑉\{𝑘, 𝑛} ≤ 1  𝑘 ∈ 𝑉\{1, 𝑛}                                                                     (2.9) 

∑ 𝑑𝑖𝑗𝑥𝑖𝑗(𝑖, 𝑗)∈𝐴 ≤ 𝐷                                                       (2.10) 

 𝑠𝑖 − 𝑠𝑗 + (𝑛 − 1)𝑥𝑖𝑗 + (𝑛 − 3)𝑥𝑗𝑖 ≤ 𝑛 − 2  ∀ (𝑖,  𝑗) ∈ 𝐴: 𝑖 ≠ 1, 𝑗 ≠ 𝑛(2.24)  

𝜃𝑖𝑗 = 𝑤𝑖𝑗𝑦𝑖𝑗 + ∑ 𝑢𝑖𝑘
𝑗

(𝑖, 𝑘, 𝑗)∈𝑇 + ∑ 𝑢𝑘𝑗
𝑖

(𝑘, 𝑗, 𝑖)∈𝑇 − ∑ 𝑢𝑖𝑗
𝑘

(𝑖, 𝑗, 𝑘)∈𝑇 , (𝑖,  𝑗) ∈ 𝐴                          (2.17)  

𝜃𝑖𝑗 ≤ 𝑄𝑥𝑖𝑗, (𝑖,  𝑗) ∈ 𝐴                                             (2.18) 

𝑢𝑖𝑗
𝑘 ≥ 0, (𝑖,  𝑗,  𝑘) ∈ 𝑇                                                 (2.20) 

∑ 𝑤𝑖𝑗𝑦𝑖𝑗𝑗∈𝑉∖{1,𝑖} ≤ 𝑄            ∀𝑖 ∈ 𝑉 ∖ {𝑛}                                                                                (2.22) 

 

∑ 𝑤𝑖𝑗𝑦𝑖𝑗𝑖∈𝑉∖{𝑗,𝑛} ≤ 𝑄           ∀𝑗 ∈ 𝑉 ∖ {1}                                                                                 (2.23)                        

 

𝑥𝑖𝑗 ∈ {0,  1}    (𝑖,  𝑗) ∈ 𝐴                                 (2.14) 

𝑦𝑘𝑙 ∈ {0,  1}    (𝑘,  𝑙) ∈ 𝐴                                                                                                  (2.15) 

1 ≤ 𝑆𝑖 ≤ 𝑛 − 1    ∀𝑖 ∈ 𝑉 ∖ {1}                                                                                               (2.25)     

              

2.6 Best Node-Arc vs. Best Triples Comparison 

    In this section we compare the enhanced node-arc and triples model on the 10-, 20-, 30-, and 

40-node problem instances. Recall that the CPLEX solution statistics for the enhanced node-arc 

model on the 10- 20-, and 30-node problem instances are given in Tables 2-19a, 2-19b, and 2-19c, 

respectively, and the statistics for the node-arc model on the 40-node problem instances are given 
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in Tables 2-34a, 2-34b, and 2-34c. Recall also that the CPLEX solution statistics for the enhanced 

triples mode are given in Tables 2-51a to 2-51e. The results are summarized in Table 2-60. In 

almost every case, the enhanced triples formulation was solved faster than the enhanced node-arc 

formulation regardless of which performance measure is considered. Furthermore, we note that 

the speedups for ticks, CPU and real time all show an increasing trend as problem size increases.  

We note a similar trend in the LP upper bound improvement. 

 

Table 2. 117 Best Node-Arc vs. Best Triples 

Best Triples vs Best Node-arc  

n   CPU speedup  ticks speedup  real time speedup  

LP upper 

bound  

improvement 

10 

Min         0.39         1.47             0.86  0.00% 

Mean         2.38         4.47             2.31  47.71% 

Median         2.40         4.08             2.22  54.52% 

Max         4.50         8.38             4.00  79.68% 

20 

Min         6.34         8.89             7.98  86.00% 

Mean 62.43         24.02  21.46  89.30% 

Median 68.97         25.39  20.01  89.22% 

Max 137.06         42.75  46.20  91.82% 

30 

Min 34.33         16.06  30.96  91.20% 

Mean 210.55         52.26  101.59  93.33% 

Median 153.62  44.40  106.01  93.81% 

Max 872.08  137.89  212.53  95.56% 

40 

Min 44.46   34.79  56.61  94.53% 

Mean 1,943.68  319.00  1,050.75  95.92% 

Median 327.41  96.47  225.86  96.21% 

Max 11,929.94  1,417.70  4,275.04  96.97% 

 

2.7 Conclusions 

    Enhanced Node-Arc Formulation: The best techniques for node-arc formulation are: 

conditional arc-flow, relax node-degree, relax x-z linking, branching priority.  With the best 
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techniques, we were able to solve problem instances that were previously unsolved with the 

original node-arc formulation in the literature: all of the 30- and 40- node instances.  

    Enhanced Triples Formulation: The best techniques for triples formulation are: relax u-x 

linking constraints, add node-degree, single-node demand cuts, lifted MTZ, MTZ upper bound. 

For the triples model in the literature, the maximum tried problem size is 40 nodes. Using the 

original model, we solved instances with 50 nodes and the mean real time was more than 5 hours. 

After adding our most effective techniques, the triples model can solve a 50-node problem easily 

(40 minutes mean real time). On average, the enhanced triples formulation is 2.31, 21.46, 101.59 

and 1,050.75 times faster than the enhanced node-arc formulation for 10-node, 20-node, 30-node, 

and 40-node respectively in terms of real time solution.  
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CHAPTER 3                                                                                                                            

FIXED CHARGE NETWORK FLOW PROBLEM  

 

3.1 Introduction  

    The fixed charge network flow problem (FCNF) is a minimum cost network flow problem with 

variable and fixed charges on arcs with positive flow. FCNF has been studied widely in the 

literature in terms of formulations, algorithms and practical applications. There are two main 

classes of FCNF: single-source FCNF and multicommodity FCNF. In single-source FCNF, all 

demands are from the same source; while in multicommodity FCNF, there are distinct demand 

pairs with different sources and sinks (some of the sources may be shared and some of the sinks 

may be shared). The arcs can be capacitated or uncapacitated. The dominant cost for an arc can be 

either the fixed cost or variable cost. The arc capacities can be loose or tight relative to the 

demands. The triples formulation has been successfully applied to the maximum concurrent flow 

problem and the backhaul profit maximization problem but not to FCNF. Our study is focused on 

investigating a triples-based formulation of FCNF.  In Section 3.2, we review the formulations of 

the FCNF from the literature. In Section 3.3, first we give the straightforward triples formulation 

for the FCNF; then we introduce the Stronger triples formulation of the FCNF, with singletons, 

and show that the it is equivalent to the node-arc formulation.   

3.2 FCNF Formulations from the Literature 

    We review the formulations from the literature for single-source FCNF and multicommodity 

FCNF in section 3.2.1 and 3.2.2 respectively. 
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3.2.1  Single-Source FCNF Formulation  

    The single-source FCNF can be formulated in a traditional way with node balance constraints 

and arc switching constraints, called Base formulation [50]. Rardin and Wolsey [51] proposed an 

alternative multicommodity extended MIP formulation, called MCE formulation, which can 

increase the linear programming lower bound substantially. Here we give a brief introduction to 

both formulations. Note that the notation in this chapter and section should be considered 

separately from the notation in previous chapters and sections. 

Sets and parameters 

𝐺 = (𝑁, 𝐴)  The network 

𝑁  A set of locations (nodes) including the source, node 1  

𝐴  A set of arcs, {(𝑖,  𝑗): 𝑖 ≠ 𝑗,  𝑖 ∈ 𝑁,  𝑗 ∈ 𝑉\{1}} 

𝑓𝑘𝑙  The fixed cost of arc (𝑘, 𝑙)     

𝑐𝑘𝑙  The variable unit cost of arc (𝑘, 𝑙)    

𝑏𝑘  The net demand of node k     

𝐷 ⊆ 𝑁          A collection of sink nodes with rational demand 𝑏𝑑 > 0, 𝑑 ∈ 𝐷 

n           The number of nodes in the network 

Decision variables  

𝑥𝑖𝑗         The total flow on arc (𝑖,   𝑗)                                                                           

𝑦𝑖𝑗 ∈ {0,1}  Binary variable, 1, if arc (𝑖,   𝑗) is selected; 0, otherwise      

𝑤𝑖𝑗
𝑑         Units of flow on arc (𝑖,   𝑗) destined for sink d                                                 
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3.2.1.1 Base formulation of FCNF [50] 

(Base) 

Objective 

min  ∑ 𝑐𝑖𝑗(𝑖, 𝑗)∈A 𝑥𝑖𝑗 + ∑ 𝑓𝑖𝑗𝑦𝑖𝑗(𝑖, 𝑗)∈𝐴                                                                                          (3.1) 

Subject to 

∑ 𝑥𝑖𝑘(𝑖, 𝑘)∈𝐴 − ∑ 𝑥𝑘𝑗(𝑘, 𝑗)∈𝐴 = 𝑏𝑘         ∀𝑘 ∈ 𝑁                                                                          (3.2) 

𝑥𝑖𝑗 ≤ (∑ 𝑏𝑑d∈𝐷 )𝑦𝑖𝑗                              ∀(𝑖,  𝑗) ∈ 𝐴                                                                    (3.3) 

𝑥𝑖𝑗 ≥ 0                                                 ∀(𝑖,  𝑗) ∈ 𝐴                                                                    (3.4) 

𝑦𝑖𝑗 ∈ {0,1}                                           ∀(𝑖,  𝑗) ∈ 𝐴                                                                    (3.5) 

Base formulation explanation  

   The objective function, (3.1), minimizes total cost, which is equal to variable costs plus fixed 

costs of arcs with non-zero flow. Constraints (3.2) are node balance constraints. Constraints (3.3) 

are switching constraints to limit the maximum flow on arc (𝑖,   𝑗) in a relationship to the state of 

arc defined by variable 𝑦𝑖𝑗 : if the arc is selected the maximum arc flow is the total demand, 

otherwise it is 0.  Constraints (3.4) represent non-negative arc flow. Constraints (3.5) define binary 

variables 𝑦𝑖𝑗 to indicate the state of arc (𝑖,   𝑗) , selected (equal to 1) or not (equal to 0).  
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3.2.1.2 MCE formulation of FCNF [51] 

(MCE) 

Objective  

min  ∑ 𝑐𝑖𝑗𝑥𝑖𝑗(𝑖, 𝑗)∈A + ∑ 𝑓𝑖𝑗𝑦𝑖𝑗(𝑖, 𝑗)∈𝐴                                                                        (3.1) 

Subject to 

∑ 𝑤𝑖𝑘
𝑑

(𝑖, 𝑘)∈𝐴 − ∑ 𝑤𝑘𝑗
𝑑

(𝑘, 𝑗)∈𝐴 = {

𝑏𝑑 ∀𝑘 = 𝑑 ∈ 𝐷

0 ∀𝑘 ∈ 𝑁 ∖ {1}, ∀𝑑 ≠ 𝑘 ∈ 𝐷
−𝑏𝑑 𝑘 = 1 , ∀𝑑 ∈ 𝐷

                                  (3.6) 

𝑥𝑖𝑗 ≤  (∑ 𝑏𝑑𝑑∈𝐷 )𝑦𝑖𝑗                              ∀(𝑖,  𝑗) ∈ 𝐴                                              (3.3) 

𝑥𝑖𝑗 = ∑ 𝑤𝑖𝑗
𝑑

𝑑∈𝐷                                             ∀(𝑖,  𝑗) ∈ 𝐴                                             (3.7) 

𝑤𝑖𝑗
𝑑 ≤ 𝑏𝑑𝑦𝑖𝑗                                              ∀(𝑖,  𝑗) ∈ 𝐴, 𝑑 ∈ 𝐷                                     (3.8)             

𝑤𝑖𝑗
𝑑 ≥ 0                                                     ∀(𝑖,  𝑗) ∈ 𝐴, 𝑑 ∈ 𝐷                                    (3.9)                  

𝑦𝑖𝑗 ∈ {0,1}                                                  ∀(𝑖,  𝑗) ∈ 𝐴                                          (3.5)             

 

MCE Formulation Explanation  

     Objective (3.1) is retained from the Base formulation. Constraints (3.6) are node balance 

constraints for each commodity d: at source node 1, the net demand for each commodity d is equal 

to -bd; at a demand node d, the net demand for the corresponding commodity d is equal to bd , and 

is equal to 0 for all other commodities; at all the transshipment nodes, for each commodity, the net 

demand is equal to 0. Constraints (3.3) are the same as constraints (3.3) in Base, are switching 

constraints to limit the maximum flow on arc (𝑖,   𝑗) in a relationship to the state of use defined by 
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variable 𝑦𝑖𝑗. Constraints (3.7) state that the total arc flow is equal to the sum of each commodity 

flow on that arc. Constraints (3.8) are switching constraints for each commodity on an arc bounded 

by its corresponding demand amount. Constraints (3.9) represent non-negative commodity arc 

flow. Constraint (3.5) is to indicate if arc is selected or not. It is worth pointing out that constraints 

(3.3) can be relaxed due to constraints (3.7) and (3.8).  

3.2.1.3 Major Advantage of MCE over Base  

 

     In the above uncapacitated FCNF, the node balance constraints in MCE (3.6) replace the 

corresponding constraints (3.2) by breaking down the balance equations for each commodity 

(demand); this improves the LP lower bound greatly. Also, the multicommodity switching 

constraints in MCE (3.9) improve the LP lower bound especially when the arc capacity is much 

larger than the demands. In some cases, the LP lower bound can be equal or close to the MIP 

optimal value [51]. 

3.2.2  Multicommodity FCNF Formulation  

    

   The multicommodity fixed charge network flow problem (FCNF) is a variant of the 

multicommodity network flow problem stated in Chapter 1 in that fixed costs are considered for 

each arc if used. Therefore, accordingly, in the literature there are node-arc and arc-path 

formulations. Here, we focus on the node-arc formulation. We give the two typical node-arc 

formulations based on the single source MCE in Section 3.2.1.2 and the multicommodity node-arc 

formulation in Section 1.1.2.2 with the assumption that the unit cost for all the commodities are 

the same for each specific arc. Note that the notation in this section should be considered separately 

from the notation in previous sections since some of them have the same meaning but some of 

them do not. 
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Sets and parameters 

𝐺 = (𝑁, 𝐴) The network 

𝑁 The set of all nodes in 𝐺 

𝐴 The set of all arcs in 𝐺 

𝐻 The set of all commodities  

𝑠ℎ The source or origin of commodity ℎ ∈ 𝐻 

𝑡ℎ The terminal or destination of commodity ℎ ∈ 𝐻 

𝑐𝑖𝑗 Per unit flow cost on arc (𝑖, 𝑗) 

 𝑑ℎ The total demand units of commodity ℎ 

𝑏𝑖
ℎ The supply/demand at node 𝑖 of commodity ℎ  

            (𝑏𝑖
ℎ  =  𝑑ℎ if  𝑖  =  𝑠ℎ, 𝑏𝑖

ℎ  =   − 𝑑ℎ if  𝑖  =  𝑡ℎ, and 𝑏𝑖
ℎ  =  0 otherwise). 

 

𝑢𝑖𝑗 The arc capacity off arc (𝑖, 𝑗) 

Decision variables 

𝑥𝑖𝑗 The total flow on arc (𝑖,   𝑗)                                                                           

𝑦𝑖𝑗 ∈ {0,1} Binary variable, 1, if arc (𝑖,   𝑗) is selected; 0, otherwise      

𝑤𝑖𝑗
ℎ   The flow on arc (𝑖, 𝑗) of commodity h 

Objective 

min  ∑ 𝑐𝑖𝑗𝑥𝑖𝑗(𝑖, 𝑗)∈A + ∑ 𝑓𝑖𝑗𝑦𝑖𝑗(𝑖, 𝑗)∈𝐴                                                                                        (3.1) 

Subject to 

∑ 𝑤𝑖𝑗
ℎ

{𝑗∈𝑁: (𝑖, 𝑗)∈A} −  ∑ 𝑤𝑗𝑖
ℎ =  𝑏𝑖

ℎ
{𝑗 ∈ 𝑁: (𝑗, 𝑖)∈A}    ∀𝑖 ∈ 𝑁, ∀ ℎ ∈ 𝐻                                      (3.10) 

𝑥𝑖𝑗 ≤ 𝑢𝑖𝑗𝑦𝑖𝑗                                                        ∀(𝑖,  𝑗) ∈ 𝐴                                                  (3.11) 
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𝑥𝑖𝑗 = ∑ 𝑤𝑖𝑗
ℎ

ℎ∈𝐻            ∀(𝑖,  𝑗) ∈ 𝐴                                                                                            (3.12) 

𝑤𝑖𝑗
ℎ ≤ 𝑑ℎ𝑦𝑖𝑗               ∀ (𝑖, 𝑗) ∈  𝐴, ℎ ∈  𝐻                                                                                         (3.13) 

𝑤𝑖𝑗
ℎ ≥ 0                    ∀(𝑖,  𝑗) ∈ 𝐴, ℎ ∈ 𝐻                                                                                             (3.14) 

𝑦𝑖𝑗 ∈ {0,1}               ∀(𝑖,  𝑗) ∈ 𝐴                                                                                              (3.5) 

 Formulation Explanation  

      Objective (3.1) is retained from Base and MCE of the single source FCNF. Constraints (3.10) 

are node balance constraints for each commodity h at each node i. Constraints (3.11) are switching 

constraints to limit the maximum flow on arc (𝑖,   𝑗) in a relationship to the state of use defined by 

variable 𝑦𝑖𝑗. Constraints (3.12) states that the total arc flow is equal to the sum of each commodity 

flow on that arc. Constraints (3.13), called commodity switching constraints, are switching 

constraints for each commodity on an arc bounded by its corresponding demand amount. 

Constraints (3.14) represent non-negative commodity arc flow. Constraint (3.5) is retained from 

the Base and MCE formulations to indicate if arc is selected or not.  

  It is worth noticing that constraints (3.13) can be relaxed without affecting the validity of the 

formulation. Hereinafter, we refer the above formulation with (3.13) as the “node-arc formulation 

with commodity switching constraints” (node-arc W for short). We refer to the above formulation 

without (3.13) as the “node-arc formulation without commodity switching constraints” (node-arc 

WO for short). 
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3.3 Triples Formulations of FCNF 

3.3.1 Straightforward Triples Formulation 

    

   Here we use as many as possible the notations in 3.2.2 as long as they have the same meaning. 

For clarity and convenience, we put them below so that readers do not need to go back to the 

previous section for the specific meaning of the notations and also no confusion arises in case a 

notation has different meanings in the previous sections.  

Sets and parameters 

𝐺 = (𝑁, 𝐴) The network 

𝑁 The set of all nodes in 𝐺 

𝐴 The set of all arcs in 𝐺 

𝐴̅ The set of virtual arcs {(𝑖, 𝑗): 𝑖 ≠  𝑗, 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, (𝑖, 𝑗)  ∉ 𝐴}  

𝐻 The set of all commodities  

𝑠ℎ The source or origin of commodity ℎ ∈ 𝐻 

𝑡ℎ The terminal or destination of commodity ℎ ∈ 𝐻 

𝑐𝑖𝑗 Per unit flow cost on arc (𝑖, 𝑗) assuming that is the same for all commodities 

 𝑑ℎ  The total demand units of commodity ℎ 

𝑏𝑖
ℎ The supply/demand at node 𝑖 of commodity ℎ  

            (𝑏𝑖
ℎ  =  𝑑ℎ if 𝑖  =  𝑠ℎ, 𝑏𝑖

ℎ  =   − 𝑑ℎ if 𝑖  =  𝑡ℎ, and 𝑏𝑖
ℎ  =  0 otherwise). 

𝑑𝑖𝑗        The demand from node 𝑖 to node 𝑗 (i.e., 𝑑𝑠ℎ𝑡ℎ
=  𝑑ℎ for commodity ℎ ∈ 𝐻)  

𝐷 ⊆ 𝑁  The sink nodes with rational demand 𝑏𝑑 > 0, 𝑑 ∈ 𝐷 

𝑢𝑖𝑗   The arc capacity on arc (𝑖, 𝑗) 

𝑇 = {(𝑖,  𝑗,  𝑘):  𝑖 ∈ 𝑁 ,  𝑗 ∈ 𝐷\{𝑖}, 𝑘 ∈ 𝑁\{𝑖,  𝑗}, (𝑖, 𝑘) ∈ 𝐴}    The set of node triples 
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Decision variables 

𝑥𝑖𝑗              The total flow on arc (𝑖, 𝑗)                                                                    

𝑦𝑖𝑗 ∈ {0,1}    Binary variable, 1, if arc (𝑖, 𝑗) is selected; 0, otherwise      

𝑧𝑖𝑗
𝑘 ≥ 0  ∀(𝑖, 𝑗, 𝑘) ∈ 𝑇  Triples variables 

In general, the set of virtual arcs, 𝐴̅, in the triples formulation is the set of arcs that would need to 

be added to 𝐺 to make it a complete network. However, it is sufficient to restrict the virtual arcs 

in the FCNF application such that (𝑖, 𝑗) is in 𝐴̅ only if  𝑗 =  𝑡ℎ for some commodity ℎ. Hereinafter, 

we make this restriction. Using the above notations, the straightforward triples formulation of 

multicommodity FCNF is: 

Objective                           

min ∑ 𝑐𝑖𝑗x𝑖𝑗(𝑖,𝑗)∈𝐴 + ∑ 𝑓𝑖𝑗𝑦𝑖𝑗(𝑖, 𝑗)∈𝐴                                                                                            (3.1) 

Subject to 

𝑥𝑖𝑗 = 𝑑𝑖𝑗 + ∑ 𝑧𝑖𝑘
𝑗

{𝑘∈𝑁:(𝑖,𝑘,𝑗)∈𝑇} + ∑ 𝑧𝑘𝑗
𝑖

{𝑘∈𝑁:(𝑘,𝑗,𝑖)∈𝑇} − ∑ 𝑧𝑖𝑗
𝑘

{𝑘∈𝑁:(𝑖,𝑗,𝑘)∈𝑇}     ∀(𝑖, 𝑗) ∈ 𝐴  ∪ A̅    (3.15) 

𝑥𝑖𝑗 ≤ 𝑢𝑖𝑗𝑦𝑖𝑗                                  ∀(𝑖,  𝑗) ∈ 𝐴                                                                              (3.11) 

𝑥𝑖𝑗 ≥ 0                                           ∀(𝑖, 𝑗) ∈ 𝐴                            (3.4) 

𝑥𝑖𝑗 = 0                                            ∀(𝑖, 𝑗) ∈ A̅          (3.16) 

𝑦𝑖𝑗 ∈ {0,1},        ∀(𝑖,  𝑗) ∈ 𝐴                                                     (3.5)             

𝑧𝑖𝑗
𝑘 ≥ 0                                            ∀ (𝑖, 𝑗, 𝑘) ∈ 𝑇                                                               (3.17)               

Constraints (3.15) are the triples constraints introduced in Section 1.9. They replace the node 

balance constraints (3.2) in the Base model and (3.6) in the MCE model. Constraints (3.16) ensure 



 

107 

 

that there is no flow on the virtual arcs. The objective and the other constraints in the formulation 

have been discussed in preceding sections.  

 

3.3.2 Stronger Triples Formulation of FCNF 

 

Our computational experiments with the straight-forward triples formulation given in Section 

3.3.1 showed that it is not as strong as the MCE for the single source FCNF. But it can be 

strengthened to give the same LP lower bound as the MCE by adding singleton demand nodes. In 

the network, there are two kinds of nodes: nodes with zero demands and nodes with non-zero 

demands. In order to fully realize the advantage of the commodity switching constraints in MCE 

to strengthen the LP relaxation of the triples formulation, we need to add a singleton node to each 

of the nodes with nonzero demands and move the demand to it [52].  Though the singleton concept 

was motivated and first put forth for the single-source scenario, it was later successfully expanded 

to the multicommodity scenario. Since single-source is a special case of multicommodity, here we 

will describe the stronger triples formulation for the multicommodity scenario. In the stronger 

triples formulation of FCNF, with a singleton added for each commodity ℎ ∈ 𝐻 at the end node 

𝑡ℎ , we augment the given network with a set of singleton nodes, 𝑆 . For each 𝑡ℎ  there is a 

corresponding singleton node 𝑠ℎ́ ∈ 𝑆. Singleton node 𝑠ℎ́ has demand 𝑑ℎ, and the corresponding 

node 𝑡ℎ has its demand reduced to zero. The arc set is augmented with a set of arcs 𝐴𝑆 connecting 

each original demand node 𝑡ℎ to its corresponding singleton node 𝑠ℎ́ . For each 𝑡ℎ , 𝐴𝑆  has arc 

(𝑡ℎ, 𝑠́ℎ) with fixed and variable costs of zero, and a capacity of 𝑑ℎ units. We refer to the nodes in 

𝑆 as singletons because they each have a single incoming arc and no outgoing arcs. 
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With singletons we let 𝑑𝑖𝑗 = 0 for all arcs except arcs from the source node 𝑠ℎ to the singleton 

node 𝑠ℎ́ associated with the sink node 𝑡ℎ of commodity ℎ ∈ 𝐻, in which case 𝑑𝑠ℎ,𝑠́ℎ
= 𝑑ℎ. The set 

of virtual arcs is 𝐴̅ = {(𝑖, 𝑗): 𝑖 ≠  𝑗, 𝑖 ∈ 𝑁 ∖ 𝑆, 𝑗 ∈ 𝑆, (𝑖, 𝑗)  ∉ 𝐴}. With this change, the Stronger 

triples formulation of multicommodity FCNF is  

Objective 

min     ∑ 𝑐𝑖𝑗x𝑖𝑗(𝑖,𝑗)∈𝐴 + ∑ 𝑓𝑖𝑗𝑦𝑖𝑗(𝑖, 𝑗)∈𝐴                                                                                        (3.1) 

Subject to 

𝑥𝑖𝑗 = 𝑑𝑖𝑗 + ∑ 𝑧𝑖𝑘
𝑗

{𝑘∈𝑁:(𝑖,𝑘,𝑗)∈𝑇} + ∑ 𝑧𝑘𝑗
𝑖

{𝑘∈𝑁:(𝑘,𝑗,𝑖)∈𝑇} − ∑ 𝑧𝑖𝑗
𝑘

{𝑘∈𝑁:(𝑖,𝑗,𝑘)∈𝑇}     ∀(𝑖, 𝑗) ∈ 𝐴  ∪ 𝐴𝑆 ∪ 𝐴̅  (3.15) 

𝑥𝑖𝑗 ≤ 𝑢𝑖𝑗𝑦𝑖𝑗                               ∀(𝑖,  𝑗) ∈ 𝐴                                                                             (3.11) 

𝑧𝑖𝑗
𝑘 ≤ 𝑑𝑖𝑗𝑦𝑖𝑘                               ∀(𝑖,  𝑗, 𝑘) ∈ 𝑇                                                                         (3.18) 

𝑥𝑖𝑗 = 0                                            ∀(𝑖, 𝑗) ∈ A̅          (3.16)  

𝑥𝑡ℎ𝑠́ℎ
= 𝑑ℎ                                        ∀ ℎ ∈ 𝐻          (3.19) 

𝑥𝑖𝑗 ≥ 0                                            ∀(𝑖, 𝑗) ∈ 𝐴\𝐴𝑠                         (3.20) 

𝑦𝑖𝑗 ∈ {0,1}                   ∀(𝑖, 𝑗) ∈ 𝐴                                                                               (3.5) 

𝑧𝑖𝑗
𝑘 ≥ 0                                            ∀(𝑖,  𝑗, 𝑘) ∈ 𝑇                                                                         (3.17)  

     Constraint sets (3.5), (3.11), (3.15), (3.16), and (3.17) are carried over from the straightforward 

triples formulation of FCNF. Constraint set (3.18) ensures that flow is only diverted on to arcs 

selected by the 𝑦 variables. For a given commodity ℎ, constraint (3.19) forces the required amount 

of flow into the singleton node 𝑠́ℎ by fixing the flow on arc in (𝑡ℎ, 𝑠́ℎ) ∈ 𝐴𝑆  to 𝑑ℎ . Constraint 

(3.20) ensures that all other arc flows are non-negative.  

  



 

109 

 

We now illustrate the stronger triples formulation with a small example. 

 

 

 

 

 

 

 

 

 

Figure 4  7-node original network 

Figure 4 is the original 7-node network. Node 1 is the source node with a total supply of 50 units, 

Nodes 5, 6 and 7 are demand nodes with respective demand of 20, 15 and 15.   

 

Figure 5  7-node network with added singletons 

     Figure 5 is an extended network with added singletons. The original demand nodes are node 5, 

node 6 and node 7, with the respective demands of 20, 15, and 15.  Now, we add singleton demand 

nodes 8, 9, 10 corresponding to node 5, 6, 7 respectively. As noted in Figure 5, the costs on the 

newly formed arcs are all zero.  
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Stronger triples formulation of the example in Figure 5 

Objective 

Min:  5x12 + 4x13 + 6x24 + 3x26 + 4x34 + 4x37 + 2x45 + x56 + 2x57 + 4x67 + 5x76 +

70y12 + 75y13 + 65y24 + 80y26 + 70y34 + 75y37 + 90y45 + 80y56 + 75y57 + 75y67 +

70y76                                                          

Constraints 

Arc flow represented by demands and triples 

(1) Singleton arcs: 

20 = 𝑧48
5 − 𝑧58

6 − 𝑧58
7      for arc (5,8) 

15 = 𝑧29
6 + 𝑧59

6 + 𝑧79
6 − 𝑧69

7          for arc (6,9) 

15 = 𝑧3,10
7 + 𝑧5,10

7 + 𝑧6,10
7  −𝑧7,10

6        for arc (7,10) 

 

(2) Virtual arcs terminating at singleton nodes: 

𝑥28 = 0 = 𝑧18
2 − 𝑧28

4 − 𝑧28
6  

𝑥29 = 0 = 𝑧19
2 − 𝑧29

4 − 𝑧29
6  

𝑥2,10 = 0 = 𝑧110
2 − 𝑧210

4 − 𝑧210
6  

𝑥38 = 0 = 𝑧18
3 − 𝑧38

4 − 𝑧38
7  

𝑥39 = 0 = 𝑧19
3 − 𝑧39

4 − 𝑧39
7  

𝑥3,10 = 0 = 𝑧110
3 − 𝑧310

4 − 𝑧310
7  
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𝑥48 = 0 = 𝑧28
4 + 𝑧38

4 − 𝑧48
5  

𝑥49 = 0 = 𝑧29
4 + 𝑧39

4 − 𝑧49
5  

𝑥4,10 = 0 = 𝑧210
4 + 𝑧310

4 − 𝑧410
5  

𝑥59 = 0 = 𝑧49
5 − 𝑧59

6 − 𝑧59
7  

𝑥5,10 = 0 = 𝑧410
5 − 𝑧510

6 − 𝑧510
7  

𝑥68 = 0 = 𝑧28
6 + 𝑧58

6 + 𝑧78
6 − 𝑧68

7  

𝑥6,10 = 0 = 𝑧210
6 + 𝑧510

6 + 𝑧710
6 − 𝑧610

7  

𝑥78 = 0 = 𝑧38
7 + 𝑧58

7 + 𝑧68
7 − 𝑧78

6  

𝑥79 = 0 = 𝑧39
7 + 𝑧59

7 + 𝑧69
7 − 𝑧79

6  

(3) Virtual arcs coming out of the source node: 

𝑥18 = 0 = 20 − 𝑧18
2 − 𝑧18

3  

𝑥19 = 0 = 15 − 𝑧19
2 − 𝑧19

3  

𝑥1,10 = 0 = 15 − 𝑧110
2 − 𝑧110

3  

(4) Arcs in the given network: 

𝑥12 = 𝑧18
2 + 𝑧19

2  +𝑧1,10
2  

𝑥13 = 𝑧18
3 + 𝑧19

3  +𝑧1,10
3  

𝑥24 = 𝑧28
4 + 𝑧29

4  +𝑧2,10
4  

𝑥26 = 𝑧28
6 + 𝑧29

6  +𝑧2,10
6  

𝑥34 = 𝑧38
4 + 𝑧39

4  +𝑧3,10
4  

𝑥37 = 𝑧38
7 + 𝑧39

7  +𝑧3,10
7  

𝑥45 = 𝑧48
5 + 𝑧49

5  +𝑧4,10
5  
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𝑥56 = 𝑧58
6 + 𝑧59

6  +𝑧5,10
6  

𝑥57 = 𝑧58
7 + 𝑧59

7  +𝑧5,10
7  

𝑥67 = 𝑧68
7 + 𝑧69

7  +𝑧6,10
7  

𝑥76 = 𝑧78
6 + 𝑧79

6  +𝑧7,10
6  

 

Triples switching constraints 

𝑧18 
2 ≤ 20 𝑦12 

𝑧19
2  ≤ 15 𝑦12 

𝑧1,10
2   ≤ 15 𝑦12 

𝑧18 
3 ≤ 20 𝑦13 

𝑧19
3  ≤ 15 𝑦13 

𝑧1,10
3   ≤ 15 𝑦13 

𝑧28 
4 ≤ 20 𝑦24 

𝑧29 
4 ≤ 15 𝑦24 

𝑧2,10 
4 ≤ 15 𝑦24 

𝑧28 
6 ≤ 20 𝑦26 

𝑧29 
6 ≤ 15 𝑦26 

𝑧2,10 
6 ≤ 15 𝑦26 

𝑧38 
4 ≤ 20 𝑦34 
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𝑧39 
4 ≤ 15 𝑦34 

𝑧3,10 
4 ≤ 15 𝑦34 

Optimal solution  

𝑥13 = 50 

𝑥34 = 35 

𝑥37 = 15 

𝑥45 = 35 

𝑥56 = 15 

𝑦13 = 1 

𝑦34 = 1 

𝑦37 = 1 

𝑦45 = 1 

𝑦56 = 1 

𝑧18 
3 = 20 

𝑧38 
4 = 20 

𝑧48 
5 = 20 

𝑧19 
3 = 15 

𝑧39 
4 = 15 

𝑧49 
5 = 15 

𝑧59 
6 = 15 

𝑧1,10 
3 = 15 

z3,10
7 = 15 
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The optimal total cost is: 875 

 

Interpretation of the optimal triples solution  

 

Figure 6  Example optimal triples solution 

As shown in Figure 6, the example optimal triples solution is to send 20 units of flow from node 

1 to node 8 diverted via node 3, to send 20 units of flow from node 3 to node 8 diverted via node 

4, to send 20 units of flow from node 4 to node 8 diverted via node 5, and  20 units of flow from 

node 5 directly to node 8;  send 15 units of flow from node 1 to node 9 diverted via node 3, to send 

15 units of flow from node 3 to node 9 diverted via node 4, to send 15 units of flow from node 4 

to node 9 diverted via node 5, to send 15 units of flow from node 5 to node 9 diverted via node 6, 

and 15 units of flow from node 6 directly to node 9; send 15 units of flow from node 1 to node 10 

diverted via node 3, and 15 units of flow from node 3 directly to node 10  in order to satisfy all 

demands at a minimum cost of 875. 
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3.3.3 Proof of Equality of Node-Arc Formulation and Stronger Triples Formulation 

   

     As explained in sections 3.2.2 and 3.3.2, H represents the set of commodities and each 

commodity ℎ ∈ 𝐻 represents an OD pair; while S represents the set of singletons, each 𝑠́ℎ ∈ 𝑆   

represents a unique singleton corresponding to a commodity h. For convenience, and without loss 

of generality, assume that the commodities in H are numbered the same way as the singleton nodes 

in S so that  𝐻 = 𝑆 =  {|𝑁|  +  1, |𝑁|  +  2, … , |𝑁|  +  |𝐻|}. Using this notation, we can show that 

the node-arc formulation and the stronger triples formulation are essentially the same formulation.       

The key observation in showing that the formulations are the same is that because triples variable 

𝑧𝑖𝑗
𝑘  represents the total flow on arc (𝑖, 𝑘) destined for singleton node 𝑗 , there is a one-to-one 

correspondence between the 𝑧 variables in the stronger triples formulation and the 𝑤 variables in 

the node-arc formulation: 𝑧𝑖𝑗
𝑘  corresponds to 𝑤𝑖𝑘

𝑗
, and 𝑤𝑖𝑗

ℎ  corresponds to 𝑧𝑖ℎ
𝑗

.  Thus, there is a one-

to-one correspondence between variable-domain constraint set (3.17) in the stronger triples 

formulation and constraint set (3.14) in the node-arc formulation. Since each triple (𝑖, 𝑗, 𝑘) in 𝑇 

corresponds to the combination of arc (𝑖, 𝑘) and commodity 𝑗 in the node-arc formulation, the term 

∑ 𝑧𝑖𝑗
𝑘

{𝑘∈𝑁:(𝑖,𝑗,𝑘)∈𝑇}  in the stronger triples formulation corresponds to the term ∑ 𝑤𝑖𝑘
𝑗

𝑗∈𝐻  in the node-

arc formulation. Next, we show that each of the other components of the stronger triples 

formulation has a one-to-one correspondence with a component of the node-arc model. 

     The two formulations share decision variables 𝑥𝑖𝑗  and 𝑦𝑖𝑗  for each arc (𝑖, 𝑗)  in 𝐴  and the 

corresponding variable-domain constraints, objective function (3.1), and 𝑥-𝑦 switching constraints 

(3.11).  Switching constraint 𝑧𝑖𝑗
𝑘 ≤ 𝑑𝑖𝑗𝑦𝑖𝑘  in the stronger triples formulation corresponds to 

switching constraint 𝑤𝑖𝑘
𝑗

≤ 𝑑𝑗𝑦𝑖𝑘  in the node-arc formulation. Thus, there is a one-to-one 
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correspondence between constraint set (3.18) in the stronger triples formulation and constraint set 

(3.13) in the node-arc formulation. Next, we partition the triples constraints (3.15) into four cases 

by arc type and show how each case corresponds to a constraint set in the node-arc formulation. 

Case 1: (𝒊, 𝒋) ∈ 𝑨. 

     If (𝑖, 𝑗) is an arc in the given network 𝐺, then 𝑑𝑖𝑗 =  0. In this case node 𝑗 is not a singleton and 

so there are no triples in 𝑇 of the form (𝑘, 𝑗, 𝑖) or (𝑖, 𝑗, 𝑘). Furthermore, (𝑖, 𝑘, 𝑗) is only in 𝑇 in this 

case if node 𝑘 is a singleton; and so, the triples constraint (3.15) in this case simplifies to 𝑥𝑖𝑗 =

∑ 𝑧𝑖𝑘
𝑗

{𝑘∈𝐻: (𝑖,𝑘,𝑗)∈𝑇} . From the correspondence between the 𝑧 and 𝑤 variables, ∑ 𝑧𝑖𝑘
𝑗

{𝑘∈𝐻: (𝑖,𝑘,𝑗)∈𝑇} =

∑ 𝑤𝑖𝑗
𝑘

{𝑘∈𝐻} . Thus, triples constraint (3.15) for arc (𝑖, 𝑗) ∈ 𝐴 reduces to 𝑥𝑖𝑗 = ∑ 𝑤𝑖𝑗
𝑘

𝑘∈𝐻 , which is 

constraint (3.12) for arc (𝑖, 𝑗) in the node-arc formulation. 

Case 2: (𝒊, 𝒋) ∈ 𝑨̅ and 𝒊 is the source node for commodity 𝒉 ∈ 𝑯  

     In this case node 𝑗 must be the singleton node 𝑠ℎ́ corresponding to the destination node 𝑡ℎ for 

commodity ℎ . So, 𝑑𝑖𝑗 =  𝑑ℎ  and constraint (3.16) forces 𝑥𝑖𝑗 =  0 . Furthermore, (𝑖, 𝑗) is not a 

member of the given arc set 𝐴 in this case; and so, there are no triples of the form (𝑖, 𝑘, 𝑗). Thus, 

the triples constraint (3.15) in this case reduces to 𝑑ℎ = ∑ 𝑧𝑖𝑗
𝑘

{𝑘∈𝑁: (𝑖,𝑗,𝑘)∈𝑇} −  ∑ 𝑧𝑘𝑗
𝑖

{𝑘∈(𝑘,𝑗,𝑖)∈𝑇} .  

     From the correspondence between the 𝑧 and 𝑤 variables, ∑ 𝑧𝑖𝑗
𝑘

{𝑘∈𝑁: (𝑖,𝑗,𝑘)∈𝑇} = ∑ 𝑤𝑖𝑘
𝑗

𝑘∈𝑁  and  

∑ 𝑧𝑘𝑗
𝑖

{𝑘∈𝑁: (𝑘,𝑗,𝑖)∈𝑇} = ∑ 𝑤𝑘𝑖
𝑗

𝑘∈𝑁 . Thus, triples constraint (3.15) in this case reduces to                         

𝑑𝑗 = ∑ 𝑤𝑖𝑘
𝑗

𝑘∈𝑁 −  ∑ 𝑤𝑘𝑖
𝑗

𝑘∈𝑁 , which is the node-balance constraint (3.10) for the source node of 

commodity 𝑗 in the node-arc formulation. 
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Case 3: (𝒊, 𝒋) ∈ 𝑨𝑺 

     In this case node 𝑖 is the destination node 𝑡ℎ for some commodity ℎ, node 𝑗 is the associated 

singleton node 𝑠ℎ́,  𝑑𝑖𝑗 =  0, and constraint (3.19) forces 𝑥𝑖𝑗 =  𝑑𝑗.  Furthermore, (𝑖, 𝑗) is not a 

member of the given arc set 𝐴 in this case; and so, there are no triples of the form (𝑖, 𝑘, 𝑗). Thus, 

the triples constraint (3.15) in this case reduces to 𝑑𝑗 = ∑ 𝑧𝑘𝑗
𝑖

{𝑘∈(𝑘,𝑗,𝑖)∈𝑇} − ∑ 𝑧𝑖𝑗
𝑘

{𝑘∈𝑁: (𝑖,𝑗,𝑘)∈𝑇} . 

     From the correspondence between the 𝑧 and 𝑤 variables, ∑ 𝑧𝑖𝑗
𝑘

{𝑘∈𝑁: (𝑖,𝑗,𝑘)∈𝑇} = ∑ 𝑤𝑖𝑘
𝑗

𝑘∈𝑁  and  

∑ 𝑧𝑘𝑗
𝑖

{𝑘∈𝑁: (𝑘,𝑗,𝑖)∈𝑇} = ∑ 𝑤𝑘𝑖
𝑗

{𝑘∈𝑁} . Thus, triples constraint (3.15) in this case reduces to                           

𝑑𝑗 = ∑ 𝑤𝑘𝑖
𝑗

𝑘∈𝑁 − ∑ 𝑤𝑖𝑘
𝑗

𝑘∈𝑁 , which is the node-balance constraint (3.10) for the sink node of 

commodity 𝑗 in the node-arc formulation. 

Case 4: (𝒊, 𝒋) ∈ 𝑨̅ and 𝒊 is not a source node for any commodity 

     In this case node 𝑗 must be the singleton node 𝑠ℎ́  for some commodity ℎ.  So, 𝑑𝑖𝑗 =  0 and 

constraint (3.16) forces 𝑥𝑖𝑗 =  0. Furthermore, (𝑖, 𝑗) is not a member of the given arc set 𝐴 in this 

case; and so, there are no triples of the form (𝑖, 𝑘, 𝑗). Thus, the triples constraint (3.15) in this case 

reduces to ∑ 𝑧𝑖𝑗
𝑘

{𝑘∈𝑁: (𝑖,𝑗,𝑘)∈𝑇} =  ∑ 𝑧𝑘𝑗
𝑖

{𝑘∈(𝑘,𝑗,𝑖)∈𝑇} .  

     From the correspondence between the 𝑧 and 𝑤 variables, ∑ 𝑧𝑖𝑗
𝑘

{𝑘∈𝑁: (𝑖,𝑗,𝑘)∈𝑇} = ∑ 𝑤𝑖𝑘
𝑗

{𝑘∈𝑁}  and  

∑ 𝑧𝑘𝑗
𝑖

{𝑘∈𝑁: (𝑘,𝑗,𝑖)∈𝑇} = ∑ 𝑤𝑘𝑖
𝑗

𝑘∈𝑁 . Thus, triples constraint (3.15) in this case reduces to                           

∑ 𝑤𝑖𝑘
𝑗

𝑘∈𝑁 =  ∑ 𝑤𝑘𝑖
𝑗

𝑘∈𝑁 , which is the node-balance constraint (3.10) for nodes that are 

transshipment nodes for commodity 𝑗 in the node-arc formulation. 

     The only components of the stronger triples formulation that have not yet been accounted for 

are constraints (3.16), (3.19), and (3.20).  Constraints (3.16) and (3.19) simply fix the 𝑥 variables 
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on arcs that are not in the given arcs 𝐴 to constants; and so, there is no need to map them to the 

node-arc formulation. Constraint (3.20) for arc (𝑖, 𝑗) ∈  𝐴 is the non-negativity constraint for 𝑥𝑖𝑗, 

which is not explicit in the node-arc formulation but is implied by constraint (3.12).  

3.3.4 Comparison of Problem Size of Three FCNF Formulations 

 

     Tables 3.1 and 3.2 give upper bounds on the number of variables and structural constraints in 

the node-arc W and node-arc WO and straightforward triples formulations, respectively. The 

bounds are based on worst-case instances in which the network has the largest possible numbers 

of arcs and commodities, 𝑛(𝑛 − 1). As shown in Table 3.1, the straightforward triples formulation 

reduces the number of continuous variables in the MIP by a factor of n for both node-arc 

formulations. As shown in Table 3.2, the straightforward triples formulation reduces the number 

of constraints in the MIP by a factor of 𝑛 for the node-arc WO formulation and by a factor of 𝑛2 

for the node-arc W. In Chapter 4, we demonstrate how this reduction in MIP size leads to 

improvement in early stage MIP objective values compared with the node-arc formulations.  

Table 3. 1 Comparison of Variable Counts 

Number of   Node-Arc WO/W Straightforward Triples 

Continuous variables 𝑥𝑖𝑗 𝑛(𝑛 − 1) 𝑛(𝑛 − 1) 

  𝑤𝑖𝑗
ℎ  𝑛2(𝑛 − 1)2 N/A 

  𝑧𝑖𝑗
𝑘  N/A 𝑛2(𝑛 − 1) 

Total  𝑛4–  2𝑛3 +  2𝑛2 −  𝑛 𝑛3 − 𝑛 

Binary variables 𝑦𝑖𝑗 𝑛(𝑛 − 1) 𝑛(𝑛 − 1) 

 

  



 

119 

 

Table 3. 2 Comparison of Constraint Counts 

Number of constraints   Node-Arc WO Node-Arc W Straightforward Triples 

Node balance (3.10) 𝑛2(𝑛 − 1) 𝑛2(𝑛 − 1) N/A 

Are switching  (3.11) 𝑛(𝑛 − 1) 𝑛(𝑛 − 1) 𝑛(𝑛 − 1) 

Arc flow summation (3.12) 𝑛(𝑛 − 1) 𝑛(𝑛 − 1) N/A 

Commodity switching 

constraints 

(3.13) N/A 𝑛2(𝑛 − 1)2 N/A 

Arc flow by triples (3.15) N/A N/A 𝑛(𝑛 − 1) 

Total    𝑛3 +  2𝑛2–  3𝑛 𝑛4– 𝑛3 +  3𝑛2–  3𝑛  2𝑛2–  2𝑛 

 

3.4 Conclusions 

     The multicommodity fixed charge network flow problem (FCNF) can be formulated using the 

triples concept in a straightforward way (called Straightforward Triples Formulation of FCNF) 

and it has many fewer variables and constraints as shown in section 3.3.4. However, when testing 

on the single-source FCNF instances, this turns out to be a weaker formulation than the MCE in 

terms of the value of the LP lower bound. Adding full singletons to each sink node of the demand 

pair enables the triples formulation much stronger (called Stronger Triples Formulation of FCNF) 

and it is proved to be exactly the same as the node-arc formulation when adopting the same 

numbering scheme for the commodities and the singletons respectively. The proof that the 

Stronger Triples Formulation is essentially the node-arc formulation gives new insight into the 

essence and validity of the triples formulation. The possibility of better solution for dense and 

complete networks using the triples formulation is explored in the next Chapter.    
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CHAPTER 4                                                                                                                            

EXPERIMENTAL STUDY OF THE MULTICOMMODITY FCNF  

 

4.1 Computing Environment 

      The computations reported below were performed on the SMU Lyle School’s general use 

Linux machines. The formulations were implemented in AMPL 10.00 and solved with CPLEX 

12.6.0.0. We used the default settings for AMPL and CPLEX except where specified. The 

computer hardware specifications are listed in Table 4.1. 

Table 4. 1 Computer Hardware Specifications 

Make/Model HP DL380 

Processor Dual 14 Core Intel Xeon@2.6GHz 

RAM 380GB 

   

4.2 Data Sources of multicommodity FCNF 

       Preliminary experiments suggested that the best use case for the straightforward triples 

formulation over the node-arc formulation is on problem instances that are relatively dense in 

terms of the ratio of the number of arcs to the number of nodes, and the ratio of the number of 

commodities to the number of nodes. We found 16 such benchmark instances from the literature 

[49] that are available online; following the process used to generate those instances, we  randomly 

generated 32 additional problem instances on complete networks with the largest possible number 

of arcs and commodities.  

 4.3 Experimental Study of Multicommodity FCNF 

      For the multicommodity FCNF, the purpose is to test to see if the straightforward triples 

formulation performs better than the two forms of node-arc formulations: node-arc formulation 

with commodity switching constraints (referred to as: node-arc W) and node-arc formulation 

without commodity switching constraints (referred to as: node-arc WO).  We observed that within 
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a given time limit, the straightforward triples formulation finds solutions that compare favorably 

with those found in the time limit using either of the node-arc formulations. However, given an 

unlimited amount of time, we found that the branch-and-bound process tends to converge faster to 

a provably optimal solution using the node-arc model with commodity switching constraints. 

Inspired by this observation, we design a hybrid procedure with the hope of combing the 

advantages of both the triples (fewer variables and constraints) and node-arc W (stronger LP 

relaxation) formulations. The first step in the hybrid procedure is to solve the problem with the 

straightforward triples formulation and stop the branch-and-bound process when a preset 

optimality gap has been obtained (we use 3%). The second step is to let the x and y values from 

the triples solution be the initial values of an incumbent solution for a second CPLEX run with the 

node-arc W. We test the 32 randomly generated complete instances with a time limit using the 

three models, and the hybrid procedure and draw conclusions. Note that we use the terms 

“straightforward triples formulation” and “triples formulation” interchangeably in this chapter. 

4.3.1  Benchmark Instances 

 

4.3.1.1 Unlimited solution time testing 

        

     First, we try to solve the 16 benchmark dense instances to optimality, with unlimited solution 

time, using the three models and compare their performance measures. It turns out that the models 

only solve nine out of the 16 benchmark instances to optimality and break down for the other seven 

instances due to running out of memory. Hereinafter, we refer to the instances that were solved to 

optimality as the “9 easy instances” and the other instances the “7 hard instances”. 

    Table 4.2 gives the solution time and LP/MIP summary of the 9 easy instances using the 

formulation of node-arc WO.  The F/V column indicates whether the fixed or variable arc costs 
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dominate in the problem instance, and the T/L column indicates whether the arc capacities are tight 

or loose. The LP/MIP column gives the ratio of the objective function value (cost) of the LP 

relaxation to the optimal cost of an integer solution. 

Table 4. 2 Summary of the 9 easy instances using Node-Arc WO 

Data 

File 
Nodes Arcs Commodities F/V T/L 

Average CPU 

(seconds) 

Ave. Real Time 

(seconds) 
Ticks  

LP/ 

MIP 

c37 20 230 200 V L 469,206 19,703 4.5E+06 73% 

c38 20 230 200 F L 836,824 33,459 6.9E+06 71% 

c39 20 230 200 V T 72,620 4,153 6.5E+05 76% 

c40 20 230 200 F T 2,032,137 83,714 1.4E+07 74% 

c45 20 300 200 V L 1,362,733 55,796 1.1E+07 79% 

c47 20 300 200 V T 44,792 2,524 4.7E+05 82% 

c48 20 300 200 F T 1,948,390 97,385 1.4E+07 79% 

c53 30 520 400 V L 1,909,010 107,137 1.1E+07 86% 

c55 30 520 400 V T 282,422 11,808 2.4E+06 88% 

 

   Table 4.3 is the summary of solution time and LP/MIP of the 9 easy instances using the 

formulation of node-arc W. 

Table 4. 3 Summary of the 9 easy instances using Node-Arc W 

Data 

File 
Nodes Arcs Commodities 

F/

V 

T/

L 

Average CPU 

(seconds) 

Average 

Real Time 

(seconds) 

Ticks LP/MIP 

c37 20 230 200 V L 72,367 2,950 584,693 97% 

c38 20 230 200 F L 133,713 5,075 975,285 96% 

c39 20 230 200 V T 26,698 1,259 310,960 98% 

c40 20 230 200 F T 868,016 30,479 8,674,774 97% 

c45 20 300 200 V L 1,226,470 44,617 9,073,520 98% 

c47 20 300 200 V T 15,865 957 253,202 99% 

c48 20 300 200 F T 1,225,500 41,663 12,474,442 97% 

c53 30 520 400 V L 284,542 12,592 2,027,042 99% 

c55 30 520 400 V T 283,470 13,510 2,422,190 99% 
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     Table 4.4 is the summary of solution time and LP/MIP of the 9 easy instances using the 

formulation of straightforward triples formulation. 

Table 4. 4 Summary of the 9 easy instances using Straightforward Triples 

Data 

File 
Nodes Arcs Commodities F/V T/L 

Average 

CPU 

(seconds) 

Ave. Real Time 

(seconds) 
Ticks  

LP/ 

MIP 

c37 20 230 200 V L 426,371 19,946 10,011,484 73% 

c38 20 230 200 F L 603,456 37,209 9,044,378 71% 

c39 20 230 200 V T 44,479 2,113 914,589 76% 

c40 20 230 200 F T 1,444,260 86,066 19,967,835 74% 

c45 20 300 200 V L 540,946 29,654 7,648,995 79% 

c47 20 300 200 V T 15,169 704 369,614 82% 

c48 20 300 200 F T 178,578 10,009 3,365,320 79% 

c53 30 520 400 V L 580,277 26,559 5,321,572 86% 

c55 30 520 400 V T 84,062 5,052 1,151,782 88% 

 

    Table 4.5 is the summary of solution time and LP/MIP of the 9 easy instances using the hybrid 

procedure. 

Table 4. 5 Summary of the 9 easy instances using Hybrid procedure 

Data 

File 
Nodes Arcs Commodities F/V T/L 

Average 

CPU 

(seconds) 

Average 

Real time 

(seconds) 

Ticks  

c37 20 230 200 V L 43,358 1,721 1,007,143 

c38 20 230 200 F L 88,710 3,348 1,570,272 

c39 20 230 200 V T 6,569 422 217,425 

c40 20 230 200 F T 315,648 11,627 4,356,293 

c45 20 300 200 V L 465,080 17,726 7,181,774 

c47 20 300 200 V T 8,739 409 154,945 

c48 20 300 200 F T 921,740 33,835 10,656,645 

c53 30 520 400 V L 128,488 5,875 1,677,549 

c55 30 520 400 V T 89,298 4,127 1,307,085 
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   Table 4.6 is the comparison summary of solution time and LP bounds of the 9 easy instances 

between using the formulations of node arc with commodity switching constraints and node arc 

without commodity switching constraints.  The LP Ratio column gives the ratio of the cost of the 

LP relaxation of the node-arc W model to that of the node-arc WO model. Speedups and LP ratios 

in bold indicate favorable results for the node-arc W model. 

Table 4. 6 Comparison of the 9 easy instances using Node-Arc models W vs. WO  

Data 

File 
Nodes Arcs Commodities F/V T/L 

Speedup  
LP 

Ratio 
CPU 

Time 
Ticks 

Real 

Time 

c37 20 230 200 V L 6.48 7.67 6.68 1.33 

c38 20 230 200 F L 6.26 7.03 6.59 1.34 

c39 20 230 200 V T 2.72 2.10 3.30 1.29 

c40 20 230 200 F T 2.34 1.63 2.75 1.31 

c45 20 300 200 V L 1.11 1.20 1.25 1.24 

c47 20 300 200 V T 2.82 1.85 2.64 1.20 

c48 20 300 200 F T 1.59 1.11 2.34 1.22 

c53 30 520 400 V L 6.71 5.36 8.51 1.16 

c55 30 520 400 V T 1.00 1.01 0.87 1.13 

 

      Table 4.7 is the comparison summary of solution time and LP bounds of the 9 easy instances 

between using the formulations of straightforward triples and node-arc formulation without 

commodity switching constraints. Speedups and LP ratios in bold indicate favorable results for the 

straightforward triples model. 
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Table 4. 7 Comparison of the 9 easy instances using Triples vs. Node-Arc WO 

Data 

File 
Nodes Arcs Commodities F/V T/L 

Speedup 
LP 

Ratio CPU Time 
Real 

Time 
Ticks 

c37 20 230 200 V L 1.10 0.45 0.99 1.00 

c38 20 230 200 F L 1.39 0.76 0.90 1.00 

c39 20 230 200 V T 1.63 0.71 1.96 1.00 

c40 20 230 200 F T 1.41 0.71 0.97 1.00 

c45 20 300 200 V L 2.52 1.43 1.88 1.00 

c47 20 300 200 V T 2.95 1.27 3.59 1.00 

c48 20 300 200 F T 10.91 4.11 9.73 1.00 

c53 30 520 400 V L 3.29 2.04 4.03 1.00 

c55 30 520 400 V T 3.36 2.12 2.34 1.00 

 

    Table 4.8 is the comparison summary of solution time and LP bounds of the 9 easy instances 

between using the formulations of triples and node arc formulation with commodity switching 

constraints. 

Table 4. 8 Comparison of the 9 easy instances using Triples vs. Node-Arc W 

Data 

File 
Nodes Arcs Commodities F/V T/L 

Speed Up 

CPU 

Time 

Real 

Time 
Ticks 

LP 

Ration 

c37 20 230 200 V L 0.17 0.06 0.15 0.75 

c38 20 230 200 F L 0.22 0.11 0.14 0.74 

c39 20 230 200 V T 0.60 0.34 0.60 0.77 

c40 20 230 200 F T 0.60 0.43 0.35 0.77 

c45 20 300 200 V L 2.27 1.19 1.50 0.81 

c47 20 300 200 V T 1.05 0.69 1.36 0.83 

c48 20 300 200 F T 6.86 3.71 4.16 0.82 

c53 30 520 400 V L 0.49 0.38 0.47 0.87 

c55 30 520 400 V T 3.37 2.10 2.67 0.88 

  

     Observation: From tables 4.2-4.8, we can see that the results using the node-arc W are better in 

terms of all three solution times and LP lower bounds than the node-arc WO. The straightforward 

triples formulation performs better than the node-arc WO in terms of CPU times and gives the 
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same LP lower bounds; the larger the problem size, the better the straightforward triples performs 

versus the node-arc WO. There are three instances (c45, c48, c55) where the triples runs much 

faster in all three kinds of solution times though the LP bound is not as good as compared with the 

node-arc W. The possible reason for the better performance is the relatively smaller number of the 

variables and the constraints as shown in the Table 4.9, which compares the size of the three 

formulations, the number of variables and the number of constraints for all 16 benchmark 

instances. The “# of variables” and “# of constraints” give the ratios of the number of the variables 

and constraints in the node-arc formulations to the number of variable and constraints in the 

straightforward triples formulation. 

Table 4. 9 Size comparison of the three formulations of multicommodity FCNF 

Data 

File 
|𝑁| arcs 

arc 

density 
commodities 

commodity 

density 
F/V T/L 

Node arc WO/Triples  Node arc W/Triples  

# of 

variables 

# of 

constraints 

# of 

variables 

# of 

constraints 

c37 20 230 60.5% 200 52.6% V L 10 7 10 82 

c38 20 230 60.5% 200 52.6% F L 10 7 10 83 

c39 20 230 60.5% 200 52.6% V T 10 7 10 83 

c40 20 230 60.5% 200 52.6% F T 10 7 10 82 

c45 20 300 78.9% 200 52.6% V L 10 7 10 94 

c46 20 300 78.9% 200 52.6% F L 10 7 10 94 

c47 20 300 78.9% 200 52.6% V T 10 7 10 94 

c48 20 300 78.9% 200 52.6% F T 10 7 10 94 

c53 30 520 59.8% 400 46.0% V L 13 9 13 159 

c54 30 520 59.8% 400 46.0% F L 13 9 13 159 

c55 30 520 59.8% 400 46.0% V T 13 9 13 158 

c56 30 520 59.8% 400 46.0% F T 13 9 13 159 

c61 30 700 80.5% 400 46.0% V L 13 9 13 185 

c62 30 700 80.5% 400 46.0% F L 13 9 13 184 

c63 30 700 80.5% 400 46.0% V T 13 9 13 184 

c64 30 700 80.5% 400 46.0% F T 13 9 13 185 

 



 

127 

 

      We can see that the straightforward triples formulation is much smaller than both of the node-

arc formulations. Specifically, the number of variables of both node-arc formulations are 10 times 

larger than the triples formulation for the 20-node instances and 13 times larger than the 30-node 

instances. The number of constraints of the node-arc WO is seven times larger than the triples 

formulation for the 20-node instances and nine times larger than the 30-node instances. The 

number of constraints of the node-arc formulation with commodity switching constraints is 52-94 

times larger than the triples formulation for the 20-node instances and 158-185 times larger than 

the 30-node instances. 

    Tables 4.10-4.12 are the comparison summaries of solution times of the 9 easy instances 

between using the hybrid procedure versus the three models. Speedups in bold indicate favorable 

results for the hybrid procedure. 

Table 4. 10 Comparison of the 9 easy instances using Hybrid vs. Node-Arc W  

Data 

File 
Nodes Arcs Commodities F/V T/L 

Speedup 

CPU 

Time 
Ticks 

Real 

Time 

c37 20 230 200 V L 1.7 0.6 1.7 

c38 20 230 200 F L 1.5 0.6 1.5 

c39 20 230 200 V T 4.1 1.4 3.0 

c40 20 230 200 F T 2.7 2.0 2.6 

c45 20 300 200 V L 2.6 1.3 2.5 

c47 20 300 200 V T 1.8 1.6 2.3 

c48 20 300 200 F T 1.3 1.2 1.2 

c53 30 520 400 V L 2.2 1.2 2.1 

c55 30 520 400 V T 3.2 1.9 3.3 
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Table 4. 11 Comparison of the 9 easy instances using Hybrid vs. Node-Arc WO  

Data 

File 
Nodes Arcs Commodities F/V T/L 

Speedup 

CPU 

Time 
Ticks 

Real 

Time 

c37 20 230 200 V L 9.83 9.94 11.59 

c38 20 230 200 F L 6.80 5.76 11.11 

c39 20 230 200 V T 6.77 4.21 5.01 

c40 20 230 200 F T 4.58 4.58 7.40 

c45 20 300 200 V L 1.16 1.07 1.67 

c47 20 300 200 V T 1.74 2.39 1.72 

c48 20 300 200 F T 0.19 0.32 0.30 

c53 30 520 400 V L 4.52 3.17 4.52 

c55 30 520 400 V T 0.94 0.88 1.22 

 

Table 4. 12 Comparison of Hybrid vs. Triples 

Data 

File 
Nodes Arcs Commodities F/V T/L 

Speedup 

CPU 

Time 
Ticks 

Real 

Time 

c37 20 230 200 V L 9.8 9.9 11.6 

c38 20 230 200 F L 6.8 5.8 11.1 

c39 20 230 200 V T 6.8 4.2 5.0 

c40 20 230 200 F T 4.6 4.6 7.4 

c45 20 300 200 V L 1.2 1.1 1.7 

c47 20 300 200 V T 1.7 2.4 1.7 

c48 20 300 200 F T 0.2 0.3 0.3 

c53 30 520 400 V L 4.5 3.2 4.5 

c55 30 520 400 V T 0.9 0.9 1.2 

 

Observation: From tables 4.10-4.12, we can see that the hybrid procedure performs much better 

than almost all the three models for seven of the nine easy instances (except c48 and c55) in terms 

of all the three solution times. Overall, the node-arc formulation W gave superior results on the 

nine easy instances compared to the node-arc formulation WO and the triples formulation. 

However, the hybrid procedure was 1.2 to 3 times faster than the node-arc formulation W in all 
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but two cases: the ticks measure for instances c37 and c38.  This suggests that the triples 

formulation should be used as first part of the process for solving dense FCNF problems. 

4.3.1.2 Limited times for 7 hard instances 
       

    For the seven hard benchmark instances, which cannot be solved to optimality due to running 

out of memory, we test them in 5 limited real time periods (in minutes): 5, 15, 30, 60, 120, and 

compare the costs of the best solutions (upper bounds) found using the three models. Figures 7-13 

are the graphs for instances C46, C54, C56, C31, C32, C63, C64 respectively.  

 

 Figure 7  MIP objective value versus solution time for instance C46 

 

110000

120000

130000

140000

150000

160000

170000

0 20 40 60 80 100 120 140

O
b

je
ct

iv
e 

V
al

u
es

 (
$

)

Solution  Time (Minutes)

C46 Obj. vs Solution Time

Node arc WO Node arc W Triples WO



 

130 

 

 

Figure 8  MIP objective value versus solution time for instance C54 

 

Figure 9  MIP objective value versus solution time for instance C56 
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Figure 10 MIP objective value versus solution time for instance C61 

 

 

Figure 11 MIP objective value versus solution time for instance C62 
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Figure 12 MIP objective value versus solution time for instance C63 

 

Figure 13 MIP objective value versus solution time for instance C64 
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the objective values with the three models with the same time limit. Note that the hybrid procedure 

basically has two phases and the first phase may stop either at gap=3% or time=1800 seconds, 

whichever criteria is reached first. In our cases, the first phase usually takes less than 1800 seconds 

to stop. In order to be fair for the comparison, we tested two settings: setting I is 1800 seconds for 

both phases and setting II is 900 seconds for both phases. Table 4.13 and Table 4.14 give the 

comparative results for both settings. We can see that the hybrid procedure gives the best results 

for all the seven hard instances in terms of objective function (cost) values in both settings. Cost 

ratios in bold indicate favorable results for the hybrid procedure. We can see that setting I and 

setting II give almost the same objective values for the hybrid procedure with the only exception 

of instance C64, the ratio of hybrid to node-arc WO drops from 1.12 to 1.11. 

Table 4. 13 Comparison of Hybrid vs. Node-Arc W/ Node-Arc/Triples for 7 Hard Instances (I) 

Data 

File 

Node

s 

Arc

s 

Commoditie

s 

F/

V 

T/

L 

Hybrid Cost 

vs  

Node-Arc 

WO 

Hybrid Cost 

vs  

Node-Arc W 

Hybrid 

Cost vs 

Triples 

c46 20 300 200 F L 1.05 1.01 1.00 

c54 30 520 400 F L 1.04 1.00 1.00 

c56 30 520 400 F T 1.10 1.01 1.00 

c61 30 700 400 V L 1.06 1.15 1.00 

c62 30 700 400 F L 1.09 1.25 1.00 

c63 30 700 400 V T 1.04 1.02 1.00 

c64 30 700 400 F T 1.12 1.14 1.00 
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Table 4. 14 Comparison of Hybrid vs. Node-Arc W/ Node-Arc/Triples for 7 Hard Instances (II) 

Data 

File 
Nodes Arcs Commodities F/V T/L 

Hybrid Cost  

vs  

Node-Arc 

WO 

Hybrid Cost  

vs 

 Node-Arc 

W 

Hybrid 

Cost vs 

Triples 

c46 20 300 200 F L 1.05 1.01 1.00 

c54 30 520 400 F L 1.04 1.00 1.00 

c56 30 520 400 F T 1.10 1.01 1.00 

c61 30 700 400 V L 1.06 1.15 1.00 

c62 30 700 400 F L 1.09 1.25 1.00 

c63 30 700 400 V T 1.04 1.02 1.00 

c64 30 700 400 F T 1.11 1.14 1.00 

 

4.3.2  Randomly Generated Instances 

       

     We test the 32 randomly generated complete problem instances with real time limits of 1800 

seconds (30 minutes) and 7200 seconds (120 minutes) using the node-arc W, node-arc WO,  and 

triples formulations, and the hybrid procedure and compare their objective values. The ratios of 

the objective values of other models divided by those of triples are shown in Tables 4.15 and 4.16 

respectively. For the hybrid procedure, we also use two settings as we do in section 4.3.1.  

    From Table 4.15 we can see that the triples formulation found the best solution for all of the 32 

instances compared to node-arc W, node-arc WO and the hybrid procedure when the time limit is 

1800 seconds (for both setting I and setting II of the hybrid procedure). Compared to the node-arc 

WO formulation, CPLEX found a better solution to 24 of the 32 instances with the triples 

formulation and the median, average (geometric mean), and maximum improvement ratios were 

1.03, 1.17, and 1.75, respectively. Compared to the node-arc W formulation, CPLEX found a better 

solution to 29 of the 32 instances with the triples formulation and the median, average (geometric 

mean), and maximum improvement ratios were 1.04, 1.19, and 2.88, respectively.  Compared to 
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the hybrid procedure with setting I, CPLEX found a better solution to 11 of the 32 instances with 

the triples formulation and the median, average (geometric mean), and maximum improvement 

ratios were 1.00, 1.07, and 1.64, respectively.  Setting II produced identical results with the hybrid 

procedure. 

     From Table 4.16 we can see that triples formulation still found the best solution for all of the 

32 instances compared to node-arc W and node-arc WO formulations and the hybrid procedure 

when the time limit is 7200 seconds (for both setting I and setting II of the hybrid procedure), but 

the difference is getting smaller with respect to other models, which implies that triples solution 

may near the optimal objective though an optimality gap still exists. Compared to the node-arc 

WO formulation, CPLEX found a better solution to 12 of the 32 instances with the triples 

formulation and the median, average (geometric mean), and maximum improvement ratios were 

1.00, 1.02, and 1.21, respectively. Compared to the node-arc W formulation, CPLEX found a better 

solution to 11 of the 32 instances with the triples formulation and the median, average (geometric 

mean), and maximum improvement ratios were 1.00, 1.03, and 1.15, respectively.  Compared to 

the hybrid procedure with setting I, CPLEX found a better solution to 3 of the 32 instances with 

the triples formulation and the median, average (geometric mean), and maximum improvement 

ratios were 1.00, 1.01, and 1.11, respectively.  Compared to the hybrid procedure with setting II, 

CPLEX found a better solution to 12 of the 32 instances with the triples formulation and the 

median, average (geometric mean), and maximum improvement ratios were 1.00, 1.06, and 1.65, 

respectively. 
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Table 4. 15 Cost Comparison of Triples vs. Hybrid/Node-Arc W/ Node-Arc WO (1800s)  

Data File 
Node

s 
Arcs 

Commoditie

s 

F/

V 

L/

T 

Triples vs. 

Node-

Arc 

WO 

Node- 

Arc 

W 

Hybrid 

Setting 

I II 

data_s20_FL_01 20 380                380 F L 1.03 1.12 1.00 1.00 

data_s20_FL_02 20 380 380 F L 1.02 1.01 1.00 1.00 

data_s20_FL_03 20 380 380 F L 1.01 1.02 1.00 1.00 

data_s20_FL_04 20 380 380 F L 1.02 1.01 1.00 1.00 

data_s20_FT_01 20 380 380 F T 1.02 1.11 1.00 1.00 

data_s20_FT_02 20 380 380 F T 1.00 1.01 1.00 1.00 

data_s20_FT_03 20 380 380 F T 1.03 1.13 1.00 1.00 

data_s20_FT_04 20 380 380 F T 1.01 1.03 1.00 1.00 

data_s20_VL_01 20 380 380 V L 1.00 1.01 1.00 1.00 

data_s20_VL_02 20 380 380 V L 1.00 1.01 1.00 1.00 

data_s20_VL_03 20 380 380 V L 1.01 1.01 1.00 1.00 

data_s20_VL_04 20 380 380 V L 1.01 1.01 1.00 1.00 

data_s20_VT_01 20 380 380 V T 1.00 1.01 1.00 1.00 

data_s20_VT_02 20 380 380 V T 1.00 1.01 1.00 1.00 

data_s20_VT_03 20 380 380 V T 1.00 1.00 1.00 1.00 

data_s20_VT_04 20 380 380 V T 1.00 1.00 1.00 1.00 

data_s30_FL_01 30 870 870 F L 1.62 1.57 1.01 1.01 

data_s30_FL_02 30 870 870 F L 1.68 1.50 1.00 1.00 

data_s30_FL_03 30 870 870 F L 1.63 1.46 1.64 1.64 

data_s30_FL_04 30 870 870 F L 1.75 1.51 1.01 1.01 

data_s30_FT_01 30 870 870 F T 1.55 1.56 1.57 1.57 

data_s30_FT_02 30 870 870 F T 1.50 2.88 1.52 1.52 

data_s30_FT_03 30 870 870 F T 1.56 1.39 1.01 1.01 

data_s30_FT_04 30 870 870 F T 1.56 2.71 1.54 1.54 

data_s30_VL_01 30 870 870 V L 1.36 1.07 1.00 1.00 

data_s30_VL_02 30 870 870 V L 1.18 1.09 1.02 1.02 

data_s30_VL_03 30 870 870 V L 1.08 1.03 1.01 1.01 

data_s30_VL_04 30 870 870 V L 1.34 1.27 1.01 1.01 

data_s30_VT_01 30 870 870 V T 1.16 1.00 1.00 1.00 

data_s30_VT_02 30 870 870 V T 1.00 1.03 1.00 1.00 

data_s30_VT_03 30 870 870 V T 1.14 1.04 1.30 1.30 

data_s30_VT_04 30 870 870 V T 1.02 1.04 1.00 1.00 
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Table 4. 16 Cost Comparison of Triples vs. Hybrid/Node-Arc W/ Node-Arc WO (7200s) 

Data File Nodes Arcs Commodities 
F/

V 

L/

T 

Triples vs  

Node-

Arc 

WO 

Node

-Arc 

W 

Hybrid 

Setting 

I II 

data_s20_FL_01 20 380 380 F L 1.00 1.01 1.00 1.00 

data_s20_FL_02 20 380 380 F L 1.00 1.00 1.00 1.00 

data_s20_FL_03 20 380 380 F L 1.00 1.00 1.00 1.00 

data_s20_FL_04 20 380 380 F L 1.01 1.00 1.00 1.00 

data_s20_FT_01 20 380 380 F T 1.01 1.00 1.00 1.00 

data_s20_FT_02 20 380 380 F T 1.00 1.00 1.00 1.00 

data_s20_FT_03 20 380 380 F T 1.00 1.00 1.00 1.00 

data_s20_FT_04 20 380 380 F T 1.00 1.01 1.00 1.00 

data_s20_VL_01 20 380 380 V L 1.00 1.00 1.00 1.00 

data_s20_VL_02 20 380 380 V L 1.00 1.00 1.00 1.00 

data_s20_VL_03 20 380 380 V L 1.00 1.00 1.00 1.00 

data_s20_VL_04 20 380 380 V L 1.00 1.00 1.00 1.00 

data_s20_VT_01 20 380 380 V T 1.00 1.00 1.00 1.00 

data_s20_VT_02 20 380 380 V T 1.00 1.00 1.00 1.00 

data_s20_VT_03 20 380 380 V T 1.00 1.00 1.00 1.00 

data_s20_VT_04 20 380 380 V T 1.00 1.00 1.00 1.00 

data_s30_FL_01 30 870 870 F L 1.03 1.12 1.00 1.01 

data_s30_FL_02 30 870 870 F L 1.21 1.15 1.00 1.01 

data_s30_FL_03 30 870 870 F L 1.11 1.12 1.10 1.65 

data_s30_FL_04 30 870 870 F L 1.02 1.14 1.01 1.01 

data_s30_FT_01 30 870 870 F T 1.01 1.01 1.00 1.57 

data_s30_FT_02 30 870 870 F T 1.09 1.11 1.00 1.52 

data_s30_FT_03 30 870 870 F T 1.16 1.05 1.00 1.01 

data_s30_FT_04 30 870 870 F T 1.01 1.12 1.11 1.55 

data_s30_VL_01 30 870 870 V L 1.01 1.00 1.00 1.00 

data_s30_VL_02 30 870 870 V L 1.01 1.00 1.00 1.02 

data_s30_VL_03 30 870 870 V L 1.00 1.00 1.00 1.01 

data_s30_VL_04 30 870 870 V L 1.00 1.01 1.00 1.01 

data_s30_VT_01 30 870 870 V T 1.00 1.00 1.00 1.00 

data_s30_VT_02 30 870 870 V T 1.00 1.00 1.00 1.00 

data_s30_VT_03 30 870 870 V T 1.00 1.00 1.00 1.04 

data_s30_VT_04 30 870 870 V T 1.00 1.00 1.00 1.00 
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4.4 Conclusions 

      The much smaller size of the triples formulation both in the number of variables and in the 

number of constraints results in faster solution times for dense and complete multicommodity 

FCNF.  The hybrid procedure, which combines the property of both triples and node-arc 

formulations can find better objective values for dense instances. For complete hard FCNF 

instances for a given limited solution time, the triples formulation performs better than the two 

forms of node-arc formulations and hybrid procedure.   



 

139 

 

CHAPTER 5                                                                                                                            

CONTRIBUTIONS AND FUTURE WORK  

 

Contributions 

      In this dissertation, we explore a compact formulation of the multicommodity network flow 

problem, the triples formulation, with applications to the Backhaul Profit Maximization (BPMP) 

and Fixed Charge Network Flow (FCNF) Problems.  Through extensive computational testing, the 

dissertation demonstrates the effectiveness of triples formulations for these difficult combinatorial 

optimization problems. The dissertation also provides theoretical results about the triples 

formulation that give new insight into its validity. Both the empirical and theoretical results 

strengthen the case for including the triples in the network-optimization toolkit.    

      The dissertation adapts techniques from related problems and new problem-specific techniques 

to enhance both the node-arc and triples formulations of the BPMP and develops the Composite 

Index Method (CIM) to determine the most effective combination of techniques. In [49] we 

describe how the CIM fills a gap in the area of optimization benchmarking; parallel computing is 

widely used in applied optimization, but has received little attention in the literature on 

optimization benchmarking. By calculating a single Grand Composite Index, the CIM makes it 

much easier to select the best solution approach among multiple candidates. This dissertation 

demonstrates the step-by-step details of the CIM framework to find the most effective variants of 

the node-arc and triples formulations for the BPMP. The resulting enhanced triples formulation is 

then shown to significantly outperform the most effective node-arc variant. Although this 

application focused on solution-time measures for finding a provably optimal solution, the CIM 

can be easily adapted to consider other dimensions of concern such as memory usage and solution 
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quality (for heuristics). Furthermore, individual users can use their own weighting scheme to 

emphasize their personal preferences for making trade-offs between performance measures. 

      For dense problem instances, this dissertation demonstrates empirically that state-of-the-art 

commercial MIP solvers can find high quality solutions much earlier in the branch-and-bound 

process using the triples formulation of the FCNF than the node-arc formulations. Thus, the triples 

formulation is an effective alternative when computing time is limited. Through testing the hybrid 

procedure, this dissertation also demonstrates that the triples formulation can be used to speed up 

the solution process with the node-arc formulations by quickly finding incumbent solutions that 

provide good upper bounds on the optimal cost. 

      In the literature, the proofs of the equivalence of the triples formulation to the node-arc and/or 

arc-path formulations are complex and specialized to the BPMP and maximum concurrent flow 

problems (MCFP). In Chapter 1, this dissertation provides a straightforward argument that the 

triples constraints enforce aggregate flow balance at the nodes in the general multicommodity flow 

problem.  The proof that the stronger triples formulation of the FNCF with singleton nodes is 

identical to the node-arc formulation in Chapter is similarly straightforward. These are potentially 

first step towards a straightforward argument that in the triples constraints in the model for general 

multicommodity flow enforce flow balance at the commodity level as well as at an aggregate level; 

this would then eliminate the need for the types of proofs given in the literature for the BPMP and 

MCFP.   

Future Work 

      One direction for future work based on this dissertation is to develop triples models for 

generalizations of the BPMP that have multiple vehicles and/or individual time windows for the 
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requests.. In addition to modeling, this will likely involve decomposition, column-generation, or 

algorithmic development.  The straightforward and stronger triples formulations of FNCF can be 

seen as two endpoints of a spectrum. Perhaps a strategic use of singletons for a subset of the 

demands will produce a formulation that makes an “optimal” trade-off between compactness and 

strength of formulation. Alternatively, it is possible that adding sink-node switching constraints 

(i.e., 𝑧𝑖𝑗
𝑘 ≤ (∑ 𝑑𝑖𝑗𝑖∈𝑁 )  𝑦𝑖𝑘) will improve the performance of the straightforward formulation. An 

understanding of why the initial solutions CPLEX and Gurobi find for the triples formulation are 

better than the solutions found for the node-arc W formulation could lead to new algorithms for 

FCNF. Additional work with the CIM is needed to find best practices for determining the order 

for testing alternative techniques.  
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