6,395 research outputs found

    Reliability and Condition-Based Maintenance Analysis of Deteriorating Systems Subject to Generalized Mixed Shock Model

    Get PDF
    For successful commercialization of evolving devices (e.g., micro-electro-mechanical systems, and biomedical devices), there must be new research focusing on reliability models and analysis tools that can assist manufacturing and maintenance of these devices. These advanced systems may experience multiple failure processes that compete against each other. Two major failure processes are identified to be deteriorating or degradation processes (e.g., wear, fatigue, erosion, corrosion) and random shocks. When these failure processes are dependent, it is a challenging problem to predict reliability of complex systems. This research aims to develop reliability models by exploring new aspects of dependency between competing risks of degradation-based and shock-based failure considering a generalized mixed shock model, and to develop new and effective condition-based maintenance policies based on the developed reliability models. In this research, different aspects of dependency are explored to accurately estimate the reliability of complex systems. When the degradation rate is accelerated as a result of withstanding a particular shock pattern, we develop reliability models with a changing degradation rate for four different shock patterns. When the hard failure threshold reduces due to changes in degradation, we investigate reliability models considering the dependence of the hard failure threshold on the degradation level for two different scenarios. More generally, when the degradation rate and the hard failure threshold can simultaneously transition multiple times, we propose a rich reliability model for a new generalized mixed shock model that is a combination of extreme shock model, δ-shock model and run shock model. This general assumption reflects complex behaviors associated with modern systems and structures that experience multiple sources of external shocks. Based on the developed reliability models, we introduce new condition-based maintenance strategies by including various maintenance actions (e.g., corrective replacement, preventive replacement, and imperfect repair) to minimize the expected long-run average maintenance cost rate. The decisions for maintenance actions are made based on the health condition of systems that can be observed through periodic inspection. The reliability and maintenance models developed in this research can provide timely and effective tools for decision-makers in manufacturing to economically optimize operational decisions for improving reliability, quality and productivity.Industrial Engineering, Department o

    A review on maintenance optimization

    Get PDF
    To this day, continuous developments of technical systems and increasing reliance on equipment have resulted in a growing importance of effective maintenance activities. During the last couple of decades, a substantial amount of research has been carried out on this topic. In this study we review more than two hundred papers on maintenance modeling and optimization that have appeared in the period 2001 to 2018. We begin by describing terms commonly used in the modeling process. Then, in our classification, we first distinguish single-unit and multi-unit systems. Further sub-classification follows, based on the state space of the deterioration process modeled. Other features that we discuss in this review are discrete and continuous condition monitoring, inspection, replacement, repair, and the various types of dependencies that may exist between units within systems. We end with the main developments during the review period and with potential future research directions

    Component Maintenance Strategies and Risk Analysis for Random Shock Effects Considering Maintenance Costs

    Get PDF
    Maintenance can improve a system’s reliability in a long operation period or when a component has failed. The reliability modeling method that uses the stochastic process degradation model to describe the system degradation process has been widely used. However, the existing reliability models established using stochastic processes only consider the internal degradation process, and do not fully consider the impact of external random shocks on their reliability modeling. Furthermore, the existing theory of importance does not consider the actual factors of maintenance cost. In this paper, based on the reliability modeling of random processes, the degradation rate under the influence of random shocks is introduced into the time scale function to solve the impact of random shocks on product reliability, and two cost importance measures are proposed to guide the maintenance selection of the components under limited resources in the system.Finally, a subsystem of an aircraft hydraulic system is analyzed to verify the proposed method’s performance

    Maintenance policy for two-stage deteriorating mode system based on cumulative damage model

    Get PDF
    For the system degradation process undergoing a sudden change, optimal maintenance policies were developed using the cumulative damage model and two-stage degradation modeling. Single shock damage value and the number of shock times are assumed to be normal distribution and homogeneous Poisson process, respectively. On this basis, average long-run cost rate of a renewal cycle was modeled with considering the probabilities of corrective, preventive and continuous monitoring, respectively. In order to develop an optimal policy, four types of maintenance policies (i.e., global, time-depended, adaptive and simplified adaptive policies) were analyzed with different alarm thresholds and inter-inspection time. Influence analysis of different parameters for maintenance policy was given, where different maintenance policies were compared in terms of average long-run cost rate. In addition, the impacts of degradation model parameters (i.e., change-point distribution, shock strength, shock frequency) on the average long-run cost rate were analyzed. Finally, maintenance policy for gearbox degradation experiment was analyzed in case study

    Predictive maintenance policy for a gradually deteriorating system subject to stress

    Get PDF
    International audienceThis paper deals with a predictive maintenance policy for a continuously deteriorating system subject to stress. We consider a system with two failure mechanisms which are, respectively, due to an excessive deterioration level and a shock. To optimize the maintenance policy of the system, an approach combining statistical process control (SPC) and condition-based maintenance (CBM) is proposed. CBM policy is used to inspect and replace the system according to the observed deterioration level. SPC is used to monitor the stress covariate. In order to assess the performance of the proposed maintenance policy and to minimize the long-run expected maintenance cost per unit of time, a mathematical model for the maintained system cost is derived. Analysis based on numerical results are conducted to highlight the properties of the proposed maintenance policy in respect to the different maintenance parameters

    Optimal Periodic Inspection of a Stochastically Degrading System

    Get PDF
    This thesis develops and analyzes a procedure to determine the optimal inspection interval that maximizes the limiting average availability of a stochastically degrading component operating in a randomly evolving environment. The component is inspected periodically, and if the total observed cumulative degradation exceeds a fixed threshold value, the component is instantly replaced with a new, statistically identical component. Degradation is due to a combination of continuous wear caused by the component\u27s random operating environment, as well as damage due to randomly occurring shocks of random magnitude. In order to compute an optimal inspection interval and corresponding limiting average availability, a nonlinear program is formulated and solved using a direct search algorithm in conjunction with numerical Laplace transform inversion. Techniques are developed to significantly decrease the time required to compute the approximate optimal solutions. The mathematical programming formulation and solution techniques are illustrated through a series of increasingly complex example problems

    Condition-based maintenance—an extensive literature review

    Get PDF
    This paper presents an extensive literature review on the field of condition-based maintenance (CBM). The paper encompasses over 4000 contributions, analysed through bibliometric indicators and meta-analysis techniques. The review adopts Factor Analysis as a dimensionality reduction, concerning the metric of the co-citations of the papers. Four main research areas have been identified, able to delineate the research field synthetically, from theoretical foundations of CBM; (i) towards more specific implementation strategies (ii) and then specifically focusing on operational aspects related to (iii) inspection and replacement and (iv) prognosis. The data-driven bibliometric results have been combined with an interpretative research to extract both core and detailed concepts related to CBM. This combined analysis allows a critical reflection on the field and the extraction of potential future research directions
    • …
    corecore