10,115 research outputs found

    Machine Learning DDoS Detection for Consumer Internet of Things Devices

    Full text link
    An increasing number of Internet of Things (IoT) devices are connecting to the Internet, yet many of these devices are fundamentally insecure, exposing the Internet to a variety of attacks. Botnets such as Mirai have used insecure consumer IoT devices to conduct distributed denial of service (DDoS) attacks on critical Internet infrastructure. This motivates the development of new techniques to automatically detect consumer IoT attack traffic. In this paper, we demonstrate that using IoT-specific network behaviors (e.g. limited number of endpoints and regular time intervals between packets) to inform feature selection can result in high accuracy DDoS detection in IoT network traffic with a variety of machine learning algorithms, including neural networks. These results indicate that home gateway routers or other network middleboxes could automatically detect local IoT device sources of DDoS attacks using low-cost machine learning algorithms and traffic data that is flow-based and protocol-agnostic.Comment: 7 pages, 3 figures, 3 tables, appears in the 2018 Workshop on Deep Learning and Security (DLS '18

    An Experimental Evaluation of the Computational Cost of a DPI Traffic Classifier

    Get PDF
    A common belief in the scientific community is that traffic classifiers based on deep packet inspection (DPI) are far more expensive in terms of computational complexity compared to statistical classifiers. In this paper we counter this notion by defining accurate models for a deep packet inspection classifier and a statistical one based on support vector machines, and by evaluating their actual processing costs through experimental analysis. The results suggest that, contrary to the common belief, a DPI classifier and an SVM-based one can have comparable computational costs. Although much work is left to prove that our results apply in more general cases, this preliminary analysis is a first indication of how DPI classifiers might not be as computationally complex, compared to other approaches, as we previously though

    Cognition-Based Networks: A New Perspective on Network Optimization Using Learning and Distributed Intelligence

    Get PDF
    IEEE Access Volume 3, 2015, Article number 7217798, Pages 1512-1530 Open Access Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence (Article) Zorzi, M.a , Zanella, A.a, Testolin, A.b, De Filippo De Grazia, M.b, Zorzi, M.bc a Department of Information Engineering, University of Padua, Padua, Italy b Department of General Psychology, University of Padua, Padua, Italy c IRCCS San Camillo Foundation, Venice-Lido, Italy View additional affiliations View references (107) Abstract In response to the new challenges in the design and operation of communication networks, and taking inspiration from how living beings deal with complexity and scalability, in this paper we introduce an innovative system concept called COgnition-BAsed NETworkS (COBANETS). The proposed approach develops around the systematic application of advanced machine learning techniques and, in particular, unsupervised deep learning and probabilistic generative models for system-wide learning, modeling, optimization, and data representation. Moreover, in COBANETS, we propose to combine this learning architecture with the emerging network virtualization paradigms, which make it possible to actuate automatic optimization and reconfiguration strategies at the system level, thus fully unleashing the potential of the learning approach. Compared with the past and current research efforts in this area, the technical approach outlined in this paper is deeply interdisciplinary and more comprehensive, calling for the synergic combination of expertise of computer scientists, communications and networking engineers, and cognitive scientists, with the ultimate aim of breaking new ground through a profound rethinking of how the modern understanding of cognition can be used in the management and optimization of telecommunication network

    Can Passive Mobile Application Traffic be Identified using Machine Learning Techniques

    Get PDF
    Mobile phone applications (apps) can generate background traffic when the end-user is not actively using the app. If this background traffic could be accurately identified, network operators could de-prioritise this traffic and free up network bandwidth for priority network traffic. The background app traffic should have IP packet features that could be utilised by a machine learning algorithm to identify app-generated (passive) traffic as opposed to user-generated (active) traffic. Previous research in the area of IP traffic classification focused on classifying high level network traffic types originating on a PC device. This research was concerned with classifying low level app traffic originating on mobile phone device. An innovative experiment setup was designed in order to answer the research question. A mobile phone running Android OS was configured to capture app network data. Three specific data trace procedures where then designed to comprehensively capture sample active and passive app traffic data. Feature generation in previous research recommend computing new features based on IP packet data. This research proposes a different approach. Feature generation was enabled by exposing inherent IP packet attributes as opposed to computing new features. Specific evaluation metrics were also designed in order to quantify the accuracy of the machine learning models at classifying active and passive app traffic. Three decision tree models were implemented; C5.0, C&R tree and CHAID tree. Each model was built using a standard implementation and with boosting. The findings indicate that passive app network traffic can be classified with an accuracy up to 84.8% using a CHAID decision tree algorithm with model boosting enabled. The finding also suggested that features derived from the inherent IP packet attributes, such as time frame delta and bytes in flight, had significant predictive value

    Comparing P2PTV Traffic Classifiers

    Get PDF
    Peer-to-Peer IP Television (P2PTV) applications represent one of the fastest growing application classes on the Internet, both in terms of their popularity and in terms of the amount of traffic they generate. While network operators require monitoring tools that can effectively analyze the traffic produced by these systems, few techniques have been tested on these mostly closed-source, proprietary applications. In this paper we examine the properties of three traffic classifiers applied to the problem of identifying P2PTV traffic. We report on extensive experiments conducted on traffic traces with reliable ground truth information, highlighting the benefits and shortcomings of each approach. The results show that not only their performance in terms of accuracy can vary significantly, but also that their usability features suggest different effective aspects that can be integrate

    Recognition of traffic generated by WebRTC communication

    Get PDF
    Network traffic recognition serves as a basic condition for network operators to differentiate and prioritize traffic for a number of purposes, from guaranteeing the Quality of Service (QoS), to monitoring safety, as well as monitoring and detecting anomalies. Web Real-Time Communication (WebRTC) is an open-source project that enables real-time audio, video, and text communication among browsers. Since WebRTC does not include any characteristic pattern for semantically based traffic recognition, this paper proposes models for recognizing traffic generated during WebRTC audio and video communication based on statistical characteristics and usage of machine learning in Weka tool. Five classification algorithms have been used for model development, such as Naive Bayes, J48, Random Forest, REP tree, and Bayes Net. The results show that J48 and BayesNet have the best performances in this experimental case of WebRTC traffic recognition. Future work will be focused on comparison of a wide range of machine learning algorithms using a large enough dataset to improve the significance of the results
    corecore