8 research outputs found

    A 120nW 18.5kHz RC oscillator with comparator offset cancellation for ±0.25% temperature stability

    Get PDF
    Integrated low-frequency oscillators can replace crystal oscillators as sleep-mode timers to reduce the size and cost of wireless sensors [1]. Since the timer is one of the few continuously functioning circuits, minimizing its power consumption can greatly reduce sleep-mode power of highly duty-cycled systems. Temperature stability of the oscillator is important in order to minimize timing uncertainly and guard time for the radios, and thus maximizing sleep time. The voltage-averaging feedback method described in [2] achieves high stability in the MHz frequencies, but when scaled to the kHz range, requires very large filters. On the other extreme, gate leakage-based timers have been designed for sub-nW power consumption, but operate in the sub-Hz frequencies [3]. In the past, high accuracy RC oscillators in the kHz range have been designed with feed-forward correction [1] and self-chopped operation [4]. In this work, an offset cancellation architecture achieves long-term frequency stability and temperature stability while operating at lower power

    Ultra-low Power Circuits for Internet of Things (IOT)

    Full text link
    Miniaturized sensor nodes offer an unprecedented opportunity for the semiconductor industry which led to a rapid development of the application space: the Internet of Things (IoT). IoT is a global infrastructure that interconnects physical and virtual things which have the potential to dramatically improve people's daily lives. One of key aspect that makes IoT special is that the internet is expanding into places that has been ever reachable as device form factor continue to decreases. Extremely small sensors can be placed on plants, animals, humans, and geologic features, and connected to the Internet. Several challenges, however, exist that could possibly slow the development of IoT. In this thesis, several circuit techniques as well as system level optimizations to meet the challenging power/energy requirement for the IoT design space are described. First, a fully-integrated temperature sensor for battery-operated, ultra-low power microsystems is presented. Sensor operation is based on temperature independent/dependent current sources that are used with oscillators and counters to generate a digital temperature code. Second, an ultra-low power oscillator designed for wake-up timers in compact wireless sensors is presented. The proposed topology separates the continuous comparator from the oscillation path and activates it only for short period when it is required. As a result, both low power tracking and generation of precise wake-up signal is made possible. Third, an 8-bit sub-ranging SAR ADC for biomedical applications is discussed that takes an advantage of signal characteristics. ADC uses a moving window and stores the previous MSBs voltage value on a series capacitor to achieve energy saving compared to a conventional approach while maintaining its accuracy. Finally, an ultra-low power acoustic sensing and object recognition microsystem that uses frequency domain feature extraction and classification is presented. By introducing ultra-low 8-bit SAR-ADC with 50fF input capacitance, power consumption of the frontend amplifier has been reduced to single digit nW-level. Also, serialized discrete Fourier transform (DFT) feature extraction is proposed in a digital back-end, replacing a high-power/area-consuming conventional FFT.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137157/1/seojeong_1.pd

    A PVT tolerant voltage-controlled oscillator for automotive applications

    Get PDF
    This thesis focusses on the development of an integrated oscillator for automotive applications. The oscillator operates based on the Barkhausen criterion, which is a mathematical requirement used in electronics to predict whether a linear electronic circuit will oscillate. In this thesis, a voltage-controlled oscillator is designed for increased performance under various process, voltage and temperature (PVT) conditions. By applying a voltage reference block, the output frequency of 0.5MHz, 0.75MHz, 1MHz or 1.25MHz can be obtained. In order to compensate for the variations at PVT corners, the trimming technology is applied to increase the accuracy. The supply voltage is considered to be varying between 2.1V and 5.5V while the temperature range is -40oC -125oC.Includes bibliographical references

    Variability-aware design of CMOS nanopower reference circuits

    Get PDF
    Questo lavoro è inserito nell'ambito della progettazione di circuiti microelettronici analogici con l'uso di tecnologie scalate, per le quali ha sempre maggiore importanza il problema della sensibilità delle grandezze alle variazioni di processo. Viene affrontata la progettazione di generatori di quantità di riferimento molto precisi, basati sull’uso di dispositivi che sono disponibili anche in tecnologie CMOS standard e che sono “intrinsecamente” più robusti rispetto alle variazioni di processo. Questo ha permesso di ottenere una bassa sensibilità al processo insieme ad un consumo di potenza estremamente ridotto, con il principale svantaggio di una elevata occupazione di area. Tutti i risultati sono stati ottenuti in una tecnologia 0.18μm CMOS. In particolare, abbiamo progettato un riferimento di tensione, ottenendo una deviazione standard relativa della tensione di riferimento dello 0.18% e un consumo di potenza inferiore a 70 nW, sulla base di misure su un set di 20 campioni di un singolo batch. Sono anche disponibili risultati relativi alla variabilità inter batch, che mostrano una deviazione standard relativa cumulativa della tensione di riferimento dello 0.35%. Abbiamo quindi progettato un riferimento di corrente, ottenendo anche in questo caso una sensibilità al processo della corrente di riferimento dell’1.4% con un consumo di potenza inferiore a 300 nW (questi sono risultati sperimentali ottenuti dalle misure su 20 campioni di un singolo batch). I riferimenti di tensione e di corrente proposti sono stati quindi utilizzati per la progettazione di un oscillatore a rilassamento a bassa frequenza, che unisce una ridotta sensibilità al processo, inferiore al 2%, con un basso consumo di potenza, circa 300 nW, ottenuto sulla base di simulazioni circuitali. Infine, nella progettazione dei blocchi sopra menzionati, abbiamo applicato un metodo per la determinazione della stabilità dei punti di riposo, basato sull’uso dei CAD standard utilizzati per la progettazione microelettronica. Questo approccio ci ha permesso di determinare la stabilità dei punti di riposo desiderati, e ci ha anche permesso di stabilire che i circuiti di start up spesso non sono necessari

    Towards minimum achievable phase noise of relaxation oscillators

    Get PDF
    A relaxation oscillator design is described, which has a phase noise rivaling ring oscillators, while also featuring linear frequency tuning. We show that the comparator in a relaxation-oscillator loop can be prevented from contributing to 1/f2 colored phase noise and degrading control linearity. The resulting oscillator is implemented in a power efficient way with a switched-capacitor circuit. The design results from a thorough analysis of the fundamental phase noise contributions. Simple expressions modeling the theoretical phase noise performance limit are presented, as well as a design strategy to approach this limit. To verify theoretical predictions, a relaxation oscillator is implemented in a baseline 65 nm CMOS process, occupying 200 µm × 150 µm. Its frequency tuning range is 1–12 MHz, and its phase noise is L(100kHz) = −109dBc/Hz at fosc = 12MHz, while consuming 90 μW. A figure of merit of −161dBc/Hz is achieved, which is only 4 dB from the theoretical limit

    Crystal-Less RF Communication Integrated Circuits for Wireless Sensor Networks.

    Full text link
    The evolution of computing devices has changed daily life significantly over the past decades, and it is still advancing towards pervasive and ubiquitous networks. At each step, the volume shrinks by 2-3 orders of magnitude while the functionality and computing power remains constant or increases. Wireless sensor networks (WSN) are perceived as the next big step of computing technology for a variety of applications, including environmental sensing, health monitoring, un-obtrusive surveillance and invisible labeling. With thin-film micro-battery technology and CMOS scaling, we can now envision complete sensor nodes with cubic-mm form factors. As node volume reduces, external components like a crystal frequency reference, which does not scale with frequency or process, becomes one of the bottlenecks of realizing cubic-mm WSN node devices. This dissertation covers several aspects of the energy and integration challenges associated with cubic-mm WSN nodes without crystal references. Several new compact and low-power RF circuits for the synchronization and communication of WSN nodes are proposed and discussed. A 60GHz antenna-referenced frequency-locked loop (FLL) using an on-chip patch antenna as both the radiator and the frequency reference has been demonstrated for RF synchronization. The FLL, targeting communication of non-coherent energy detection systems, provides adequate frequency accuracy without crystal references. A 10GHz ultra-wideband (UWB) crystal-less transmitter with an on-chip monopole antenna has also been demonstrated. It operates over the supply voltage range of a micro-battery; generate tunable pulse durations and center frequencies, and lives on an on-chip local decoupling capacitor only. A 1MHz temperature-compensated relaxation oscillator is also proposed in the dissertation for baseband data synchronization. With the modified RC network of the conventional relaxation oscillator, the transfer function of the network has a transmission zero, introducing an additional degree-of-freedom for temperature compensation design. Finally, a 60GHz transmit/receive (T/R) switch-less antenna front-end using an on-chip patch antenna is presented, which has an in-band isolation inherited from the standing wave pattern without implementing a T/R switch. The research projects have explored the circuit design techniques and system integration for cubic-mm energy-constrained devices, achieving both long lifetimes and small volumes for WSN applications.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/99763/1/kkhuang_1.pd

    Low-power Wearable Healthcare Sensors

    Get PDF
    Advances in technology have produced a range of on-body sensors and smartwatches that can be used to monitor a wearer’s health with the objective to keep the user healthy. However, the real potential of such devices not only lies in monitoring but also in interactive communication with expert-system-based cloud services to offer personalized and real-time healthcare advice that will enable the user to manage their health and, over time, to reduce expensive hospital admissions. To meet this goal, the research challenges for the next generation of wearable healthcare devices include the need to offer a wide range of sensing, computing, communication, and human–computer interaction methods, all within a tiny device with limited resources and electrical power. This Special Issue presents a collection of six papers on a wide range of research developments that highlight the specific challenges in creating the next generation of low-power wearable healthcare sensors

    A Precision Relaxation Oscillator with a Self-Clocked Offset-Cancellation Scheme for Implantable Biomedical SoCs

    No full text
    corecore