4,471 research outputs found

    Phosphor-LED-Based Wireless Visible Light Communication (VLC) and Its Applications

    Get PDF
    In this chapter, we review our recent works on the phosphor white‐light light‐emitting diode (LED)-based wireless visible light communication (VLC) and its applications. This chapter is divided into two sections for introduction. In the first section, in order to enhance the transmission rate in phosphor-LED VLC system, we propose and demonstrate a novel multiband orthogonal-frequency-division-multiplexed (OFDM) modulation format for capacity enhancement. Based on the proposed scheme, various bands of OFDM signals are employed to different LED chips of the LED luminary; it can prevent the power fading and nonlinearity effects of transmission signal. Therefore, the maximum enhanced percentage of VLC data rate is 41.1%. In the second section, we also demonstrate a 71.3–148.4 Mbps phosphor-LED wireless VLC system at the free space transmission distance between 1.4 and 2.1 m. Finally, to understand and demonstrate the real-time LED VLC transmission, a commercial OFDM-based digital signal processor (DSP) is used in the LED transmitting side and client side, respectively. Therefore, the proposed real-time half-duplex VLC system can complete around 70 Mbps downstream and upstream traffic throughputs, in a free space transmission distance of 2 m long for practical in-home illumination and smart city applications

    Design and evaluation of optical laser diodes LD positioning arrangement and multiple input/ multiple output MIMO-OFDM systems

    Get PDF
    Optical communication system for the next generation of wireless communication systems are an exciting, unparalleled new technology. This paper presents a new visible light positioning algorithm system based on position by utilized neural network, which depending on directly measured received signal strength (RSS) information of 3D coordinates. This algorithm is called light positioning algorithm neural network (LPANN) which used 5 laser diodes LDs, each one consists of 5×5 LD chips. In addition, a novel multi Input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) based VLC systems generalized laser diodes (LD) modulation scheme as second part of this paper that is called Zero Forcing Equalizer Neural network ZFENN algorithm which based on 4 × 4 optical MIMO-VLC. It is accomplished by using LD index modulation and spatial multiplexing. Actual and imaginary parts of the complex time domain OFDM signals are therefore separated first and then, bipolar signals are transmitted through VLC channels by encoding sign-information in LD indexes. In addition, a novel receiver configuration is also suggested for flat frequency or limited channel scenarios. Based on the results of this analysis, the positioning accuracy have been improved, so this is lead to enhance data rate. While, by using the second part of the MIMO-OFDM system that leads to enhancing the SNR and BER more than 10-4, which are introduced to eliminate multi-user interference (MUI)

    Visible Light Communication Based On Offset Pulse Position Modulation (Offset-PPM) Using High Power LED

    Get PDF
    In this paper, the performance of a visible light communication (VLC) system based on offset pulse position modulation (Offset-PPM) has been demonstrated using a commercial high power white single LED (30 W) and the new coding scheme. Data at a speed of 11 Mbps has been successfully transmitted over a distance of 1 m with zero bit error rate (BER), and 18 Mbps with 1.15 × 10^-6 of BER through the simplest transceiver circuits

    Enhanced Optical Wireless Channel For Indoor And Intravehicle Communications: Power Distribution And Signal To Noise Ratio Analysis

    Get PDF
    Visible light communication—(VLC) provides wide bandwidth and high security capabilities for free space optical communication. This thesis presents the key concepts, underlying principles and practical applications of visible light communications. In particular, this thesis focuses on the received power distribution pattern and signal to noise ratio for line-of-sight indoor and vehicular applications. Several methods are used to modify the SNR and power distribution levels. It is shown that in the absence of obstruction, the optical footprint is nearly circular and offers a platform for large- scale deployment in commercial environments, which is similar to micro and Pico cells. By studying various kinds of commonly used VLC channel analysis: diffuse and line of sight channels, a simple improved indoor and intra-vehicular VLC transmission model for power distribution and SNR is presented. Employing optical wireless communications within the vehicle not only enhances user mobility, but also alleviates radio frequency interference, and lowers system cost through the utilization of license free spectrum. Moreover, a solution to increase the received power by changing the semi angle at half power is presented. The simulation results show the improved received power distribution and SNR. A VLC system, based on color-shift-keying (CSK) modulation and code-division multiple-access (CDMA) is presented. CSK–CDMA VLC system is used to enhance the VLC system capacity and mitigate single color light interference, which allows multiple users to access the network

    DESIGN AND ANALYSIS OF VISIBLE LIGHT COMMUNICATION AND POSITIONING SYSTEMS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore