2 research outputs found

    A practical implementation of Robust Evolving Cloud-based Controller with normalized data space for heat-exchanger plant

    Get PDF
    The RECCo control algorithm, presented in this article, is based on the fuzzy rule-based (FRB) system named ANYA which has non-parametric antecedent part. It starts with zero fuzzy rules (clouds) in the rule base and evolves its structure while performing the control of the plant. For the consequent part of RECCo PID-type controller is used and the parameters are adapted in an online manner. The RECCo does not require any off-line training or any type of model of the controlled process (e.g. differential equations). Moreover, in this article we propose a normalization of the cloud (data) space and an improved adaptation law of the controller. Due to the normalization some of the evolving parameters can be fixed while the new adaptation law improves the performance of the controller in the starting phase of the process control. To assess the performance of the RECCo algorithm, firstly a comparison study with classical PID controller was performed on a model of a plate heat-exchanger (PHE). Tuning the PID parameters was done using three different techniques (Ziegler–Nichols, Cohen–Coon and pole placement). Furthermore, a practical implementation of the RECCo controller for a real PHE plant is presented. The PHE system has nonlinear static characteristic and a time delay. Additionally, the real sensor's and actuator's limitations represent a serious problem from the control point of view. Besides this, the RECCo control algorithm autonomously learns and evolves the structure and adapts its parameters in an online unsupervised manner

    Further experimental results on modelling and algebraic control of a delayed looped heating-cooling process under uncertainties

    Get PDF
    The aim of this research is to revise and substantially extend experimental modelling and control of a looped heating-cooling laboratory process with long input-output and internal delays under uncertainties. This research follows and extends the authors' recent results. As several significant improvements regarding robust modelling and control have been reached, the obtained results are provided with a link and comparison to the previous findings. First, an infinite-dimensional model based on mathematical-physical heat and mass transfer principles is developed. All important heat-fluid transport and control-signal delays are considered when assembling the model structure and relations of quantities. Model parameter values optimization based on the measurement data follows. When determining static model parameter values, all variations in steady-state measured data are taken into account simultaneously, which enhances previously obtained models. Values of dynamic model parameters and delays are further obtained by least mean square optimization. This innovative model is compared to two recently developed process models and to the best-fit model that ignores the measured variations. Controller structures are designed using algebraic tools for all four models. The designed controllers are robust in the sense of robust stability and performance. Both concepts are rigorously assessed, and the obtained conditions serve for controller parameter tuning. Two different control systems are assumed: the standard closed-loop feedback loop and the two-feedback-controllers control system. Numerous experimental measurements for nominal conditions and selected perturbations are performed. Obtained results are further analyzed via several criteria on manipulated input and controlled temperature. The designed controllers are compared to the Smith predictor structure that is wellestablished for time-delay systems control. An essential drawback of the predictor regarding disturbance rejection is highlighted.College of Polytechnics Jihlava; National Foreign Expert Project, (G2022178023L); Tomas Bata University in Zlin, TBU; Grantová Agentura České Republiky, GA ČR, (GAČR 21–45465L)Czech Science Foundation [GAC?R 21-45465L]; National Foreign Expert Project [G2022178023L
    corecore