3,865 research outputs found

    Fast LTL Satisfiability Checking by SAT Solvers

    Full text link
    Satisfiability checking for Linear Temporal Logic (LTL) is a fundamental step in checking for possible errors in LTL assertions. Extant LTL satisfiability checkers use a variety of different search procedures. With the sole exception of LTL satisfiability checking based on bounded model checking, which does not provide a complete decision procedure, LTL satisfiability checkers have not taken advantage of the remarkable progress over the past 20 years in Boolean satisfiability solving. In this paper, we propose a new LTL satisfiability-checking framework that is accelerated using a Boolean SAT solver. Our approach is based on the variant of the \emph{obligation-set method}, which we proposed in earlier work. We describe here heuristics that allow the use of a Boolean SAT solver to analyze the obligations for a given LTL formula. The experimental evaluation indicates that the new approach provides a a significant performance advantage

    Constraint LTL Satisfiability Checking without Automata

    Get PDF
    This paper introduces a novel technique to decide the satisfiability of formulae written in the language of Linear Temporal Logic with Both future and past operators and atomic formulae belonging to constraint system D (CLTLB(D) for short). The technique is based on the concept of bounded satisfiability, and hinges on an encoding of CLTLB(D) formulae into QF-EUD, the theory of quantifier-free equality and uninterpreted functions combined with D. Similarly to standard LTL, where bounded model-checking and SAT-solvers can be used as an alternative to automata-theoretic approaches to model-checking, our approach allows users to solve the satisfiability problem for CLTLB(D) formulae through SMT-solving techniques, rather than by checking the emptiness of the language of a suitable automaton A_{\phi}. The technique is effective, and it has been implemented in our Zot formal verification tool.Comment: 39 page

    Modal mu-calculi

    Get PDF

    Reasoning About Strategies: On the Model-Checking Problem

    Full text link
    In open systems verification, to formally check for reliability, one needs an appropriate formalism to model the interaction between agents and express the correctness of the system no matter how the environment behaves. An important contribution in this context is given by modal logics for strategic ability, in the setting of multi-agent games, such as ATL, ATL\star, and the like. Recently, Chatterjee, Henzinger, and Piterman introduced Strategy Logic, which we denote here by CHP-SL, with the aim of getting a powerful framework for reasoning explicitly about strategies. CHP-SL is obtained by using first-order quantifications over strategies and has been investigated in the very specific setting of two-agents turned-based games, where a non-elementary model-checking algorithm has been provided. While CHP-SL is a very expressive logic, we claim that it does not fully capture the strategic aspects of multi-agent systems. In this paper, we introduce and study a more general strategy logic, denoted SL, for reasoning about strategies in multi-agent concurrent games. We prove that SL includes CHP-SL, while maintaining a decidable model-checking problem. In particular, the algorithm we propose is computationally not harder than the best one known for CHP-SL. Moreover, we prove that such a problem for SL is NonElementarySpace-hard. This negative result has spurred us to investigate here syntactic fragments of SL, strictly subsuming ATL\star, with the hope of obtaining an elementary model-checking problem. Among the others, we study the sublogics SL[NG], SL[BG], and SL[1G]. They encompass formulas in a special prenex normal form having, respectively, nested temporal goals, Boolean combinations of goals and, a single goal at a time. About these logics, we prove that the model-checking problem for SL[1G] is 2ExpTime-complete, thus not harder than the one for ATL\star

    A Theory of Sampling for Continuous-time Metric Temporal Logic

    Full text link
    This paper revisits the classical notion of sampling in the setting of real-time temporal logics for the modeling and analysis of systems. The relationship between the satisfiability of Metric Temporal Logic (MTL) formulas over continuous-time models and over discrete-time models is studied. It is shown to what extent discrete-time sequences obtained by sampling continuous-time signals capture the semantics of MTL formulas over the two time domains. The main results apply to "flat" formulas that do not nest temporal operators and can be applied to the problem of reducing the verification problem for MTL over continuous-time models to the same problem over discrete-time, resulting in an automated partial practically-efficient discretization technique.Comment: Revised version, 43 pages

    A decidable weakening of Compass Logic based on cone-shaped cardinal directions

    Get PDF
    We introduce a modal logic, called Cone Logic, whose formulas describe properties of points in the plane and spatial relationships between them. Points are labelled by proposition letters and spatial relations are induced by the four cone-shaped cardinal directions. Cone Logic can be seen as a weakening of Venema's Compass Logic. We prove that, unlike Compass Logic and other projection-based spatial logics, its satisfiability problem is decidable (precisely, PSPACE-complete). We also show that it is expressive enough to capture meaningful interval temporal logics - in particular, the interval temporal logic of Allen's relations "Begins", "During", and "Later", and their transposes

    Satisfiability Games for Branching-Time Logics

    Full text link
    The satisfiability problem for branching-time temporal logics like CTL*, CTL and CTL+ has important applications in program specification and verification. Their computational complexities are known: CTL* and CTL+ are complete for doubly exponential time, CTL is complete for single exponential time. Some decision procedures for these logics are known; they use tree automata, tableaux or axiom systems. In this paper we present a uniform game-theoretic framework for the satisfiability problem of these branching-time temporal logics. We define satisfiability games for the full branching-time temporal logic CTL* using a high-level definition of winning condition that captures the essence of well-foundedness of least fixpoint unfoldings. These winning conditions form formal languages of \omega-words. We analyse which kinds of deterministic {\omega}-automata are needed in which case in order to recognise these languages. We then obtain a reduction to the problem of solving parity or B\"uchi games. The worst-case complexity of the obtained algorithms matches the known lower bounds for these logics. This approach provides a uniform, yet complexity-theoretically optimal treatment of satisfiability for branching-time temporal logics. It separates the use of temporal logic machinery from the use of automata thus preserving a syntactical relationship between the input formula and the object that represents satisfiability, i.e. a winning strategy in a parity or B\"uchi game. The games presented here work on a Fischer-Ladner closure of the input formula only. Last but not least, the games presented here come with an attempt at providing tool support for the satisfiability problem of complex branching-time logics like CTL* and CTL+
    corecore