1,157 research outputs found

    A practical, perfectly secure password scheme in the bounded retrieval model

    Get PDF
    In this paper, we present a practical password scheme due to Spilman, which is perfectly secure in the bounded retrieval model, assuming ideal hash functions. The construction is based on a hash-like function com- puted by a third party “facilitator”. The facilitator is trusted, and security derives from the facilitator’s long random secret, although the adversary is assumed to be able to retrieve a large fraction of that secret. Unlike the traditional “salted and hashed password” approach, this scheme is secure against an adversary capable of performing brute force dictionary attacks offline. The key security property for the facilitator function is a form of uncloneability, that prevents the adversary from calculating function values offline

    Input-shrinking functions: theory and application

    Get PDF
    In this thesis, we contribute to the emerging field of the Leakage-Resilient Cryptography by studying the problem of secure data storage on hardware that may leak information, introducing a new primitive, a leakage-resilient storage, and showing two different constructions of such storage scheme provably secure against a class of leakage functions that can depend only on some restricted part of the memory and against a class of computationally weak leakage functions, e.g. functions computable by small circuits, respectively. Our results come with instantiations and analysis of concrete parameters. Furthermore, as second contribution, we present our implementation in C programming language, using the cryptographic library of the OpenSSL project, of a two-party Authenticated Key Exchange (AKE) protocol, which allows a client and a server, who share a huge secret file, to securely compute a shared key, providing client-to-server authentication, also in the presence of active attackers. Following the work of Cash et al. (TCC 2007), we based our construction on a Weak Key Exchange (WKE) protocol, developed in the BRM, and a Password-based Authenticated Key Exchange (PAKE) protocol secure in the Universally Composable (UC) framework. The WKE protocol showed by Cash et al. uses an explicit construction of averaging sampler, which uses less random bits than the random choice but does not seem to be efficiently implementable in practice. In this thesis, we propose a WKE protocol similar but simpler than that one of Cash et al.: our protocol uses more randomness than the Cash et al.'s one, as it simply uses random choice instead of averaging sampler, but we are able to show an efficient implementation of it. Moreover, we formally adapt the security analysis of the WKE protocol of Cash et al. to our WKE protocol. To complete our AKE protocol, we implement the PAKE protocol showed secure in the UC framework by Abdalla et al. (CT-RSA 2008), which is more efficient than the Canetti et al.'s UC-PAKE protocol (EuroCrypt 2005) used in Cash et al.'s work. In our implementation of the WKE protocol, to achieve small constant communication complexity and amount of randomness, we rely on the Random Oracle (RO) model. However, we would like to note that in our implementation of the AKE protocol we need also a UC-PAKE protocol which already relies on RO, as it is impossible to achieve UC-PAKE in the standard model. In our work we focus not only on the theoretical aspects of the area, providing formal models and proofs, but also on the practical ones, analyzing instantiations, concrete parameters and implementation of the proposed solutions, to contribute to bridge the gap between theory and practice in this field

    Fully leakage-resilient signatures revisited: Graceful degradation, noisy leakage, and construction in the bounded-retrieval model

    Get PDF
    We construct new leakage-resilient signature schemes. Our schemes remain unforgeable against an adversary leaking arbitrary (yet bounded) information on the entire state of the signer (sometimes known as fully leakage resilience), including the random coin tosses of the signing algorithm. The main feature of our constructions is that they offer a graceful degradation of security in situations where standard existential unforgeability is impossible

    Unforgeable Noise-Tolerant Quantum Tokens

    Get PDF
    The realization of devices which harness the laws of quantum mechanics represents an exciting challenge at the interface of modern technology and fundamental science. An exemplary paragon of the power of such quantum primitives is the concept of "quantum money". A dishonest holder of a quantum bank-note will invariably fail in any forging attempts; indeed, under assumptions of ideal measurements and decoherence-free memories such security is guaranteed by the no-cloning theorem. In any practical situation, however, noise, decoherence and operational imperfections abound. Thus, the development of secure "quantum money"-type primitives capable of tolerating realistic infidelities is of both practical and fundamental importance. Here, we propose a novel class of such protocols and demonstrate their tolerance to noise; moreover, we prove their rigorous security by determining tight fidelity thresholds. Our proposed protocols require only the ability to prepare, store and measure single qubit quantum memories, making their experimental realization accessible with current technologies.Comment: 18 pages, 5 figure

    Quantum Cryptography Beyond Quantum Key Distribution

    Get PDF
    Quantum cryptography is the art and science of exploiting quantum mechanical effects in order to perform cryptographic tasks. While the most well-known example of this discipline is quantum key distribution (QKD), there exist many other applications such as quantum money, randomness generation, secure two- and multi-party computation and delegated quantum computation. Quantum cryptography also studies the limitations and challenges resulting from quantum adversaries---including the impossibility of quantum bit commitment, the difficulty of quantum rewinding and the definition of quantum security models for classical primitives. In this review article, aimed primarily at cryptographers unfamiliar with the quantum world, we survey the area of theoretical quantum cryptography, with an emphasis on the constructions and limitations beyond the realm of QKD.Comment: 45 pages, over 245 reference

    Robust Cryptography in the Noisy-Quantum-Storage Model

    Get PDF
    It was shown in [WST08] that cryptographic primitives can be implemented based on the assumption that quantum storage of qubits is noisy. In this work we analyze a protocol for the universal task of oblivious transfer that can be implemented using quantum-key-distribution (QKD) hardware in the practical setting where honest participants are unable to perform noise-free operations. We derive trade-offs between the amount of storage noise, the amount of noise in the operations performed by the honest participants and the security of oblivious transfer which are greatly improved compared to the results in [WST08]. As an example, we show that for the case of depolarizing noise in storage we can obtain secure oblivious transfer as long as the quantum bit-error rate of the channel does not exceed 11% and the noise on the channel is strictly less than the quantum storage noise. This is optimal for the protocol considered. Finally, we show that our analysis easily carries over to quantum protocols for secure identification.Comment: 34 pages, 2 figures. v2: clarified novelty of results, improved security analysis using fidelity-based smooth min-entropy, v3: typos and additivity proof in appendix correcte

    Anonymous and Transparent Gateway-based Password-Authenticated Key Exchange

    Get PDF
    The original publication is available at www.springerlink.comInternational audienceIn Asiacrypt 2005, Abdalla et al. put forward the notion of gateway-based password- authenticated key exchange (GPAKE) protocol, which allows clients and gateways to establish a common session key with the help of an authentication server. In addition to the semantic security of the session key, their solution also provided additional security properties such as password pro- tection with respect to malicious gateways and key privacy with respect to curious authentication servers. In this paper, we further pursue this line of research and present a new and stronger se- curity model for GPAKE schemes, combining all above-mentioned security properties. In addition to allowing a security proof for all these security properties, the new security model has also other advantages over the previous one such as taking into account user corruptions. After describing the new security model, we then present a new variant of the GPAKE scheme of Abdalla et al. with similar efficiency. Like the original scheme, the new scheme is also transparent in that it does not differ significantly from a classical 2-PAKE scheme from the point of view of a client. Finally, we also show how to add client anonymity with respect to the server to the basic GPAKE scheme by using private information retrieval protocols

    A New Distribution-Sensitive Secure Sketch and Popularity-Proportional Hashing

    Get PDF
    Motivated by typo correction in password authentication, we investigate cryptographic error-correction of secrets in settings where the distribution of secrets is a priori (approximately) known. We refer to this as the distribution-sensitive setting. We design a new secure sketch called the layer-hiding hash (LHH) that offers the best security to date. Roughly speaking, we show that LHH saves an additional log H_0(W) bits of entropy compared to the recent layered sketch construction due to Fuller, Reyzin, and Smith (FRS). Here H_0(W) is the size of the support of the distribution W. When supports are large, as with passwords, our new construction offers a substantial security improvement. We provide two new constructions of typo-tolerant password-based authentication schemes. The first combines a LHH or FRS sketch with a standard slow-to-compute hash function, and the second avoids secure sketches entirely, correcting typos instead by checking all nearby passwords. Unlike the previous such brute-force-checking construction, due to Chatterjee et al., our new construction uses a hash function whose run-time is proportional to the popularity of the password (forcing a longer hashing time on more popular, lower entropy passwords). We refer to this as popularity-proportional hashing (PPH). We then introduce a frame-work for comparing different typo-tolerant authentication approaches. We show that PPH always offers a better time / security trade-off than the LHH and FRS constructions, and for certain distributions outperforms the Chatterjee et al. construction. Elsewhere, this latter construction offers the best trade-off. In aggregate our results suggest that the best known secure sketches are still inferior to simpler brute-force based approaches
    • …
    corecore