10 research outputs found

    A comparison of duality and energy aposteriori estimates for L?(0,T;L2({\Omega})) in parabolic problems

    Get PDF
    We use the elliptic reconstruction technique in combination with a duality approach to prove aposteriori error estimates for fully discrete back- ward Euler scheme for linear parabolic equations. As an application, we com- bine our result with the residual based estimators from the aposteriori esti- mation for elliptic problems to derive space-error indicators and thus a fully practical version of the estimators bounding the error in the L \infty (0, T ; L2({\Omega})) norm. These estimators, which are of optimal order, extend those introduced by Eriksson and Johnson (1991) by taking into account the error induced by the mesh changes and allowing for a more flexible use of the elliptic estima- tors. For comparison with previous results we derive also an energy-based aposteriori estimate for the L \infty (0, T ; L2({\Omega}))-error which simplifies a previous one given in Lakkis and Makridakis (2006). We then compare both estimators (duality vs. energy) in practical situations and draw conclusions.Comment: 30 pages, including 7 color plates in 4 figure

    Bounds of functional outputs for parabolic problems. Part I: Exact bounds of the Discontinuous Galerkin time discretization

    Get PDF
    Classical implicit residual type error estimators require using an underlying spatial finer mesh to compute bounds for some quantity of interest. Consequently, the bounds obtained are only guaranteed asymptotically that is with respect to the reference solution computed with the fine mesh. Exact bounds, that is bounds guaranteed with respect to the exact solution, are needed to properly certify the accuracy of the results, especially if the meshes are coarse. The paper introduces a procedure to compute strict upper and lower bounds of the error in linear functional outputs of parabolic problems. In this first part, the bounds account for the error associated with the spatial discretization. The error coming from the time marching scheme is therefore assumed to be negligible in front of the spatial error. The time discretization is performed using the discontinuous Galerkin method, both for the primal and adjoint problems. In the error estimation procedure, equilibrated fluxes at interelement edges are calculated using hybridization techniques

    A comparison of duality and energy aposteriori estimates for L?(0,T;L2({\Omega})) in parabolic problems

    Get PDF
    We use the elliptic reconstruction technique in combination with a duality approach to prove aposteriori error estimates for fully discrete back- ward Euler scheme for linear parabolic equations. As an application, we com- bine our result with the residual based estimators from the aposteriori esti- mation for elliptic problems to derive space-error indicators and thus a fully practical version of the estimators bounding the error in the L \infty (0, T ; L2({\Omega})) norm. These estimators, which are of optimal order, extend those introduced by Eriksson and Johnson (1991) by taking into account the error induced by the mesh changes and allowing for a more flexible use of the elliptic estima- tors. For comparison with previous results we derive also an energy-based aposteriori estimate for the L \infty (0, T ; L2({\Omega}))-error which simplifies a previous one given in Lakkis and Makridakis (2006). We then compare both estimators (duality vs. energy) in practical situations and draw conclusions.Comment: 30 pages, including 7 color plates in 4 figure

    Space-time residual-based a posteriori estimators for the A/Phi magneto dynamic formulation of the Maxwell system

    Get PDF
    International audienceIn this paper, an a posteriori residual error estimator is proposed for the A/Phi magnetodynamic Maxwell system given in its potential and space/time formulation and solved by a Finite Element method. The reliability as well as the e ciency of the estimator are established for several norms. Then, numerical tests are performed, allowing to illustrate the obtained theoretical results

    Recovery methods for evolution and nonlinear problems

    Get PDF
    Functions in finite dimensional spaces are, in general, not smooth enough to be differentiable in the classical sense and “recovered” versions of their first and second derivatives must be sought for certain applications. In this work we make use of recovered derivatives for applications in finite element schemes for two different purposes. We thus split this Thesis into two distinct parts. In the first part we derive energy-norm aposteriori error bounds, using gradient recovery (ZZ) estimators to control the spatial error for fully discrete schemes of the linear heat equation. To our knowledge this is the first completely rigorous derivation of ZZ estimators for fully discrete schemes for evolution problems, without any restrictive assumption on the timestep size. An essential tool for the analysis is the elliptic reconstruction technique introduced as an aposteriori analog to the elliptic (Ritz) projection. Our theoretical results are backed up with extensive numerical experimentation aimed at (1) testing the practical sharpness and asymptotic behaviour of the error estimator against the error, and (2) deriving an adaptive method based on our estimators. An extra novelty is an implementation of a coarsening error “preindicator”, with a complete implementation guide in ALBERTA (versions 1.0–2.0). In the second part of this Thesis we propose a numerical method to approximate the solution of second order elliptic problems in nonvariational form. The method is of Galërkin type using conforming finite elements and applied directly to the nonvariational(or nondivergence) form of a second order linear elliptic problem. The key tools are an appropriate concept of the “finite element Hessian” based on a Hessian recovery and a Schur complement approach to solving the resulting linear algebra problem. The method is illustrated with computational experiments on linear PDEs in nonvariational form. We then use the nonvariational finite element method to build a numerical method for fully nonlinear elliptic equations. We linearise the problem via Newton’s method resulting in a sequence of nonvariational elliptic problems which are then approximated with the nonvariational finite element method. This method is applicable to general fully nonlinear PDEs who admit a unique solution without constraint. We also study fully nonlinear PDEs when they are only uniformly elliptic on a certain class of functions. We construct a numerical method for the Monge–Ampère equation based on using “finite element convexity” as a constraint for the aforementioned nonvariational finite element method. This method is backed up with numerical experimentation

    A posteriori analysis of the finite element discretization of some parabolic equations

    No full text
    Abstract. We are interested in the discretization of parabolic equations, either linear or semilinear, by an implicit Euler scheme with respect to the time variable and finite elements with respect to the space variables. The main result of this paper consists of building error indicators with respect to both time and space approximations and proving their equivalence with the error, in order to work with adaptive time steps and finite element meshes. Résumé. Nous considérons la discrétisation d’équations paraboliques, soit linéaires soit semi-linéaires, par un schéma d’Euler implicite en temps et par éléments finis en espace. L’idée de cet article est de construire des indicateurs d’erreur liés à l’approximation en temps et en espace et de prouver leur équivalence avec l’erreur, dans le but de travailler avec des pas de temps adaptatifs et des maillages d’éléments finis adaptés à la solution. 1
    corecore