108 research outputs found

    A Multi-Code Analysis Toolkit for Astrophysical Simulation Data

    Full text link
    The analysis of complex multiphysics astrophysical simulations presents a unique and rapidly growing set of challenges: reproducibility, parallelization, and vast increases in data size and complexity chief among them. In order to meet these challenges, and in order to open up new avenues for collaboration between users of multiple simulation platforms, we present yt (available at http://yt.enzotools.org/), an open source, community-developed astrophysical analysis and visualization toolkit. Analysis and visualization with yt are oriented around physically relevant quantities rather than quantities native to astrophysical simulation codes. While originally designed for handling Enzo's structure adaptive mesh refinement (AMR) data, yt has been extended to work with several different simulation methods and simulation codes including Orion, RAMSES, and FLASH. We report on its methods for reading, handling, and visualizing data, including projections, multivariate volume rendering, multi-dimensional histograms, halo finding, light cone generation and topologically-connected isocontour identification. Furthermore, we discuss the underlying algorithms yt uses for processing and visualizing data, and its mechanisms for parallelization of analysis tasks.Comment: 18 pages, 6 figures, emulateapj format. Resubmitted to Astrophysical Journal Supplement Series with revisions from referee. yt can be found at http://yt.enzotools.org

    Doctor of Philosophy

    Get PDF
    dissertationStochastic methods, dense free-form mapping, atlas construction, and total variation are examples of advanced image processing techniques which are robust but computationally demanding. These algorithms often require a large amount of computational power as well as massive memory bandwidth. These requirements used to be ful lled only by supercomputers. The development of heterogeneous parallel subsystems and computation-specialized devices such as Graphic Processing Units (GPUs) has brought the requisite power to commodity hardware, opening up opportunities for scientists to experiment and evaluate the in uence of these techniques on their research and practical applications. However, harnessing the processing power from modern hardware is challenging. The di fferences between multicore parallel processing systems and conventional models are signi ficant, often requiring algorithms and data structures to be redesigned signi ficantly for efficiency. It also demands in-depth knowledge about modern hardware architectures to optimize these implementations, sometimes on a per-architecture basis. The goal of this dissertation is to introduce a solution for this problem based on a 3D image processing framework, using high performance APIs at the core level to utilize parallel processing power of the GPUs. The design of the framework facilitates an efficient application development process, which does not require scientists to have extensive knowledge about GPU systems, and encourages them to harness this power to solve their computationally challenging problems. To present the development of this framework, four main problems are described, and the solutions are discussed and evaluated: (1) essential components of a general 3D image processing library: data structures and algorithms, as well as how to implement these building blocks on the GPU architecture for optimal performance; (2) an implementation of unbiased atlas construction algorithms|an illustration of how to solve a highly complex and computationally expensive algorithm using this framework; (3) an extension of the framework to account for geometry descriptors to solve registration challenges with large scale shape changes and high intensity-contrast di fferences; and (4) an out-of-core streaming model, which enables developers to implement multi-image processing techniques on commodity hardware

    GPGPU application in fusion science

    Get PDF
    GPGPUs have firmly earned their reputation in HPC (High Performance Computing) as hardware for massively parallel computation. However their application in fusion science is quite marginal and not considered a mainstream approach to numerical problems. Computation advances have increased immensely over the last decade and continue to accelerate. GPGPU boards were always an alternative and exotic approach to problem solving and scientific programming, which was cultivated only by enthusiasts and specialized programmers. Today it is about 10 years, since the first fully programmable GPUs appeared on the market. And due to exponential growth in processing power over the years GPGPUs are not the alternative choice any more, but they became the main choice for big problem solving. Originally developed for and dominating in fields such as image and media processing, image rendering, video encoding/decoding, image scaling, stereo vision and pattern recognition GPGPUs are also becoming mainstream computation platforms in scientific fields such as signal processing, physics, finance and biology. This PhD contains solutions and approaches to two relevant problems for fusion and plasma science using GPGPU processing. First problem belongs to the realms of plasma and accelerator physics. I will present number of plasma simulations built on a PIC (Particle In Cell) method such as plasma sheath simulation, electron beam simulation, negative ion beam simulation and space charge compensation simulation. Second problem belongs to the realms of tomography and real-time control. I will present number of simulated tomographic plasma reconstructions of Fourier-Bessel type and their analysis all in real-time oriented approach, i.e. GPGPU based implementations are integrated into MARTe environment. MARTe is a framework for real-time application developed at JET (Joint European Torus) and used in several european fusion labs. These two sets of problems represent a complete spectrum of GPGPU operation capabilities. PIC based problems are large complex simulations operated as batch processes, which do not have a time constraint and operate on huge amounts of memory. While tomographic plasma reconstructions are online (realtime) processes, which have a strict latency/time constraints suggested by the time scales of real-time control and operate on relatively small amounts of memory. Such a variety of problems covers a very broad range of disciplines and fields of science: such as plasma physics, NBI (Neutral Beam Injector) physics, tokamak physics, parallel computing, iterative/direct matrix solvers, PIC method, tomography and so on. PhD thesis also includes an extended performance analysis of Nvidia GPU cards considering the applicability to the real-time control and real-time performance. In order to approach the aforementioned problems I as a PhD candidate had to gain knowledge in those relevant fields and build a vast range of practical skills such as: parallel/sequential CPU programming, GPU programming, MARTe programming, MatLab programming, IDL programming and Python programming

    Mapping applications onto FPGA-centric clusters

    Full text link
    High Performance Computing (HPC) is becoming increasingly important throughout science and engineering as ever more complex problems must be solved through computational simulations. In these large computational applications, the latency of communication between processing nodes is often the key factor that limits performance. An emerging alternative computer architecture that addresses the latency problem is the FPGA-centric cluster (FCC); in these systems, the devices (FPGAs) are directly interconnected and thus many layers of hardware and software are avoided. The result can be scalability not currently achievable with other technologies. In FCCs, FPGAs serve multiple functions: accelerator, network interface card (NIC), and router. Moreover, because FPGAs are configurable, there is substantial opportunity to tailor the router hardware to the application; previous work has demonstrated that such application-aware configuration can effect a substantial improvement in hardware efficiency. One constraint of FCCs is that it is convenient for their interconnect to be static, direct, and have a two or three dimensional mesh topology. Thus, applications that are naturally of a different dimensionality (have a different logical topology) from that of the FCC must be remapped to obtain optimal performance. In this thesis we study various aspects of the mapping problem for FCCs. There are two major research thrusts. The first is finding the optimal mapping of logical to physical topology. This problem has received substantial attention by both the theory community, where topology mapping is referred to as graph embedding, and by the High Performance Computing (HPC) community, where it is a question of process placement. We explore the implications of the different mapping strategies on communication behavior in FCCs, especially on resulting load imbalance. The second major research thrust is built around the hypothesis that applications that need to be remapped (due to differing logical and physical topologies) will have different optimal router configurations from those applications that do not. For example, due to remapping, some virtual or physical communication links may have little occupancy; therefore fewer resources should be allocated to them. Critical here is the creation of a new set of parameterized hardware features that can be configured to best handle load imbalances caused by remapping. These two thrusts form a codesign loop: certain mapping algorithms may be differentially optimal due to application-aware router reconfiguration that accounts for this mapping. This thesis has four parts. The first part introduces the background and previous work related to communication in general and, in particular, how it is implemented in FCCs. We build on previous work on application-aware router configuration. The second part introduces topology mapping mechanisms including those derived from graph embeddings and a greedy algorithm commonly used in HPC. In the third part, topology mappings are evaluated for performance and imbalance; we note that different mapping strategies lead to different imbalances both in the overall network and in each node. The final part introduces reconfigure router design that allocates resources based on different imbalance situations caused by different mapping behaviors

    X10 for high-performance scientific computing

    No full text
    High performance computing is a key technology that enables large-scale physical simulation in modern science. While great advances have been made in methods and algorithms for scientific computing, the most commonly used programming models encourage a fragmented view of computation that maps poorly to the underlying computer architecture. Scientific applications typically manifest physical locality, which means that interactions between entities or events that are nearby in space or time are stronger than more distant interactions. Linear-scaling methods exploit physical locality by approximating distant interactions, to reduce computational complexity so that cost is proportional to system size. In these methods, the computation required for each portion of the system is different depending on that portion’s contribution to the overall result. To support productive development, application programmers need programming models that cleanly map aspects of the physical system being simulated to the underlying computer architecture while also supporting the irregular workloads that arise from the fragmentation of a physical system. X10 is a new programming language for high-performance computing that uses the asynchronous partitioned global address space (APGAS) model, which combines explicit representation of locality with asynchronous task parallelism. This thesis argues that the X10 language is well suited to expressing the algorithmic properties of locality and irregular parallelism that are common to many methods for physical simulation. The work reported in this thesis was part of a co-design effort involving researchers at IBM and ANU in which two significant computational chemistry codes were developed in X10, with an aim to improve the expressiveness and performance of the language. The first is a Hartree–Fock electronic structure code, implemented using the novel Resolution of the Coulomb Operator approach. The second evaluates electrostatic interactions between point charges, using either the smooth particle mesh Ewald method or the fast multipole method, with the latter used to simulate ion interactions in a Fourier Transform Ion Cyclotron Resonance mass spectrometer. We compare the performance of both X10 applications to state-of-the-art software packages written in other languages. This thesis presents improvements to the X10 language and runtime libraries for managing and visualizing the data locality of parallel tasks, communication using active messages, and efficient implementation of distributed arrays. We evaluate these improvements in the context of computational chemistry application examples. This work demonstrates that X10 can achieve performance comparable to established programming languages when running on a single core. More importantly, X10 programs can achieve high parallel efficiency on a multithreaded architecture, given a divide-and-conquer pattern parallel tasks and appropriate use of worker-local data. For distributed memory architectures, X10 supports the use of active messages to construct local, asynchronous communication patterns which outperform global, synchronous patterns. Although point-to-point active messages may be implemented efficiently, productive application development also requires collective communications; more work is required to integrate both forms of communication in the X10 language. The exploitation of locality is the key insight in both linear-scaling methods and the APGAS programming model; their combination represents an attractive opportunity for future co-design efforts

    Aceleración de algoritmos de procesamiento de imágenes para el análisis de partículas individuales con microscopia electrónica

    Full text link
    Tesis Doctoral inédita cotutelada por la Masaryk University (República Checa) y la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Ingeniería Informática. Fecha de Lectura: 24-10-2022Cryogenic Electron Microscopy (Cryo-EM) is a vital field in current structural biology. Unlike X-ray crystallography and Nuclear Magnetic Resonance, it can be used to analyze membrane proteins and other samples with overlapping spectral peaks. However, one of the significant limitations of Cryo-EM is the computational complexity. Modern electron microscopes can produce terabytes of data per single session, from which hundreds of thousands of particles must be extracted and processed to obtain a near-atomic resolution of the original sample. Many existing software solutions use high-Performance Computing (HPC) techniques to bring these computations to the realm of practical usability. The common approach to acceleration is parallelization of the processing, but in praxis, we face many complications, such as problem decomposition, data distribution, load scheduling, balancing, and synchronization. Utilization of various accelerators further complicates the situation, as heterogeneous hardware brings additional caveats, for example, limited portability, under-utilization due to synchronization, and sub-optimal code performance due to missing specialization. This dissertation, structured as a compendium of articles, aims to improve the algorithms used in Cryo-EM, esp. the SPA (Single Particle Analysis). We focus on the single-node performance optimizations, using the techniques either available or developed in the HPC field, such as heterogeneous computing or autotuning, which potentially needs the formulation of novel algorithms. The secondary goal of the dissertation is to identify the limitations of state-of-the-art HPC techniques. Since the Cryo-EM pipeline consists of multiple distinct steps targetting different types of data, there is no single bottleneck to be solved. As such, the presented articles show a holistic approach to performance optimization. First, we give details on the GPU acceleration of the specific programs. The achieved speedup is due to the higher performance of the GPU, adjustments of the original algorithm to it, and application of the novel algorithms. More specifically, we provide implementation details of programs for movie alignment, 2D classification, and 3D reconstruction that have been sped up by order of magnitude compared to their original multi-CPU implementation or sufficiently the be used on-the-fly. In addition to these three programs, multiple other programs from an actively used, open-source software package XMIPP have been accelerated and improved. Second, we discuss our contribution to HPC in the form of autotuning. Autotuning is the ability of software to adapt to a changing environment, i.e., input or executing hardware. Towards that goal, we present cuFFTAdvisor, a tool that proposes and, through autotuning, finds the best configuration of the cuFFT library for given constraints of input size and plan settings. We also introduce a benchmark set of ten autotunable kernels for important computational problems implemented in OpenCL or CUDA, together with the introduction of complex dynamic autotuning to the KTT tool. Third, we propose an image processing framework Umpalumpa, which combines a task-based runtime system, data-centric architecture, and dynamic autotuning. The proposed framework allows for writing complex workflows which automatically use available HW resources and adjust to different HW and data but at the same time are easy to maintainThe project that gave rise to these results received the support of a fellowship from the “la Caixa” Foundation (ID 100010434). The fellowship code is LCF/BQ/DI18/11660021. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 71367
    • …
    corecore