46 research outputs found

    An interior-point method for the single-facility location problem with mixed norms using a conic formulation

    Get PDF
    We consider the single-facility location problem with mixed norms, i.e. the problem of minimizing the sum of the distances from a point to a set of fixed points in R, where each distance can be measured according to a different p-norm.We show how this problem can be expressed into a structured conic format by decomposing the nonlinear components of the objective into a series of constraints involving three-dimensional cones. Using the availability of a self-concordant barrier for these cones, we present a polynomial-time algorithm (a long-step path-following interior-point scheme) to solve the problem up to a given accuracy. Finally, we report computational results for this algorithm and compare with standard nonlinear optimization solvers applied to this problem.nonsymmetric conic optimization, conic reformulation, convex optimization, sum of norm minimization, single-facility location problems, interior-point methods

    Stochastic Multifacility Location Problem under Triangular Area Constraint with Euclidean Norm

    Get PDF
    The multifacility location issue is an augmentation of the single-location problem in which we might be keen on finding the location of various new facilities concerning different existing locations. In the present study, multifacility location under triangular zone limitation with probabilistic methodology for the weights considered in the objective function and the Euclidean distances between the locations has been presented. Scientific detailing and the explanatory arrangement have been acquired by utilizing Kuhn-Tucker conditions. The arrangement strategy has been represented with the assistance of a numerical illustration. Two sub-instances of the issue in each of which the new locations are to be situated in semi-open rectangular zone have likewise been talked about

    Discrete Convex Functions on Graphs and Their Algorithmic Applications

    Full text link
    The present article is an exposition of a theory of discrete convex functions on certain graph structures, developed by the author in recent years. This theory is a spin-off of discrete convex analysis by Murota, and is motivated by combinatorial dualities in multiflow problems and the complexity classification of facility location problems on graphs. We outline the theory and algorithmic applications in combinatorial optimization problems

    An interior-point method for the single-facility location problem with mixed norms using a conic formulation

    Get PDF
    Abstract We consider the single-facility location problem with mixed norms, i.e. the problem of minimizing the sum of the distances from a point to a set of fixed points in R n , where each distance can be measured according to a different p-norm. We show how this problem can be expressed into a structured conic format by decomposing the nonlinear components of the objective into a series of constraints involving three-dimensional cones. Using the availability of a self-concordant barrier for these cones, we present a polynomial-time algorithm (a long-step path-following interior-point scheme) to solve the problem up to a given accuracy. Finally, we report computational results for this algorithm and compare with standard nonlinear optimization solvers applied to this problem

    A multifacility location problem on median spaces

    Get PDF
    AbstractThis paper is concerned with the problem of locating n new facilities in the median space when there are k facilities already located. The objective is to minimize the weighted sum of distances. Necessary and sufficient conditions are established. Based on these results a polynomial algorithm is presented. The algorithm requires the solution of a sequence of minimum-cut problems. The complexity of this algorithm for median graphs and networks and for finite median spaces with ¦V¦points is O(¦V¦3 + ¦V¦ψ(n)), where ψ(n) is the complexity of the applied maximum-flow algorithm. For a simple rectilinear polygon P with N edges and equipped with the rectilinear distance the analogical algorithm requires O(N + k(logN + logk + ψ(n))) time and O(N + kψ(n)) time in the case of the vertex-restricted multifacility location problem

    Multifacility Location Problems with Tree Structure and Finite Dominating Sets

    Get PDF
    Multifacility location problems arise in many real world applications. Often, the facilities can only be placed in feasible regions such as development or industrial areas. In this paper we show the existence of a finite dominating set (FDS) for the planar multifacility location problem with polyhedral gauges as distance functions, and polyhedral feasible regions, if the interacting facilities form a tree. As application we show how to solve the planar 2-hub location problem in polynomial time. This approach will yield an ε-approximation for the euclidean norm case polynomial in the input data and 1/ε
    corecore