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Abstract 

This paper is concerned with the problem of locating II new facilities in the median space 
when there are k facilities already located. The objective is to minimize the weighted sum of 
distances. Necessary and sufficient conditions are established. Based on these results a 
polynomial algorithm is presented. The algorithm requires the solution of a sequence of 
minimum-cut problems. The complexity of this algorithm for median graphs and networks and 
for finite median spaces with 1 V 1 points is 0( 1 V I3 + 1 V I+(n)), where $(n) is the complexity of 
the applied maximum-flow algorithm. For a simple rectilinear polygon P with N edges 
and equipped with the rectilinear distance the analogical algorithm requires 
O(N + k(log N + log k + I,!+))) time and O(N + k+(n)) time in the case of the vertex-restricted 
multifacility location problem. 

1. Introduction 

In this paper we discuss the multifacility location problem on median spaces. This is 
a well-known problem in location theory and its solving in different classes of metric 

spaces is a topic that has received considerable attention. Recall that the classical 

multifacility location problem is as follows. 

Let (S, Y) be a metric space and let Y be a set of fixed (old) facilities which are located 

at points y,, . . . , yk E S. The problem is to determine the location of n variable points 

x1, . . . , x. such that the following sum is minimized 

(PI F(XI,..., xn) = i i wijy(xi, Yj) + (1/2) k i uijr(Xi, xj), 

j=l i=l j=l i=l 

where Wij and Uij are nonnegative weights and Uij = Vji for all i and j. 
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The multifacility location problem involving Euclidean distances can be solved 
using an extension of the well-known Weiszfeld algorithm; consult [29,41]. However, 
unlike the Weiszfeld algorithm for single facility location problem the iterations 
obtained by this procedure converge only under some additional hypothesis; see 
[41,43]. Several authors [29,38] use the generalized Weiszfeld algorithm for solving 
the multifacility location problem with &-distances; see also [37] where optimality 
conditions has been given for problem (P) involving any norm. 

The rectilinear multifacility location problem is decomposable into one-dimen- 
sional problems, which can be viewed as instances of a multifacility problem on a line. 
Variations of this one-dimensional problem have been investigated by a number of 
researchers; see [13,18,21,20,29,32,36,42,49,54,55]. The majority of these ap- 
proaches give algorithms of the same complexity O(dkn3) for space Rd with L,-metric. 

Now consider the multifacility location problem on discrete (finite) metric spaces 
and networks. The problem on general graphs and networks was shown to be 
NP-hard [36,48]. As well as for other optimization problems involving network 
distances this problem is solved only in the case where spaces are trees or tree-like. For 
trees all approaches used for solving the multifacility problem on a line may be 
applied; consult [ZO, 21,36,48]. For a review of location problems on networks 
consult [48]. This survey deals with the following problem: “What special network 
structure, more general than a tree structure, can be exploited to facilitate the analysis 
of network location problems?“. 

In this paper we study the multifacility location problem on median metric spaces. 
As with the one-dimensional problem [lS, 42,491 our approach determines an opti- 
mal solution by solving a sequence of minimum cut problems, each on a network 
containing at most n + 2 vertices. We reduce the problem on a general median space 
to a similar problem on a median graph. Using the general approach we obtain an 
O(l V I3 + 1 V In3)-time algorithm for solving the multifacility problem on a median 
graph with 1 V I vertices. The same complexity algorithm is derived for this problem on 
a median network with I V I vertices and on a median space with I V ) points. Applying 
some results of computational geometry we present an O(N + k(log N + log k + n3))- 
time algorithm for this problem on a simple rectilinear polygon P with N edges and 
endowed with rectilinear distance. We use also the fact that P is a median space. We 
conclude the paper with a discussion of computational problems which appear for 
solving multifacility and other metric problems on cubical polyhedrons and other 
multidimensional median spaces. The obtained results generalize the author’s results 
from [16]. Note also that the single facility location problem on median networks and 
discrete median spaces has been considered in papers [4,5, 15,473; consult also 
[9, lo] for application of this problem in group choice and cluster analysis. An 
algorithm for solving the single facility location problem on a simple rectilinear 
polygon is presented in [17]. 

The rest of the paper is organized as follows. In Section 2 we give a problem 
formulation. Section 3 introduces some terminology and preliminary results on 
median spaces and median graphs. Section 4 presents the optimality conditions for 
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multifacility location on median graphs. In this section we also reduce the problem on 
general median spaces to a similar problem on median graphs. Section 5 proves the 
results that will be needed later in the proof of the correctness of our algorithm. 
Section 6 presents an algorithm for solving the multifacility location problem on 
median graphs and finite median spaces. Section 6.2 deals with the case of simple 
rectilinear polygons. Section 7 concludes. 

2. Problem formulation 

Now we present a slightly modified version of a multifacility location problem; see 
also [37]. 

Let Y = {yl, . . . . yk} be a set of fixed facilities of a space (S, r) and let X = {x1, . . . , x,) 

denote the location of new facilities. Put J = { 1, . . . , k} and I = { 1, . . . , n}. Assume 
also a graph r is given with vertex set I u.l and edge set E, = E’u E”, where E’ 
denotes the set of edges connecting new facilities with fixed facilities and E” denotes 
the set of edges connecting two new facilities. The problem can be written as follows 
[37]: 

(9) F(X) = 1 Wijr(Xi, Yj) + (l/2) 1 vijr(Xi, xj), 

(i,j)eE (i,j)EEll 

where wij and tiij are strictly positive weights associated with the corresponding edges 
and Dij = Vji. 

Note that (9) is a refined version of the problem (P). This allow us to use the more 
efficient algorithms for minimum cut (maximum flow) problems. So, in all sections, 
except the section with algorithms, we consider the standard version of a multifacility 
location problem, i.e. problem (P). 

3. Median spaces 

Let (S, r) be a metric space. The interval xy between two points x, y E S is defined by 

xy = {.zES: r(x,z) + r(z,y) = r(x,y)}. 

A metric space (S, r) is called median if for any triple x,y, z of points intersection 
xy n yz n zx is a singleton, that is, there is a unique “median” point m(x, y, z) between 
each pair of x,y,z [3,8,33,40,45,51]. The median spaces represent a common 
generalization of different mathematical structures such as median semilattices (in- 
cluding distributive lattices) [3,8,45], median algebras [8,33,45], median graphs 
(including trees and hypercubes) [8,40], L,(p)-spaces [Sl, 521, acyclic cubical com- 
plexes [7], median complexes and median cubical polyhedrons [Sl, 521 and some 
classes of convexity structures [SO, 511. Between all these types of mathematical 
objects, close relationships has been established. For classical results on median 
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spaces the reader is referred to [8,33,40,51]. We present only those properties of 
median spaces and median graphs which are needed in the sequel. 

Recall that a set M of a space (S, r) is convex if for any points x, y E M and z E S the 
equality r(x, z) + r(z, y) = r(x, y) implies that z E M. A subset H of S is a half-space 
provided both H and S\H are convex. Following [Sl], the convexity on a space (S,r) 
is a &-convexity if any two distinct points may be separated by complementary 
half-spaces, i.e. if x and y are distinct points then there is a half-space H of S with x E H 

and ~ES\H. 
A set M of a median space (S, r) is median stable [Sl] provided m(x, y, z) E M for any 

triple x, y, z E M. The intersection of median stable sets is a median stable set too. So, 
for any N c S we can define the smallest median stable set containing N. It is known 
that for any finite set N c S this set is finite too; see [Sl, p. 130, Lemma 6.20(2)]. 

Recall that a subset M of a space (S, r) is a guted set [27,30] if for every point 
x outside M there exists a (necessarily unique) point xM E M such that xM E xy for all 
YE M. The point xy is called the gate for x in M. Any gated set of a metric space is 
convex [30]. The converse holds for median spaces. 

Lemma 1. Let (S, r) be a median space. Then 
(1) any closed convex set M c S is gated; 
(2) the convexity in S is an Sz-convexity; 
(3) (Helly property) anyfinite collection of pub-wise intersecting convex sets has a com- 
mon point. 

For a proof of these properties of median spaces see for example [Sl]. 
Now we present some properties of median graphs. The graph G = (I/, E) is median 

if its shortest-path metric d defines a median space (V,d). In other words, the graph 
G is median if for any triple x,y, z there exists a unique vertex m(x, y,z) which is 
simultaneously on shortest path from x to y, y to z and z to x [40]. The interval 
between vertices x and y of a graph G we will denote by 1(x, y). 

Let (S, r) be a finite median space. An interval xy is called an edge if xy = {x, y} and 
points x and y are distinct; the edges then form the graph of the space (S,r). 

Lemma 2 (Avann [3] and Bandelt and Hedlikova [S]). The underlying graph G of 
a finite median space (S, r) is a median graph and z E xy if and only if z E I(x, y). 

For vertices x,y of a graph G we put 

W(x,y) = {ZE v: xd(y,z)), W(y,x) = (ZE Jf: Yd(X,Z)). 

An isometric embedding of a graph G = (V, E) in a graph G’ = (Y’, E’) is a map from 
V to V’ which preserves distances. The hypercube Qd of dimension d (the d-cube, for 
short) has (0, 1)-vertices of length d as vertices, two vertices being joined if they differ in 
exactly one coordinate. 
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Lemma 3. Let G = (V, E) be a median graph. Then 
(1) G is bipartite [40]; 
(2) for any two adjacent vertices x and y the sets W (x, y) and W (y, x) are gated 
complementary half-spaces [8,40]; 
(3) G is isometrically embeddable in a hypercube [40]. 

Now we present one of the existing isometric embeddings of a median graph G in 
a hypercube, the one more suitable for us. For other such embeddings see [2,40,47]. 
Note also that in [2] an 0( 1 I/ ( 1 E ()-time algorithm for this problem was developed. 

Following [26], we define a binary relation 8 on the set E of edges of a median 
graph G. Let el = (x1, yi) and e2 = (x2, yz) be edges of G. We say that e, Be2 if and 
only if x2 E W (x1, yJ and y2 E W (yI, x1). It is clear that 8 is reflexive. By convexity of 
the sets W (xI,yl) and W (x2,y2) we conclude that W (xI,y,) = W (x2, y2) and 
W (yI, x1) = W (y2, x2), i.e. 0 is also symmetric and transitive. Hence, 8 is an equiva- 
lence relation [26]. Let El, . . . , E, be the set of equivalence classes, i.e. edge set of 
a graph G partitions into m sets of equivalent edges. Each equivalence class Ei defines 
a pair of complementary half-spaces W: and W f, where W f = W (x, y) and W f = 
W (y, x) for each edge (x, y) E Ei. 

Let G be a graph of a finite median space (S, r). Denote by r(e) the length of the edge 
e = (x, y) of a space S. By Lemma 2 we conclude that r(e) = r(e’) for all pairs e,e’ of 
equivalent edges. Let ri be the length of any edge from the equivalence class Ei. For all 
pairs x, y of vertices of a graph G define the numbers t’(x, y) = 0 if x, ye W! or 
x, y E W: and t’(x, y) = 1 otherwise. 

Lemma 4 (Soltan and Chepoi [47]). Let (S, r) be afinite median space and G be u graph 
of S. Then for all vertices x, y E S we have 

4x, y) = i: t’(x, y), r(x, y) = f rit’(X, y). 

i=l i=l 

For any vertex x of a median graph G define p(x) = (rl, . . . , rm), where ri = 0, if 
XE W! and ri = 1 if xE WF. 

Lemma 5 (Soltan and Chepoi [47]). The map /I is an isometric embedding of a median 
graph in the m-cube Q,,,. 

4. Problem reduction and optimality conditions 

For a set Y of fixed facilities we denote by V some finite median stable set of (S, r) 
containing Y. Then (V, r) is a finite median space. Let G = (V, E) be the underlying 
median graph of this space. Denote by (PJ and (P,) the multifacility location problems 
with the set of fixed facilities Y in space (V, r) and graph G, respectively. Explicitly we 
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formulate the second problem only: 

(4) F(X) = C wijr(Xi,Yj) + (l/2) C uijr(xi, Xj)* 
(i,j)EEt WEE2 

In a similar way we can define the problems (PS) and (9*). 
Our immediate goal is to show that optimal solutions of problems (pS) and (P,) 

coincide and that any optimal location for (P,) is optimal for initial problem (P) too. 
Also we formulate the optimality conditions for (4). 

4.1. Equivalence classes and q-local networks 

LetX= {xi,..., x,} be any solution, not necessarily optimum, to problem (P,). For 
q=l 7 ... , m if we put 

X,l = {i: XiE W:}, X,Z = {i: XiE W:}, 

then we can write the general expression for the “contribution” of the equivalence 
class E, as 

CJXb,X,2) = 1 1 wij + 1 C wij + 1 1 %j 
ieX: yjeW: ieX: y,e W: isX: jeX: 

= is, wi(w,2) + i,cX2 WiCw:) + C 1’ uij* 

(For a subset M c I/ by W,(M) = c ’ 

isX: jcX: 

Y,EM~ij we denote the i-weight of M.) 

Lemma 6. (1) For the problem (Ps) we have 

P(X) = f C,(X& X,z)r,. 
q=l 

(2) In particular, for problem (P,) we obtain 

F(X) = f C,(Xi, Xq2). 
q=l 

Proof. By Lemma 4 for any vertices U, U’ E V it is true that 

I(u,u’) = $J tq(u,u’)rq. 
q=1 

Therefore 

P(X) = i 5 wij [ f tq(Xi,Yj)rq] + (l/2) f: i uij [ f ~q(X19XjJrq] 
i=l j=i q=l i=l j=l q=l 

= f[i: i Wijt’(Xi, yj) + (l/2) i i uijtq(Xi,Xj) 
q=1 i=l j=l i=l j=1 1 

rq = qzl ~qWrq. 
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Since tq(~, u’) = 0 if vertices u and U’ belong to one and the same half-spaces W i or 
Wi and tq(u, u’) = 1 otherwise, we can rewrite Fq(X) as follows: 

Fq(X) = 1 wi(w,‘) + 1 wi(wi) + 2 C uij 
x,ew: xiew: xicw; x,ew: 

= i,C,, wi(w,“) + i,cX2 wi(w:) + 1 C uij = cq(x:,x,2). 
Y q ieX’ ieX” 4 P 

This concludes the proof. [7 

For each equivalence class E,, q = 1, . . . , m, consider a network Nq having vertices 
s, 1, . ..) n, t, where each vertex i corresponds to new facility i for i = 1, . . . , n. Define 
undirected arcs (s, i) with capacities c(s, i) = Wi( W ,‘) for i = 1, . . . , n, undirected arcs 
(t, i) with capacities c(t, i) = wi(W,“) for i = 1, . . . , n, and undirected arcs (i,j) with 
capacities c(i, j) = Uij for all distinct i and j. Following [42] we will call this network 
Nq the q-local network. For problem (Yg) the q-local network is defined in a similar 
way, except the fact that arcs (i, j) are defined only if (i, j) is an edge of a graph r. 

If we partition the vertices (1, . . . , n} of the q-local network Nq into two sets Zt and 
Zi, then the sets Zi u (s} and Zf u { t} define a cut in Nq. The arcs in this cut are those 
with one end in Zi u(s) and the other end in Ziu(t). We will denote the cut by 
(Z,‘, Zf). The capacity of the cut (Z,‘, Z,‘) is defined to be the sum of the capacities of 
all arcs in the cut and is denoted by C,(Zi,Zi). We will refer to the cut having 
minimum capacity as the minimum cut. 

Remark 1. The capacity of any cut (Z,‘, Zf) in the q-local network is given by formula 
for C,(Xi,Xi) with Xi = Zi and Xi = Zg. 

Remark 2. Defining sets X: and Xi that minimize C,(X,‘, Xi) is equivalent to finding 
a minimum cut in the q-local network Nq. 

Remark 3. If all fixed facilities are contained in one of the complementary half-spaces 
Wi and Wi then in the network Nq vertices s and t are disconnected and the 
minimum cut in Nq is the cut with capacity zero. 

We conclude with the following definition. Let X = {xi, . . . , x,} be any solution, 
not necessarily optimum to problem (P). Solution X is q-optimal if the cut (X,‘, X f) 
defined by X is a minimum cut of a q-local network. 

4.2. Optima& conditions 

We begin with an auxiliary result. Let E, be an equivalence class of a median graph 
G.LetalsoZ={zr,..., z,> be some subset of a half-space Wt. Denote by ai the gate 
for vertex Zi in the other half-space Wi. Put d(Z) = max{d(zi,vi): i = 1, . . . , p}. 
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Lemma 7. There exist vertices Ui E Z(Zi, Ui) adjacent to Zi such that d(ui, ~j) < d(zi, zj) fir 

all i,je{l,..., p}. 

Proof. Assume the contrary and choose the smallest subset Z at the minimal distance 
d(Z) from W ,” for which our assumptions fail. Pick the vertex zt and let u, be the vertex 
adjacent to zt in the interval I@,, u,). Suppose that the edge (z,,uJ belongs to the 
equivalence class E, and let zy E W: and u, E W ,” . Since ut E Z(z,, U,) and for any vertex 
w E W: we have Z(z,, u,) c Z(z,, w) then we obtain that W,’ c Wf. 

First we consider the case when all vertices zl, . . . , zp belong to the half-space W d. 

Denote by u$ the gate for zi in Wf. In particular vi = a,. If d(Z) = 1 then q = s and 
Ui=uifori=l,..., p. In this case vertices zi and Ui are adjacent. From the fact that 
W: and W 3 are gated sets we conclude that d(Uip Uj) = d(zi, zj) for all i,j E { 1, . . . , p>. SO 
assume that d(Z) > 1. Then 

IllaX(d(Zi, Uf): i = 1, . . . , p} < d(Z). 

From the choice of set 2 and equivalence class E, we conclude that there exist vertices 
UiE Z(zi, uf) with the desired property. Since Z(zi, u:) c Z(zi, Ui) we get a contradiction 
with our choice. 

Nowassumethatz, ,..., z,EWfandz,+, ,... , zp E Wf. As in the first case denote by 
u: the gate of vertex zi in the half-space W, . * By our assumption we deduce that there 
exist vertices niEZ(zi, u:) adjacent to zi, such that d(ui, uj) < d(zi,zj) for all i, 
jE{l,..., t>. By the same argument there exist vertices uy+i E Z(z,+i, u,+J adjacent to 
z,+i such that d(u,+i,u,+j) < d(z,+i,z,+j) for all i,je{l, . . . ,p - t}. Now we will show 
thatforanyie{l,..., t}andforanyjE{l,..., p - t} we have d(ui, U,+j) < d(zi, zt+j). 
Since uiEZ(zi,Ui) and UiEZ(zi,z,+j) then d(zi,z,+j) = d(ui,z,+j) + 1. On the other 
hand, since Z, +j and U, +j are adjacent then d(ui, U,+j) < d(ui, z,+j) + 1. From these two 
expressions we immediately conclude that d(ui,u,+j) < d(zi,z,+j). SO our initial as- 
sumption lead us to the contradiction. q 

Let X=(x1,..., x,} be any solution, not necessarily optimum, to problem (P,). 
Pick any equivalence class E, of a graph G. For any i E Xt denote by Ui the gate for Xi 
in the half-space Wi. In a similar way for any ieXi let Ui be the gate for vertex xi in 
W:. Now consider any cut (R:, Rz) of the q-local network N4. Define a new solution 
Z={zl,..., z,} using the following rules: 
(Al) for any VEX: nRi let zi be the vertex adjacent to Xi in the interval Z(xi, Ui) such 

that d(zi, Zj) ,< d(xi, xj) for all i, j EX: n R,f; 
(Bl) for any i E Xt n R: let zi be the vertex adjacent to xi in the interval Z(xi, Ui) such 

that d(zi, zj) < d(xi, Xi) for all i, j EXi n R:; 

(Cl) zi = xi for any i~(X:nR:)u(XinRg). 

Existence of such a solution Z follows from Lemma 7. 

Lemma 8. F(Z) - F(X) G C,(Rt , Ri) - C,(X:, Xi), 
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Proof. For any fixed facility Yj denote ai = d(zi, Yj) - d(xi, yj). Put also 6ij = 
d(Zi,Zj)-d(Xi,Xj),i,jE(l,..., n}. Substituting this in the parts of the required inequal- 
ity yields 

F(Z) - F(X) = Fr + F,, C,(R:,R,Z) - C,(X;,X,‘) = LI + Lz, 

where 

Fr = i i WijSi(Yj), F2 = (l/2) f: $J uij6ij, 
i=r j=l i=lj=l 

L1 = C Cwitw%) - wi(w,‘)l + C Ewitwi) - wi(w,2)1, 
ieR: nX: ieR:nX: 

L, = 1 C Dij - C C Uij. 
ieR: jcRt ieX: jcX: 

Observe that 6i(yj) = 0 if iE(RinX,‘)u(RinXi). NOW suppose that i~(RinXi)u 
(R,fnX:). In this case 6i(yj)=l if yjEW(Xi,Zi) and 6i(Yj)=-l if YjEW(Zi,Xi). 

Therefore we obtain the following: 

IcRFX: 

+ i,REX [Wi(W(xi,zi)) - Wi(w(zi~xi))l 
‘I : 

and 

From the definition of 2 we get that 

Wi E W(zi,Xi) and W(Xi,Zi) c W,Z if ieR: nX,“, 

and 

W(XiyZi) E W,l and Wf G W(Zi,Xi) if ieR:nX:. 

So, as all four sums in the last expression for Fl - L1 are nonpositive, we now come to 
the desired inequality Fl - L1 < 0. 

For a proof of a second inequality F2 - L2 < 0 first we consider the coefficients 6ij, 
i, jE{l,... ,n}. Observe that 6ij = 0 if i, jE(R,‘nX:)u(R,2nXi). Note also that 
6, < 0 if i, jeR:nXi or i, jcR:nX:. This is a consequence of Lemma 7. Now 

assume that i E R,’ nXi and j E R,” n Xi. From the same Lemma 7 and since W i and 
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Wi are gated sets we conclude that 6, = 0 if edges (xi, zi) and (Xi, Zj) belong to Eq and 
6, = -2 otherwise. Observe also that 6, = - 1 in any case when vertices Xi and xj lie 
in different half-spaces Wi , Wi and only one of these vertices is changed in Z. 
Therefore the coefficients 6, may be positive only when Xi and xj lie in the same half- 
space W: and Wf and only one of these vertices is changed in the new solution Z. 

Now notice that F2 may be represented as a sum of distinct terms, each of the type 

C 1 l)ijdij2 
icR;nX: jeR;nX: 

where a, b, c, do { 1,2}. By invoking the properties of 6, we obtain that all terms, for 
which a + b = c + d z 0 (mod 2), are equal to zero. From the same arguments we 
conclude that all terms, for which a = c and b = d or a = d = 1 and b = c = 2, are 
nonpositive. Therefore, 

- j,R;xl h : XjE W(Zi,Xi)) . 
‘I ‘I 1 

Now consider Lz. Observe that each of the expressions ~iGR:~jeR:~ij and 
Cisx; xjex: Uij may be represented as a sum of four terms, each of the type 

C C %p C C uij (a,bE{1,2}). 

So we arrive at 

L2= c 

icR:nX: [j,s,, vij-j#..X vij]+i&~ [j.AX vij-j&X; Vi+ : ,? : : : : 

Comparing the expressions obtained for F2 and L2 we have established that each of 
the terms for F2 is less than or equal to the respective term of L2, i.e. F2 < L2. Hence 
Fl + F2 < L1 + L2 and 

f’(Z) - F(X) ,< C,(R:, R,2) - C,(X:, X,‘), 

as desired. 0 
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Using this result we formulate the optimality conditions for the problem (I’..). Also 
we present a reduction of problems (P) and (Ps) to (P,). 

Let Y = {yI, . . . , yk} be the set of fixed facilities of a given median space (S, r). Recall 
that by I/ we denote some finite median stable set of S containing Y, and by 
G = (V, E) we denote the median graph associated with space (I/, r). 

Theorem 1. (1) X = {x1, . . . . x,} is an optimal solution to (P,) if and only iffor each 
q = l,..., m the q-local network N4 has (Xi, X,‘) as a minimum cut, i.e. X is q-optimal; 

(2) X is optimum to (PS) fund only $X is optimum to (P,); 
(3) if X is optimum to (P,) then X is optimum to (P). 

Proof. (1) Assume that for some q the cut generated by X is not minimal in N4. 
Consider a minimum cut (R:,Ri) of the network N4. According to Lemma 8 there 
exists a solution 2 such that 

F(Z) - F(X) G C,(R:, R,2) - C,(x;,x,“) < 0. 

Hence X is not optimum to (P,). 
Now suppose that X is q-optimal for all q = 1, . . . , m. By Lemma 6 

F(X) = 5 C,(X,‘,X,2). 
q=1 

Therefore Xi and Xi minimize the 9th term in the sum for F(X). Since each term is 
minimized, then the sum of terms is also minimum. 

(2) The fact that any optimum to (P,) is an optimum to (I$) is an immediate 
consequence of the first part of this theorem and Lemma 6(l). On the other hand, if 
X is an optimal solution for (P,) and Z is a solution, not necessarily optimum, for (pS) 
then C,(Xi ,X:) < C,(Z: ,Zf) for q = 1, . . . , m. Since 

F(Z) = f c,(z:,z,2)r, 
i=l 

then Z is an optimum for (PS) only if C,(Zt ,Z:) = C,(X,‘,Xi), q = 1, . . . , m. Hence 
any optimum for (PJ is an optimum for (P,) too. 

(3) Let X* be an optimal solution to the multifacility location problem on space 
(S,r). Denote by V* some finite median stable set of S, that contains sets X* and I/. 
Clearly X* is an optimum for our problem and on median space (V*,r). Let 
ET,..., Ez, be the equivalence classes of edges of the space (V*, I). Since I/ is a median 
stable subset of (V*, r) then (V, I) is an isometric subspace of (V*, I). So, any equiva- 
lence class E, of (V, r) is contained in some equivalence class of the space (V*, I). Let us 
suppose, for example, that El c ET,. . . , E, G E& Note also that the complementary 
half-spaces W t and W f defined by E, are contained in the corresponding half-spaces 
defined by E:. Finally remark that for any equivalence class Et+ 1, . . . , Ez. the whole 
set Y of fixed facilities is contained in one of the half-spaces defined by this class. 
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Consider any optimal solution X for problem (P,) on space (V, r). By the previous 
result we conclude that (Xi, Xf) is a minimum cut in the q-local network N4 for 
f.I = l,..., m. Since N4 is also a q-local network for equivalence class Ez, q = 1, . . . , m, 
andC,(X,‘,Xj)=Oforq=m+l,..., m*, then we obtain that X is an optimum for 
our problem on the space (V*, r). Hence P(X) = P(X*) and so X is an optimum to 
problem (P). 0 

The argument proving part (1) of Theorem 1 may be interpreted in the following 
way. Let G” be the direct product of n copies of a graph G. Vertices of @ are the 
n-tuples (xl, . . . , x”), where x1, . . . , x, are the vertices of G. Two vertices (x1, . . . , x,) and 

(xi, . . . . x:) are adjacent provides 

max{d(x,,x:): i = 1, . . . , n} = 1. 

Then from Theorem l(1) we conclude that in the graph G”” any local minimum of the 
function F(xr , . . . , x,) is a global minimum; compare with the analogical results for 
tree networks [20,32]. 

5. On a way to an algorithm 

Our previous results reduce the initial problem (P) to a similar problem (P,) on 
a median graph G = (I’, E). While Theorem 1 gives necessary and sufficient conditions 
for a solution to be optimum, it does not suggest an algorithm for solving (P,). The 
results of this section provide the basis for such an algorithm. 

Let El,..., E, be the equivalence classes of edges of a median graph G = (V, E). 

Following [16,51], two classes Ei and Ej are compatible if one of the complementary 
half-spaces W !, W f is contained in one of the complementary half-spaces W j, W f; 
they are called incompatible otherwise. 

For equivalence classes El, . . . , E, consider a family of minimum cuts 

(#&), . ..> (Ri, Ri) of their local networks. This system of cuts is called a compatible 
system (a c-system for short) if for each pair of compatible classes Ei and Ej from the 
inclusion WT c W p it follows that Rq E Rg, where a, b E { 1,2}. (In addition, we have 
also that Wsea I WTeb and R?-” 3 Rjeb.) 

Theorem 2. Let W = {(Rj, R:), . . . , (R:_ 1, R& ,)} be a c-system of minimum cuts and 
let E, be a new equivalence class of G. Then there exists a minimum cut (R:, Ri) of 
a q-local network such that Wu(R,‘, Ri) is a c-system too. 

Proof. We first show that if two classes Ej and Ej are compatible with E, and 
Wq c W:, Wp c W,’ then RqnRj =@ (a,bE(1,2}). To prove this assume for 
example that a = b = 1. Then W t c W f and W ,” c W ! and therefore classes Ei and 
Ej are compatible. Since 9 is a c-system then we have R! c RjZ and Rf E RF, i.e. 
R!nRj = 8. 
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Now assume that the class E, is compatible with classes El, . . . , E,. Let us suppose 
that 

w; c w;, wi’ 3 wq2, i= l,...,t 

and 

w+w;, Wjzc W,Z, j=t+l,..., r. 

Put Rh = uiEl Rf and Ri = US_+, Rf. From the previous remark it follows that 
RtnR; =8 for all iE{l,..., t> and je{t + l,..., r). So RAnRf, =@. 

In the q-local network N4 consider all cuts (2:) Z,“) with the property Rh E Zl and 
Ri c Zi. Among these cuts choose the cut (X,‘,X,“) with minimal capacity. For 
a proof of the theorem, we must show that (X,’ , Xf ) is a minimum cut in the q-local 
network N4. Assume the contrary and let (Ri, Ri) be a minimum cut in NQ. 

For each vertex p~{l,..., n> of a q-local network put 

q-1 
I’, = n {W:: PER;}. 

i=l 

Next we shall show that each of these sets V,, . . . , V, is nonempty. By Helly’s Theorem 

for median spaces, the set V, is nonempty if the intersection of each two half-spaces 
Wq and W j” with p E Rf n RQ is nonempty. Suppose that the intersection of two such 
half-spaces is empty. Let, for example, p E Rf n Rf, whereas W t n W f = 8. Then 
W ,f c W j’ and W f =, W f. Hence, classes Ei and Ej are compatible. As 99 is a c- 
system, then we conclude that R! E R,! and RF =, Rf and so Rf n Rf = 8. This 
contradicts the assumption that p E Rf n Rj2. So, all the sets V,, . . . , V, are nonempty. 

Foranyp= l,..., n, in the assumption that p E Xi, choose in the set V, a vertex xp 
at minimal distance from the half-space Wz-‘. Put X = {x1, . . . , x,}. Observe that 

{p: XPE w;> =x,l, {p: XPE wq2) = x,z. 

Moreover, for each equivalence class Ei, i = 1, . . . , q - 1, the set X defines the cut 
(R!, Rf) in the i-local network. For minimum cut (Ri,Ri) and solution X defines 
a new solution Z = {zl, . . . , z,,} by rules (Al), (Bl) and (Cl). Take 

I+ = (X,‘nR$)u(X,fnRi), 

x+ = {x,: pEz+}, z+ = (z,: pEI+}. 

It is easy to see that for any p E I+ the new vertex zg does not belong to V,. Therefore 
for each PE I+ there exist an i E { 1, . . . , q - l} such that vertices x, and z, are 
separated by half-spaces W f and W f. Hence (z,, xp) E Ei. We claim that classes Ei and 
E, are compatible. To show this it suffices to observe that 

w! = W(x,,z,) c w;, w,” c W(z,,yp) = w: 
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ifpEX:nRi and 

w; = W&z,) c w,z, w: C W(z,, yJ = wi” 

if peX:nR:. 
So, for each p E I+ the edge (x,, z,) belongs to an equivalence class compatible with 

E,. For each i~{l, . . . , r} let us denote by XT the set of all vertices xp E X+ such that 

(xp, z,) E Ei. Also let 

z: = {pczz+: XpEX[}, 2: = {z,: XPEXT). 

From the above we conclude that each of the families {ZT }, {XT > and {Z+ } defines 
a partition for I+, X+ and Z+, respectively. 

As we already mentioned, for each nonempty set Xl the class Ei is compatible with 
E,. Since Ei # E, then all the vertices of 2: are obtained by moving along equivalent 
edges the corresponding vertices of XT. Hence the sets XT and 2: are contained in 

the same half-space W: or W,. ’ Therefore each set ZT is contained in one of the sets 
Xi n Rg or Xf n R:. Assume for example, that nonempty sets Zl , . . . , Zc are con- 
tained in Xi n R,” and the remaining sets Zc+,, . . . , Zt are contained in Xin R:. 
Hence 

On the other hand, from the definition of the solution X we obtain that Z$ E R,$ 
j= l,..., pandZ$ CRt,j=p+l,...,f:So 

For each class El compatible with Eq define 

Zf = {j: ZjE Wf}, Zl = (j: ZjE Wf}, 

i.e. (Z!, Zf) is the cut defined by Z in the network Ni. From the above we obtain the 
following: 
(1) Z! = R!,Z,’ = RF if i#{iI,...,i,}; 
(2) Z,! = Rf\ZT, ZF = R?uZ’ if ie{iI,...,ip}; 
(3) Zi = R,‘uZt, Z? = Rf\Z$ if iE{ip+I ,..., if}. 
Let us now define the following sequence of solutions T,, T,, . . . , T,: 

put To=Zandlet Ti=(Ti_1\Z:)UX+fori=l,...,r. 

Since {Z[} and (XT} represent partitions of the sets Z+ and X+ and 
x\x+ = Z\Z’ = X n Z we obtain that T, = X. Pick any 1 < i < r. Then each of the 
solutions To, T,, . . . , Ti-l defines in the i-local network one and the same cut 
(Z,‘,Zf), while each of the solutions Ti, Ti+l, . . . , T, defines in this network the cut 
(R!, Rf). This follows from the fact that for any j E { 1, . . . , r}, j # i, the sets ZT and 
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Xf are contained in the same half-space W ,! or W:. Hence the solutions 

Ti,Ti+l,..., T, are i-optimal. From the relation between the cuts (Z!,Z:) and 
(R!, RF) it follows that each solution Ti is defined from Ti_ 1 by using the rules (Al), 
(Bl) and (Cl). As (R:,R?), i = 1, . . . , Y are minimum cuts and by Lemma 8 we have 
established that 

F(T,) - F(Z) < C,(R:,R:) - C,(Z:,Z:) d 0, 

F(Ti) - F(Ti_1) < Ci(R!,RF) - Ci(Zf,Zi’) < 0, 

F(X) - F(T,- 1) d C,.(Rf,R,2) - C,(Z,', Z;, d 0. 

These inequalities involve F(X) - F(Z) 6 0. Recall however that 2 is obtained from 
X by using the rules (Al), (Bl) and (Cl). By Lemma 8 we have 

F(Z) - F(X) < C,(R,‘,R;) - C,(X;, X,‘) < 0. 

Hence the assumption that (X,‘, Xi) is not a minimum cut of the network IV4 leads us 
to a contradiction. 

So, assume that (Xi ,Xf) is a minimum cut. Since RA c Xi and Ri c Xi, then for 
any class Ei compatible with E, we have R! G Xi for i = 1, . . . , t and R: c Xf for 
i=t+ l,..., r. Hence the extended system of cuts 9 u(Xi, X,‘) is also a 
c-system. 0 

Let X = {x1,..., x,} be an i-optimal solution for i = 1, . . . , q - 1. Observe that 

(X:,X;), ... , (Xi- 1, Xi- r) define a c-system of minimal cuts. Let (X,‘, Xi) be the cut 
of the q-local network defined by X. According to Theorem 2 there exists a minimum 
cut (R,‘, Ri) of the network iV4 which together with (X:,X:), . . . , (X&,,Xi_r) form 
a compatible system of cuts too. Now define a new solution Z = {zr , . . , zn) using the 
following rules: 
(A2) zi is the gate for vertex xi in the half-space W ,’ for VEX,’ nRt; 
(B2) zi is the gate for vertex xi in the half-space Wi for i E X f n Ri; 
(C2) Zi = Xi for ~E(X~~R,‘)U(X~~R~). 

Theorem 3. Let Z be the solution obtained from an i-optimal solution X, 
i=l , . . . , q - 1, using rules (A2), (B2) and (C2). Then 
(1) F(Z) d F(X) and F(Z) < F(X) ifX is not q-optimal; 
(2) solution Z is i-optimalfor i = 1, . . . , q - 1, q. In fact, the cuts defined by Z coincide 

with (X:,X:), . . . > CX,‘- I, Xi- I), (R,‘, R,2). 

Proof. (1) We proceed by induction on d(X) = max{d(xi,zi): i = 1, . . . , n}. If 
d(X) = 1 then the solution Z is obtained from X by rules (Al), (Bl) and (Cl). By 



16 lJ. Chepoi / Discrete Applied Mathematics 64 (1996) 1-29 

Lemma 8 we conclude that 

F(Z) - F(X) < C,(R;, R,2) - C,(X,‘,X,2). 

So, assume that d(X) > 2. Let X’ = {xi,. . . , xk} be the solution obtained from X by 
using the rules (Al), (El) and (Cl). Then we have 

F(X’) - F(X) < C,(Rl, R,Z) - C,(X,‘,X,2) < 0. 

We claim that the solution X’ is p-optimal for all PE { 1, . . . , q - l}. To show this 
it is sufficient to consider the case when some edge (xi, xi) belongs to an equivalence 
class E,, where p~{l, . . . . 4 - l}. Observe that each vertex zj is the gate for both 
vertices xj and x3 in the half-space W: if j E Xi n R: or in the half-space Wd if 
j E Xi n Ri. Note also that each edge (Xj, xi) belongs to an equivalence class compat- 
ible with E,. In particular classes E, and E, are compatible. From the compatibility 
of the cuts (Xi, X:) and (R,‘, R$ we deduce that the solution X’ is p-optimal. There- 
fore, by moving the vertices from xi to xi we do not affect the p-optimality for 
p=l,...,q-1. 

Further, since d(xi,zi) = d(xi,zi) - 1 for any i~(X:nRi)u(XinR,‘) then 
d(X’) = d(X) - 1. By the induction hypothesis we conclude that I;(Z) < F(X’). If 
C,(R,‘, Ri) < C,(X,‘, X,‘) then F(X’) < F(X) and so F(Z) < F(X). 

(2) We first note that 2 defines in the q-local network the cut (R:, Ri). Since 

(X:,X:), ..., (Xi- 1, Xi_ r) are minimum cuts then for a proof of part (2) it suffices to 
show that the solution Z defines these cuts in the corresponding local networks. In 
other words, we must prove that for any i = 1, . . . , n both the vertices xi and zi belong 
to one and the same half-space of the pair W i, W i for p = 1, . . . , q - 1. 

First consider the case when classes E, and E, are compatible. Without loss of 
generality assume that Wj c Wt and Wi 3 Wi. Since the cuts (R,‘, Ri) and 
(X:,X,“) are compatible we conclude that Xj G R: and Xi 2 Ri. Moreover, 
Xi c Xi and Xs I> X,” as cuts generated by the solution X. By definition of the new 
solution Z we infer that zi = xi as only i E(X: n R,‘)u(Xi n Rz). SO assume that 
iE(X~nR42)u(Xq2nR,‘).IfiEX,‘nR,Zthenziisthegateforxiin Wz.AsXj E Riwe 

obtain that xi$Xi, whence xiE Wi. Since ziE W,Z c Wi then both the vertices xi and 
zi belong to W $. NOW suppose that iEXi n R ,‘, i.e. zi is a gate for xi in the half-space 
W:. Then xi E W,’ c Wi. If we assume that zi E W i then from inclusion Wb c W ,’ 

we infer that Zi is the gate for xi in the half-space Wj. But then Wi = W(Zi, Vi) = W,f, 
where by vi we denote the vertex adjacent to xi of the interval I(zi,Xi). Hence the 
classes E, and E, must coincide, which is impossible. 

Finally consider the case when classes E, and E, are incompatible, i.e. for all 
a, b E (1,2} we have W s n W f: # 8. Assume that for some index i E Xi n Ri the vertices 
xi and zi are separated by half-spaces Wi and Wi. Let, for example, xi E Wj and 
zi E W s. AS zi is the gate for xi in W,’ then for any vertex x E W j n Wt we have 
zjeZ(x, xi). This however contradicts the convexity of the set Wk. This completes the 
proof of the theorem. 0 
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Let X = {x1, . . . , x,} be an i-optimal solution for all i = 1, . . . , q - 1. By Theorem 
2 there exists a minimum cut (R,‘,Rz) in the q-local network, which together with 

(X:,X:), . . . . (Xi- i, Xi_ i) form a c-system of cuts. The cut (Rl, Rz) may be found in 
the following way. First, find all equivalence classes Ei,, . . . , Ei, compatible with E,. 
Let us assume that 

w; C w;, w+w,’ for iE {ir, . . . , i,}, 

wf 3 w;, wfcw,’ for iE{i,+r,..., il}. 

Put 

R;= ~ X6, R;= 6 Xt, R = (1, . . . . n>\(R&R;). 
j=l j=t+ 1 

Now consider the network having vertex set R u {s, t}. For each i E R define undirected 
arcs (s, i) and (t, i) with capacities 

c(s,i) = Wi(W,‘) + 1 Oij9 
jeR6 

C(t, i) = Wi( W,“) + 1 Uij. 
jeRi 

For all i, j E R, i # j, define undirected arcs (i, j) with capacities c(i, j) = Uij. 

Remark 4. If (R:, R:) is a minimum cut in this network, then (R: u Rh, R: LJ Ri) is 
a minimum cut in the q-local network, i.e. R,’ = R: u Rt and R,’ = R: u R;. 

6. Algorithms 

In this section we present the algorithms for solving the multifacility location 
problem on median graphs and networks, finite median spaces and simple rectilinear 
polygons. 

6.1. Median spaces and median networks 

The results of the previous section lead to the following algorithm for solving 
problems (P,) and (P,). We assume that a median graph G = (V, E) is given in standard 
adjacency list representation. Then applying a simplified version of Dijkstra’s shortest 
paths algorithm to each vertex v E T/, we compute the distance matrix D(G) of graph 
G in a total O() V ( IEI) time and 0( 1 I/ 12) space. Once D(G) is available, then using the 
algorithm from [2] in 0( 1 I/ 11 El) time we find the equivalence classes El, . . . , E, of the 
graph G. As we already mentioned, there exists an isometric embedding of the graph 
G into a hypercube Q,,,. That is, each vertex x can be augmented with a O-l-address 
,0(x) such that the Hamming distance d”(/?(x), /3(y)) equals d(x, y) for all x,y~ I’. By 
Lemma 5 the ith bit ri of p(x) is set to 0 if d(x, Vi) < d(x, Ui) and 1 otherwise; (Vi, Ui) is 
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some edge of class Ei, 1 < i < m. Let ZE(G) be the O-l matrix that stores at the i-line 
the address for the ith vertex of the graph G. 

input: a median graph G and the distance matrix D(G) 
isometric embedding matrix [E(G) 

initialize start with some solution X = {x1, , x,} 
l (1) 

l <a 

l (3) 

l (4) 

l (5) 

. (6) 

0 (7) 

l (8) 

0 (9) 

0 (10) 

0 (11) 

for 4 = 1 through m put 

R:= {l,...,n}, R;:=@, R;:=O. 

for i = 1 through q do 
begin 

using the matrix IE(G) determine if the classes Ei and E, are compatible. If Ei 

and E, are compatible go to the following step, otherwise go to the next 
equivalence class. 
find 

X! = {j: r’(xj) = 0}, 

Xl = {j: r’(xj) = 1). 

assign Rh:=RhuXf if Wpc W: or assign Rg:= RiuX; if Wp c W:, where 
ae(1,2). 
set R := R \{R d u R ,$. Construct the network N4 with the vertex set R u {s, t} and 
the following arc capacities: 

4&P) = wpw:) + &:, upir 

and c(p, p’) = Q,. for all p,p’ E R, p # p’. 

find a minimum cut (R: , R :) in the network iV4 . 
find 

Xi = {j: rq(xj) = 0}, Xi = {j: rp(xj) = 1). 

for each icX: nRt using the matrix D(G) find the gate vi for vertex xi in the 
half-space Wt. 

for each isX: nR: using the matrix D(G) find the gate vi for vertex xi in the 
half-space W: . 
set x, =:vi for each i~(XinR:)u(X:nRi). 

end 
output: the optimum facility location X = {x,, , x,}. 

Theorem 4. The standard multifacility location problems (P,) and (PS) can be solved in 

0( 1 V I3 + 1 I/ In”). The problems (.6F’J and (gS) with the graph r = (I u J, E’u E”) can be 

solued in 0(1V(3 + IVIlE’ + IVl(n + (E”l)nlogn) time. 

Proof. The correctness proof of the algorithm is based on Theorems 1 and 3. By 
Theorem 3 and Remark 4 the solution X = (x1, .__ , x,} defined on step (11) is 
i-optimal for each 1 < i d q. Hence, if q = m then from Theorem 1 we conclude that 
X is an optimal solution for problems (PJ and (&). 
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We now come to the analysis of the running time. First observe that m f 1 V 1 - 1. 
Execution of steps (2)-(5) (for fixed classes E, and Ei) require 0( 1 V I) time. These steps 
must be repeated m(m - 1)/2 times and so the total complexity of these steps are 
O(m2 1 V I) operations. The next step of the algorithm is to find the minimum cut in the 
network defined on step (6). For problems (P,) and (PJ this is done in 0(n3) time using 
the Dinic and Karzanov algorithm [25,34,44]. For problems (.c??~) and (Ps) the 
interconnections between facilities are given by the graph r = (I u J, E’u E”). In this 
case the network N4 contains at most (2n + ) E2 I) edges, whose capacities can be 
computed in O(lE’I + IE”() time. So we need O(m(lE’I + IE”()) overall time to 
compute the local networks N4, q = 1, . . . , m. Therefore in the case when all N4 are 
sparse networks then the Sleator and Tarjan algorithm find the minimum cut in time 
O((n + I E”I)n log n) [44]. Since the steps (6) and (7) must be repeated m times, then the 
total complexity of these steps is 0(mn3) or O(m(n + I E”l)nlogn) operations. Fur- 
ther, finding of the gate Vi for vertex Xi in one of the half-spaces Wt or Wi takes 
O(l VI) operations. Hence steps (9) and (10) require O(nl V I) operations and the 
overall time complexity of these steps is bounded by O(mnl I/ I). Since m < I V I - 1 

Summarizing the above we obtain an O() I/ I3 + 1 V ln3) bound for our algorithm in 
the case of problems (P,) and (PJ and an O(( V I3 + I I/ (( E’( + I I/ I(n + I E”()nlogn) 
bound for problems (PJ and (P$. 

Finally we consider the case when the finite median space S = (V, r) is given by 
distance matrix R(S). Then the underlying graph G = (I/, E) and equivalence classes 
of this space can be constructed in 0( ( I/ 13) time by using the following algorithm. The 
algorithm is based on a characterization of median graphs from [40,8]. 

input a median space S = (V,r) and the distance matrix R(S) 
initialize set E:= fl 
l (1) while max{r(x,y)ER(S)} > 0 do begin 
l (2) choose a point x with at least one nonzero element in the 

corresponding line of matrix R(S). 
l (3) find a point y for which r(x,y) = min{r(x,z): r(x,z) # 0). 

. (4) set E(x, Y) := {(x, Y,}. 

l (5) find the sets 

W(X,Y) = {z: $x,z) < r(y,z)}, W(y,x) = {z: r(y,z) < +,z)>. 

l (6) for any points UE W(x,y) and VE W(y,x) put r(u,u):= r(u,zI) - r(x,y). 
l (7) find all new pairs of points (u,v) such that r(u, II) = 0 and set, 

E (x, Y) := E 6, Y) u (u, 0). 

l (8) set, E:= E u E(x, y). 

end 
output: the median graph G of the space (S,r) and the equivalence 

classes El, . . . , E, of G. 
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On step (3) of this algorithm we find an edge (x,y) of the graph G. Further we 
compute the sets W(x, y) and W(y, x). Using these complementary half-spaces we find 
the equivalence class E(x, y) generated by the edge (x, y). On step (6) we contract the 
space S into a new median space. This operation allows us to detect correctly a new 
edge of G. Note that in the new median space distances between points from the same 
half-space W(x,y) or W(y,x) remain invariant. On the other hand, the distances 
between points from distinct half-spaces are decreased by the length of the edge (x, y). 
The complexity of this algorithm is O(ml V 1’). Since m < ( V ) - 1 then we obtain that 
the graph G = (V, E) and the equivalence classes of G can be constructed in O(( V 13) 
time. This concludes the proof of the theorem. 0 

Remark 5. As to the complexity of the algorithm for problems (P) and (P) on 
a median space (S,r), its mainly depends on the complexity of the procedure for 
finding some median stable set I/, containing the fixed facilities, and on the cardinals 
of this set V. 

Our approach to the multifacility location problem on finite median spaces may be 
applied for solving the similar problem on median network. A network N consists of 
a finite set I’ of vertices and a set of links joining certain pairs of vertices. Each link uu 
between two vertices u and u has a positive length r(u, v) and consists of a continuum 
of points. The network N can be regarded as a metric space where the distance r(x, y) 

of two points x and y is the length of a shortest route from x to y. It is assumed (as in 
[4,32]) that every link constitutes a shortest route between its endvertices. According 
to [4], the network N is called median if for every triple u, u, w of vertices intersection 
uu n uw n wu is a singleton (recall that uv is the interval between vertices u and u). The 
underlying graph of a network N consists of the vertex set I/ of N and the edge set of 
all linked pairs of vertices. The underlying graph of a median network is a median 

graph C41. 
Consider now a median network N and let all fixed facilities y, , . . . , yk be located only 

at the vertices of the network. Location of the new facilities x1, . . . , x, is allowed at any 
point of the network. The multifacility location problem on a median network N is to 
find n new facilities such that the function F(xi, . . . , x,) is minimized. A well-known 
result with respect to a multifacility location problem on a network is that there exists 
an optimal solution with x1, . . . , x, E V; see for example [48]. We may therefore restrict 
our search for an optimum to solutions of this type. Since I/ endowed with distance 
r(u,u) is a median space, such a solution may be found using the above algorithms. 

As we already noticed, the best algorithm for an isometric embedding of a median 
graph into a hypercube requires 0( I V ( [El) operations [2]. Also remark that any 
median graph contains at most 0( 1 V 1 log1 V 1) edges. On the other hand, in our 
algorithm we use O(m2( I/ I) bite operations for computing all compatible pairs of 
edges. We raise the question whether 0( 1 V ( I El) time suffices for solving this problem. 
Below we mention some difficulties in this direction. We also analyze the work of the 
algorithm in cases when the graph is a path, a tree or a hypercube. 
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Let ~9 be the family of all half-spaces of a median graph G. Denote by H the 
covering graph of the partially ordered set (X, c). Remark that our algorithm may be 
represented as a sweeping procedure on the poset (2, c). On each step of this 
procedure for a given equivalence class E, we must find only the half-spaces which are 
covered in H by half-spaces W ,’ and W f. Therefore such a sweeping will be more 
successful in the case when the chains in the graph H are longer and each half-space 
covers only fixed number of the half-spaces. 

For example, if G is a path P then H consists of two disjoint chains. In this case each 
half-space of P covers only one other half-space. Hence beginning with one end of the 
path P at the step 4 of our algorithm we compute all new facilities which must be 
located at the vertex q in the optimal solution. 

Now assume that G is a hypercube Q,,. Then the covering graph H consists of two 
disjoint antichains, each of them with d = log) I/ 1 elements. In this case we must solve 
d independent cut problems, one for each coordinate of the hypercube. Let 

(R:,R:), . . . . (R,‘,Ri) be the obtained minimum cuts. Then the new facility i will be 
located at the vertex with coordinates (c(~, . . . , ad), where tlq = 0 if i E Ri and c(* = 1 if 
i E Ri. Unlike the path P, for hypercubes the efficiency of the algorithm is based on the 
fact that in Qd any two half-spaces are incompatible. 

A quite different approach may be used for trees. Assume that the median graph G is 
a tree T. For trees any two equivalence classes of edges are compatible. This property may 
be used in the algorithm, besides that the covering graph H of a tree in general has a more 
complex structure. (For example, if T is a star then His a complete bipartite graph minus 
a complete matching.) In this case we can preprocess the tree in 0( 1 I/ I) time and obtain 
an ordering u1,u2,..., UN of the vertices, such that vi is a leaf of a subtree induced by the 
vertices Vi, . . . , vN (N = 1 I/ I). Using this ordering at the step q of the algorithm we will find 
all new facilities which must be located at the vertex Ui. This example lead us to the 
conclusion that the third requirement to a successful sweeping is the condition that for 
each equivalence class there is a fixed number of incompatible classes of edges. 

Unfortunately, these conditions need not be fulfilled by a class of median graphs. In 
this respect an interesting class is formed by simplex graphs [ 10,511. Let F be an 
arbitrary graph. The collection of all cliques in F is denoted by V(F). Define 
Ci, C2 E V(F) to form an edge provided their symmetric difference consists of at most 
one point. According to [lo, 511, the resulting graph g(F) is called the simplex graph 
of F. As was shown in [lo] V(F) is a median graph. For example, if F is a cycle CN with 
N vertices then %‘(CN) has 2N + 1 vertices. The graph %?(CN) contains N equivalence 
classes; each class is compatible with N - 3 other classes. In the covering graph H the 
degree of any vertex is N - 3 and any maximal chain has length two. Therefore 
H contains O(N’) edges and O(N’) directions. 

6.2. Simple rectilinear polygons 

Let P be a simple rectilinear polygon (i.e. a simple polygon having all edges 
axis-parallel) with N edges. A rectilinear path 71 is a polygonal chain consisting 
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of axis-parallel segments lying inside P. The length of the path rc is defined as the sum of 
the length of the segments 71 consists of. For any two points u and v in P, the rectilinear 
distance between u and v, denoted as I(U, v), is defined as the length of the minimum 
length rectilinear path connecting u and v. We will regard the polygon P with the 
distance r(u, v) as a metric space (P, r). Denote by (Pp) the multifacility location problem 
on (P, r). An important particular case is the multifacility location problem with all fixed 
facilities located only at the vertices of P. We will denote this problem by (Ppv). Below 
we will prove that for any simple rectilinear polygon P the space (P, r) is median. Using 
this property and some results from computational geometry we present a sweeping 
version of our algorithm for solving problems (Pp) and (P&. 

The rectilinear version of the multifacility location problem, like all other distance 
problems on rectilinear polygons, is motivated by applications in areas such as wire 
layout, circuit design, plant and facility layout, urban transportation, and robot 
motion (see [l, 12, 19,22,23,24, 31, 39, 533 for distance problems on rectilinear poly- 
gons and polyhedrons). 

An axis-parallel segment is called a cut segment of a polygon P if it connects two 
edges of P and lies entirely inside P. Note that any edge or any cut of P is a convex 
subset of (P, r). 

The following auxiliary property is a well-known property of metric spaces, see [12]. 

Lemma 9. If x, y, z, v are points of a metric space (S, r) such that v E xy and z E xv then 
VEZY. 

The fact that (P, r) is a median space can be derived from the van de Vel general 
matching theorem for median convex structures [SO, 511. We present a direct proof of 
this result; see also [17]. 

Lemma 10. (P, r) is a median space. 

Proof. We proceed by induction on the number of vertices N of P. The statement is 
evident for rectangles, i.e. for N = 4. Now assume that N > 4 and let c be the cut 
segment of P with one endpoint at the concave vertex of P. Then c cuts P into two 
simple rectilinear polygons P’ and P” with at most N - 1 vertices each. By induction 
hypothesis P’ and P” are median spaces. The segment c is convex in each of these 
spaces. By Lemma l(1) c is a gated set in P’ and P”. Note also that P’ and P” are 
convex subsets of P. 

Let u, v, w be arbitrary points of P. Assume without loss of generality that u E P’ and 
v, w E I”‘. Denote by a, the gate of u in c. Consider any point p E P”. Any shortest path 
from u to p intersect the cut c in some point u’. As u, E uu’ and u’ E up then by Lemma 9 
we obtain that u, E up. Hence u, is the gate for u in the subpolygon P”. Let z be the 
median of uf, v and w. Since u, E uv n uw then z is a median of points u, v, w too. Now 
assume that zf is another median for points u, v and w. As P” is convex and a, w E P” 
then z+ E P”. On the other hand, since a, E uz+ then by Lemma 9 we conclude that 
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z+ E u,u n u,w. Therefore the triple u,, u, w admits in P” two median points z and z+, in 
contradiction with our induction assumption. !J 

Consider all horizontal and all vertical cuts which pass through fixed facilities or 
vertices of a polygon P. These cuts together with the edges of P generate a rectilinear 
grid. Denote by V the vertices (intersection points) of this grid. Obviously, all vertices 
of P and all fixed facilities are contained in I/. 

Lemma 11. V is a median stable set. 

Proof. First observe that the repeated application of the above operation with respect 
to V as the set of fixed facilities give the same grid V. Therefore for a proof of our 
assertion it is enough to consider any three points U, u, w E V which are vertices of P or 
fixed facilities. We proceed by induction on the number N of vertices of a polygon P. 

Choose a cut c with the endpoint in the concave vertex of P and which divides P into 
a rectangle P’ and subpolygon P”. (Such a cut always exists.) Assume that c is 
a vertical cut. Suppose without loss of generality that c separates points u and u, w. 
First consider the case when u E P’ and u, w E P”. Let U’ be the gate for u in P”. Remark 
that u’ is the intersection of c with the horizontal cut which passes through u. The 
median of the triple u, v, w coincide with the median of points u’, u, w. Consider the grid 
of P” generated by vertices of P” and the set of fixed facilities Y \{u} u {u’}. Since the 
horizontal cuts which pass through points u and U’ coincide then we obtain a subgrid 
of a grid for P. By induction assumption the median of the points a’, U, w is a grid point 
of V. Now assume that UEP” and u, w EP’. Then the horizontal cuts which pass 
through v and w divide P” into three subpolygons P;‘, P;’ and P;‘. If u E P;’ u P;’ then 
the median m(u, v, w) coincide with one of the intersections of horizontal and vertical 
cuts which pass through v and w. So, assume that u E P;‘. Let u’ and w’ be the gates for 
u and w in the subpolygon P”. By induction assumption the median of points U, u‘, w” 
is a grid point. Therefore m(u, u’, w’) is the intersection of the segments u’w” with some 
cut c+ of P”. Observe that c + is a part of a cut CT, which belongs to the grid of P. It 

remains to note that m(u, u, w) is the intersection of c*, with one of the vertical cuts 
which passes through u and w, i.e. m(u, r, w) E V. 0 

Let (V, I) be the median space generated by the stable set V. Observe that any pair 
of complementary half-spaces of (V, r) may be represented as intersections of V with 
the subpolygons defined by some cut of P, which passes through the point from V. In 
the algorithm presented below we will avoid the construction of the set V. Although 
the space (V,r) contains O(N + k) pairs of complementary half-spaces we will solve 
only O(k) minimum cuts problems on local networks. The algorithm is based on the 
Chazelle algorithm for computing all vertex-edge visible pairs of edges of a simple 
polygon [14] and on optimal point location methods [28,35]. 

By the first algorithm we obtain a decomposition 9: of the polygon P into 
rectangles, using only horizontal cuts which pass through the vertices of P. Now we 
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have to compute which rectangles of the decomposition BE contain each of the fixed 
facilities. Using one of the optimal point location methods [28,35] this can be done in 
time O(klogN) with a structure that uses O(N) storage. Observe that the induced 
subdivision 9: is monotone and, hence, the point location structure can be built in 
linear time. At the following step we sort by y-coordinate all fixed facilities from each 
rectangle. Having these sorted lists we obtain a decomposition of each rectangle from 
9!, using horizontal cuts which pass through fixed facilities. (Some of these cuts may 
be edges of P.) As a result we derive a new decomposition CBh of P into O(N + k) 
rectangles, which is a refinement of the decomposition 9;. The dual graph of this 
decomposition is a tree J . rh. the vertices of a tree are the rectangles of gh and two 

vertices in Yh are adjacent if and only if the corresponding rectangles in the 
decomposition are bounded by the common cut. Assign to each edge of the subdivi- 
sion gh the fixed facilities which lie on this edge. In a similar way we define the 
decompositions $9: and 9” of P into rectangles, using only vertical cuts. Let Y’ be the 
dual graph of 9’. The decompositions gh and 9” and their graphs Yh and Y-’ may 
be constructed in time O(N + k(log k + logn)). If all fixed facilities are vertices of 
P then gh = 9; and 9” = 9:. In this case we avoid the application of point location 
methods and sorting of fixed facilities. So, we require only O(N + k) time. 

In what follows, suppose that the rectangles R:, . . . , Ri of the decomposition gh are 
numbered in such a way that any Rp is a leaf in the subtree with vertices 
RF, RF+‘,,, . . . . Ri of a tree Yh. Such an ordering may be obtained in linear time with 
respect to a number of rectangles. Having done this, we obtain the list e:, . . . , eb, of the 
horizontal edges of the rectangles from CBh. In a similar way by preprocessing the tree 
9” we obtain an analogical ordering RI, . . . , Rr of the rectangles from 9” and the list 
el,..., e;. of their vertical edges. 

Any edge ef divide the polygon P into two subpolygons Pf and P’. Denote by Wi 
and Wf the intersection of these subpolygons with the median stable set I/. Then we 
obtain two compatible pairs nF1 = (W t, I/ \ W !) and ZIFZ = (V \ W ?, WF) of com- 
plementary half-spaces of the space (S,r). Observe that all horizontal edges of the 
subdivision gh contained in one of the subpolygons P! or Pf, say all such edges from 
Pi, have the indices smaller than i. In P! there exists an edge e: such that the pairs of 
complementary half-spaces nfi and ntZ coincide. This remark allows us to consider 
in future only the pairs of the type nF1. In a similar way, for any vertical edge er we 
define the pairs of complementary half-spaces nr, and ZIIZ. Note that the pairs of 
complementary half-spaces defined by two edges of our decompositions gh and 9’ 
are incompatible only if these edges have a nonempty intersection. In particular, we 
obtain that all parallel edges define compatible pairs of half-spaces. Two parallel edges 
are called equivalent if the subpolygons defined by them contain the same sets of fixed 
facilities. Remark that any two equivalent edges define one and the same local 
network. 

Now we are ready to present the final steps of the algorithm. First by sweeping the 
segments et, . . . , eh,. from left to right we compute the y-coordinates of all new 
facilities. For each q E { 1, . . . , p*} let R be the set of new facilities already located at the 



V. Chepoi J Discrete Applied Mathematics 64 (1996) l-29 25 

previous q - 1 steps on the segments et, . . . , et_ i. Then R. = RAW Ri, where Rk is 
the set of new facilities located in the subpolygon P,’ and Rg is the set of new facilities 
located in Pi. Put R, = R\Ro. If the edge ei is equivalent to some previously 
considered edge then set q = q + 1. Otherwise, for pair of complementary half-spaces 
ni, construct the q-local network A$. This network has R,u {s, t} as vertex set. As in 
the case of median graphs each j E Rh is treated as a fixed facility from W ,’ and each 
j E Rz is treated as a fixed facility from I’ \ W ,‘. Let (Ri , Ri) be the minimum cut of the 
q-local network AJ4. Th en locate all new facilities from R,’ on the edge e!$ After p* 
steps we find an optimal location of all new facilities with respect to horizontal edges 
of the subdivision gh. 

Observe that among the edges which pass through the vertices of the polygon 
P only at most k of them may be nonequivalent to some of already considered edges. 
Hence we must solve at most 2k minimum cut problems in the local networks (k of 
such problems must be solved with respect to horizontal edges which pass through the 
fixed facilities). So, the total complexity of this sweeping procedure is O(k$(n)), where 
e(n) is the complexity of the applied maximum-flow algorithm. 

After this step of the algorithm all the new facilities are located on maximum 2k 

horizontal segments. For each of these segments we find the rectangles of the 
decomposition 9’ that contain their endpoints. Observe that if the endpoints of the 
segment ei belong to the rectangles RT and RJ then ei intersects all the rectangles 
and their vertical edges from the path between Rr and Rr of the tree Y’. Assume 
that i < j. Then temporarily locate all new facilities whose y-coordinate coincide 
with y-coordinate of ei at the endpoint of ei which lies in RT. Using the optimal 
point location methods [28, 351 this can be done in O(klogN) time. If all fixed 
facilities are vertices of P then any horizontal edge has a vertex P as an endpoint. 
Therefore the endpoints of gh may be located in O(N) time by using the vertex-edge 
visibility map [ 141. 

By sweeping the vertical edges e;, . . . , e$ of the subdivision 9” we will move each 
new facility i along horizontal edge until i E Ri for the minimum cut (R& Ri) of the 
network N4 for ei. Then definitively locate each new facility i E R,’ on the intersection 
of ei and the horizontal edge that contain i. Any other new facility j E Rf is temporar- 
ily located at the intersection of the horizontal edge containing j and another vertical 
edge of the rectangle from 9 which contains the segment ei. 

The network N4 for vertical edge e’, is defined in the following way. Let R, be the set 
of new facilities temporarily located on segment e8. Note that R, consists of all new 
facilities j such that jE Rig for any edge ez,, q’ < q, and the horizontal segment 
containing j must intersect the segment ei. The set R, may be defined also 
R, = R\Ro, where R. consists of all definitively located new facilities and of all 
temporarily located new facilities for which the horizontal edge does not intersect e;. 
The network N4 has R, u (s, t} as vertex set and arcs are defined as in the algorithm for 
median graphs. 

Now we will prove that after the sweeping of vertical edges we obtain an optimal 
location of all new facilities. First of all, remark that any pair of complementary 
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half-spaces from (V,r) is equivalent to a pair of half-spaces defined by some of the 
edges from gh or 9”. By Theorem 3 we conclude that after each of two sweeping 
we obtain the solution which is optimal with respect to all edges of the given 
direction. On the other hand, moving the new facilities horizontally we do not 
affect the optimality of the solution with respect to any horizontal edge. So, the 
obtained solution is optimal with respect to all vertical and horizontal edges. 
From the above remark and Theorem 1 we conclude that the obtained solution is 
optimal. 

Summarizing the results of this section, we have the following theorem. 

Theorem 5. The multifacility location problem in a simple rectilinear polygon P with 
N vertices can be solved in time O(N + k(logN + logk + rC/(n))), where Ii/(n) is the 
complexity of the applied maximum-jaw algorithm. The vertex restricted problem can be 
solved in O(N + k$(n)) time. 

Remark 6. The results of Theorem 5 remain also true for simple polygons endowed 
with the following rectilinear-type distance. Let P be a simple polygon and let 
x = (x’, x2) and y = (y’, y’) be arbitrary points of P. If the segment [x, y] is 
contained in P then put d(x, y) =)x1 - y1 1 + (x2 - y2 1, otherwise define d(x, y) as for 
rectilinear polygons, replacing only rectilinear paths by arbitrary paths inside P. 
Using Van de Vel results [SO, 511 we obtain that P is a median space, so we can 
apply our results. 

7. Conclusions aud open problems 

We have given an 0( 1 V I3 + ( I/ 1 e(n)) algorithm for solving the multifacility loca- 
tion problem on median graphs and networks and on finite median spaces (recall that 
c(l(n) is the complexity of the applied maximum-flow algorithm). This algorithm may 
be applied to any median space, it is necessary only to derive a procedure for finding 
the median stable set, containing all fixed facilities. In the case of a simple rectilinear 
polygon P with N edges such a set is easy to describe. Using this property we present 
an O(N + k(logN + log k + $(n))) algorithm based on a sweeping the vertical cuts 
which passes through the fixed facilities and vertices of P. When all fixed facilities are 
vertices of P this algorithm runs in O(N + k$(n)) time. 

The more efficient algorithms for rectilinear polygons are explained by the fact that, 
as for trees, the sweeping of the covering graph H of the poset (X, C) is reduced to 
a sweeping of two chains from H of pairwise compatible pairs of complementary 
half-spaces. There are some other classes of “multidimensional” median spaces which 
posses the similar property. These are graphs of acyclic cubical complexes [7], closely 
related with chordal graphs, and their polyhedrons. 

It seems very probable that the median polyhedrons (and more generally, the 
cubical polyhedrons) will be interesting from the viewpoint of computational 
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geometry. Recall that a cubical complex [Sl] is a graph G together with the collection 

%? of graphic cubes of G, such that each edge of G is in V and the intersection of two 

cubes in %7, if nonempty, is in %. A cubical polyhedron is a geometric realization of 

a cubical complex. A median polyhedron is a cubical polyhedron whose graph G is 

median; for more information consult [Sl, Ch. II]. 

Besides the multifacility location problem considered in our paper, there are 

some other problems of computational geometry which may be considered for 

median and cubical polyhedrons. One of them is the problem of finding the shor- 

test rectilinear path inside a given axis-parallel polyhedron. This problem is thor- 

oughly studied in the case of rectilinear polygons; see [l, 19,22,23,24,39, 531. For 

multidimensional spaces, shortest path problems are considerable harder; see 

[19, 231 for particular results. We hope that cubical and median polyhedrons are 

the other class of polyhedrons for which this problem may be efficiently solved. 

The main reasons are the following. As in the case of other problems, first prepro- 

cess the d-dimensional polyhedron P to obtain a decomposition of P into axis- 

parallel boxes (hyperrectangles). Each cut of the decomposition is recursively 

decomposed into boxes of smaller dimension, etc. Such a subdivision may be repre- 

sented as a hierarchical tree. For given queries points first we find the boxes, 

containing these points. In the obtained data structure of cuts and boxes we compute 

the lowest common ancestor of these boxes. The obtained cut separates the queries 

points in the minimum dimensional face of the obtained subdivision that contains 

these points. If P is a median polyhedron then we must find the gates of the queries 

points on this cut. Having the shortest paths between the queries points and their 

gates and the shortest path between the gates then gluing these paths we obtain the 

desired shortest path. 

Another open problem is to generalize the obtained results to other classes of 

metric spaces and graphs. There are some generalizations of median graphs and 

median spaces. All these classes of graphs are contained in the class of weakly 

median graphs. A decomposition theorem of weakly median graphs into simple 

pieces by using the operations of Cartesian multiplication and gated amalgama- 

tion was given in [6]. Using this result an isometric embedding of weakly median 

graphs into L,-spaces was obtained. These results may be used in order to 

decompose the initial multifacility problem into similar problems on smaller 

graphs. 
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