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Abstract:-The multifacility location issue is an augmentation of the single-location problem in which we might be keen on finding the location 

of various new facilities concerning different existing locations. In the present study, multifacility location under triangular zone limitation with 

probabilistic methodology for the weights considered in the objective function and the Euclidean distances between the locations has been 

presented. Scientific detailing and the explanatory arrangement have been acquired by utilizing Kuhn-Tucker conditions. The arrangement 

strategy has been represented with the assistance of a numerical illustration. Two sub-instances of the issue in each of which the new locations 

are to be situated in semi-open rectangular zone have likewise been talked about. 
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__________________________________________________*****_________________________________________________  

1. Introduction 

 Investigations in the past have mainly been done without taking into account the availability of the area into which the new 

locations fall.In this regard we may mention the work of various authors cited under references 

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,20,21,22,23,24,25]. But Santra and Nasira [18, 19] have considered the deterministic 

model of the multifacility location problem under triangular and semi-open rectangular area constraints. The present investigation 

is the stochastic version of our previous work.The problem of multifacility location under triangular area restriction with 

probabilistic approach for the weights considered in the objective function is studied.  Physically such probabilistic approach is of 

great importance in the sense that the values of weights from various origins (sources) to different destinations are not the fixed 

quantities but they take random values in different situations. This necessity in tackling these sorts of problems has motivated to 

study the stochastic version of the multifacility location problem.  I have considered the problem in which the weights considered 

in the objective function are the random variables with discrete probabilities and the distance between the facilities is Euclidean.  

For the present investigation, the interactions among new facilities as well as between new and existing facilities have been 

considered.  Two sub-cases of the problem in each of which the new facilities are to be located in semi-open rectangular area have 

also been presented. 

 

2. Formulation and Solution Procedures of the Problem 

The stochastic multifacility location problem considered with triangular area constraint can be stated as: 

Minimize f ((x1, y1), (x2,y2),………., (xn,yn)) 

=  E(vjk )[

1 ≤j <𝑘 ≤ 𝑛

(xj  −  xk )
2 +   (yj  −  yk )

2 +  ε ] 1/2 

+   E(wji   )
n
j=1

m
i=1 [(xj  − x i )

2 +  (yj  − y i )
2 +  ε ] 1/2… (1) 

  

Subject to axj + byj + c < 0, (a, b>0, c<0) … (2)   

and xj > 0, yj > 0  ( j = 1,2,…….,n) 

where  n = number of new facilities, 

m=  number of existing facilities, 

(xj,yj)= co-ordinates of the j
th

 new facility 

( 𝑥 𝑖 , 𝑦 𝑖  )= co-ordinates of the i
th

 existing facility, 

E (vjk) = expected value of the cost per unit distance between new facility j and new facility k, E (vjj) = 0, 

E(wji) = expected value of the cost per unit distance between new facility j and existing facility i,  

and the expected values of vjk and wji are defined as follows: 
 

E (vjk   ) =   p(jk )  ∝(jk )
.

N(jk )

∝(jk )=1

v(jk )  ∝ jk  
   ;        

N(jk )

∝(jk )=1

p(jk )  ∝(jk )
=  1     ; 
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and      E (wji   ) =   q(ji)  β(ji )

.

M(ji )

β(ji )=1

w(ji)  β(ji )

  ;        

M(ji )

β(ji )=1

q(ji)  β(ji )

=  1.      

The objective function as well as side constraints is non-linear.   Kuhn-Tucker conditions are used to get the solutions of the 

problem for which it is needed to construct the auxiliary function as follows: 

h (x,y) = f (x,y) – λ [ (ax + by + c) + η
2
]       … (3) 

i.e., h ((x1,y1), (x2,y2), ………., (xn,yn)) 

= f ((x1,y1), (x2,y2), ………., (xn,yn)) –  λj
n
j=1 [  axj + byj +  c +  η

j
2]... (4) 

where𝜂𝑗
2 are the artificial variables and are given by 

η
j
2 =  − axj +  byj +  c  . 

Now by using Kuhn-Tucker theory we get the following set of necessary conditions: 
∂h

∂xj
=  

∂f

∂xj
−  aλj = 0   ,… (5) 

∂h

∂yj
=  

∂f

∂yj
−  bλj = 0   ,    … (6) 

 

λj  (axj +byj + c) = 0                                                                                                                  …(7) 

axj +byj + c < 0.      …. (8) 

and λj = 0 (j = 1,2,……,n). 

 We may note that the necessary conditions for the occurrence of the minimum are sufficient in view of the convexity of the 

objective function.  In view of (1), we get 

∂f

∂xj

=   

n

k=1
≠j

E (v′
jk   )(xj  −  xk )

Djk   

+   

m

i=1

E(wji   )(xj  − x i )

Eji   

                                                                . . . (9) 

     and               
∂f

∂yj
=   n

k=1
≠j

E (v ′
jk   )(yj   − yk  )

D jk   
 +      m

i=1

E (w ji   )(yj   − y i  )

Eji   
… (10) 

where  Djk   = [(xj  −  xk )
2 +   (yj  −  yk )

2 +  ε ] 1/2    
… (11) 

 Eji   = [(xj  − x i )
2 +   (yj  − y i )

2 +  ε ] 1/2     
... (12) 

and v′
jk   =   

vjk   , k > 𝑗

vkj   , k < 𝑗
       … (13) 

In view of Kuhn-Tucker conditions we are to examine only two possible cases, viz., (i) when λj = 0 and (ii) when λj ≠ 0(j = 

1,2,….,n).  We consider first the case when λj = 0. 

2.1 Case – I λj= 0 (j = 1, 2,..., n) 

Since λj = 0, the equations (5) and (6) reduceto 
∂f

∂xj
= 0  and 

∂f

∂yj
=  0   respectively, which in view of (9) and (10) lead respectively 

t o  

 n
k=1
≠j

E (v ′
jk   )(xj   − xk  )

D jk   
+  m

i=1

E(w ji   )(xj   − x i  )

Eji   
 = 0 … (14) 

and  

 n
k=1
≠j

E (v ′
jk   )(yj   − yk  )

D jk   
+  m

i=1

E (w ji   )(yj   − y i  )

Eji   
 = 0… (15) 

 

After straightforward calculation (14) and (15) lead respectively to  

                          xj  =  

 n
k=1
≠j

E (v ′
jk   ) xk  

D jk   
+   m

i=1
E (w ji   )x i

Eji   

 n
k=1
≠j

E (v ′
jk   )

D jk   
+   m

i=1

E (w ji   )

Eji   

                                                                                                  … (16)   

 

and 

yj  =  

 n
j=1
≠j

E (v ′
jk   )yk  

D jk   
+  m

i=1
E (w ji   )y i

Eji   

 n
k=1
≠j

E (v ′
jk   )

D jk   
+  m

i=1

E (w ji   )

Eji   

  ,         j = 1, 2, … . , n                                                                                   … (17) 

To solve the set of non-linear equations represented by (16) and (17), we use the following iterative scheme: 

The equations (16) and (17) can be written as: 

 xj = Fj(x1,x2,............, xn,y1,y2,………,yn)     ... (18) 
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and yj = Gj (x1,x2, ………,xn, y1,y2,………,yn)      ... (19) 

Starting with initial solution  (x1
(0)

, x2
(0)

,………….,xn
(0)

, y1
(0)

, y2
(0)

, …….., yn
(0)

) we form the successive approximate solutions 

(x1
(1)

, x2
(1)

,………, xn
(1)

, y1
(1)

, y2
(1)

,….., yn
(1)

), (x1
(2)

, x2
(2)

,…….., xn
(2)

, y1
(2)

, y2
(2)

,……., yn
(2)

),…….. , (x1
(N)

, x2
(N)

, …….., xn
(N)

, 

y1
(N)

,y2
(N)

, ……., yn
(N)

)from the relation given by 

xj
(N+1)

 = Fj (x1
(N)

, x2
(N)

,…….., xn
(N)

, y1
(N)

, y2
(N)

,…….,yn
(N)

)   … (20) 

and yj
(N+1)

 = Gj (x1
(N)

, x2
(N)

,…….., xn
(N)

, y1
(N)

, y2
(N)

,……. yn
(N)

)     …(21) 

where the superscripts denote the iteration number.  We take the initial solution as: 

  

xj  
(0)  =  

 E (wji )
m
i=1 x i 

 E (v′
jk  

n
k=1
≠j

) +  E (wji  
m
i=1 )

                                                                                                                                              … (22) 

      

and   

yj  
(0)  =  

 E (wji
m
i=1 ) y i 

 E (v′
jk  

n
k=1
≠j

) +  E (wji )
m
i=1

  ,      j =  1, 2, … … . , n .                                                                                   … (23) 

    

for the rapid convergence of the iterative scheme.  The scheme will be convergent provided the following inequality holds: 

 
∂Fj  ( tj1 , tj2   , …… . ,  tj2n )

∂xk

 <
M

n
 for all j and k, 

where 0 < M < 1 and tjk = xk
(N)

 + (ᵝk - xk
(N)

) ᶿj , 0 < ᶿj< 1, 

( k = 1,2,….,n, n+1,…. , 2n;  j = 1,2,……,n,n+1,……,2n) and where xn+1, xn+2,……, x2n stand for y1, y2,....... yn respectively, and 𝛽𝑗  

are the solution of (18). 

The solution (xj, yj) (j = 1,2,……,n) obtained by the above iterative scheme has to be tested whether it satisfies the constraint (2).  

If it satisfies the constraint (2), the problem is solved and (xj, yj) (j = 1,2,……,n) give the optimum location for the new facilities 

sought.  If (xj, yj) (j = 1,2,……,n) do not satisfy the constraint (2), as already discussed, we have the only alternative of 

considering the case when λj ≠ 0 (j = 1,2,…., n).   In this case all the new facilities lie on the boundary. 

2.2 Case – II λj ≠ 0 (j = 1,2,…. , n)  

Since λj ≠ 0, the equation (7) takes the form axj +byj + c = 0, which gives 

yj =  − 
c

 b
 −  

a

b
 xjor  yk =  − 

c

 b
 −  

a

b
 xk  .       … (24)   

The equations (5) and (6) lead to 
∂f

∂xj
=     

a

b

∂f

∂yj
… (25) 

and this in view of (9) and (10) takes the form: 

 

n

k=1
≠j

E(v′
jk )(xj  −  xk )

Djk   

+  

m

i=1

E(wji )(xj  − x i )

Eji   

=  
a

b
 
 
 
 

 

n

k=1
≠j

E(v′
jk

)(yj  −  yk )

Djk   

+   

m

i=1

E(wji )(yj  − y i )

Eji   

 
 
 
 

                   … (26)     

 

Further simplification of (26) by using (11) and (12) and the value of  yj  or yk from (24) finally lead to 

xj  =

b

 a2+b2
 

E(v ′
jk ) xk  

 (xj   − xk  )
2+ε

b 2

a 2+ b 2

+  
b3

a2+ b2
n
k=1
≠j

 m
i=1

E(w ji )x i  

Tji   
− 

ab 2

a2+ b2
 m

i=1
E (w ji )y i

Tji   
− 

abc

a2+ b2
 m

i=1
E(w ji )

Tji   

b

 a2+b2
 n

k=1
≠j

E(v ′
jk )

 (xj   − xk  )
2+ε

b 2

a 2+ b 2

+  b  m
i=1

E(w ji )

Tji   

      … (27) 

where Tji =  b2(xj  − x i )
2 +  (axj  +  by i +  c)2 + εb2 

1/2
 

j = 1, 2,…., n;  k = 1, 2,….., n; i = 1,2,……,m. 

By similar arguments we obtain the relations for yj as: 

yj   =

a

 a2+b2
 

E(v ′
jk ) yk  

 (yj   − yk  )
2+ε

a 2

a 2+ b 2

+ 
a3

a2+ b2
n
k=1
≠j

 m
i=1

E(w ji )y i  

K ji   
− 

a2b

a2+ b2
 m

i=1
E(w ji ) x i

K ji   
− 

abc

a2+ b2
 m

i=1
E(w ji )

K ji   

a

 a2+b2
 n

k=1
≠j

E (v ′
jk   )

 (yj   − yk  )
2+ε

a 2

a 2+ b 2

+  a  m
i=1

E(w ji   )

K ji   

          … (27A)        

where  Kji =  a2(yj  − y i )
2 +  (byj  +  ax i +  c)2 + εa2 

1/2
 

            j = 1, 2,…., n;  k = 1, 2,….., n;  i = 1, 2, ……, m. 
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To solve the set of non-liner equations represented by (27) or (27A) we use the following iterative scheme: 

 The equation (27) can be written as 

xj = Hj(x1,x2,............, xn), (j= 1, 2, ….. , n)       ... (28) 

Starting with initial solution (x1
(0)

, x2
(0)

,…………., xn
(0)

) we form the successive approximate solutions  

(x1
(1)

, x2
(1)

,………,xn
(1)

),(x1
(2)

, x2
(2)

,…….., xn
(2)

),…., (x1
(N)

, x2
(N)

, …….., xn
(N)

) from the relations given by 

xj
(N+1)

 = Hj (x1
(N)

, x2
(N)

,…….., xn
(N)

),        … (29) 

where the superscripts denote the iteration number.  We take a feasible initial solution for the rapid convergence of the iterative 

scheme.  The scheme will be convergent provided the following inequality holds: 

 
∂Hj( tj1 , tj2   , … … ., tjn  )

∂xk

 <
M

n
 for all j and k, 

where 0 < M < 1 and tjk = xk
(N)

 + (ᵝk - xk
(N)

) ᶿj , 0 < ᶿj< 1, 

(k =1,2,…..,n) andβj are the solutions of (28).  For the solution of (27A) in getting the values of  yj (j = 1,2,…..,n) we use the 

similar iterative scheme with a feasible initial solution.  It may be pointed out that after obtaining the values of xj (j = 1,2,….,n) by 

using the iterative scheme (29) one need not calculate the values of yj( j = 1,2,…..,n) by using the iterative scheme as these can be 

found directly from the equation (24) with the help of determined values of xj(j = 1,2,…..,n). 

 

3. Numerical Example 

Let us consider the example involving 2 new facilities and 2 existing facilities where the new facilities are supposed to be located 

in a triangular area given by   xj + yj– 2 < 0.Let the co-ordinates of the existing facilities be as follows: 

( x 1   , y 1) =  2, 1  and ( x 2   , y 2) = (1, 2). 

Let the cost per unit distance among new facilities and between new and existing facilities and the corresponding probabilities be 

given as follows: 

v(12)1
= 3,      p(12)1

=
1

3
;         v(12)2

= 3,   p(12)2
=

2

3
; w 11 1

= 4, q(11)1
=

3

4
;      w(11)2

= 8,    q(11)2
=

1

4
; 

w(12)1
= 3,   q(12)1

=
1

3
;    w(12)2

= 2, q(12)2
=

1

2
;   w(12)3

= 6,    q(12)3
=

1

6
;     w(21)1

= 6,        q(21)1
=

5

6
; 

w(21)2
= 12, q(21)2

=
1

6
;   w(22)1

= 7, q(22)1
=

6

7
; w(22)2

= 14, q(22)2
=

1

7
. 

Let us take 𝜀 = 1.2 X 10
-9

. 

3.1 Case – I λj = 0    ( j = 1,2) 

With these data we have the following iterative scheme: 

 

x1
 N+1 =  

5x2
 N 

 (x1
 N 

− x2
 N )2  + (y1

 N 
− y2

 N )2  +ε

+ 
10

 (x1
 N 

− 2 )2  + (y1
 N 

− 1)2  +ε

+ 
3

 (x1
 N 

− 1 )2  + (y1
 N 

− 2)2  +ε

5

 (x1
 N 

− x2
 N )2  + (y1

 N 
− y2

 N )2  +ε

+  
5

 (x1
 N 

− 2)2  + (y1
 N 

− 1)2  +ε

+ 
3

 (x1
 N 

− 1)2  + (y1
 N 

− 2 )2  +ε

      , 

 

  

x2
(N+1) =  

5x1
(N )

 (x2
(N )− x1

(N ))2  + (y2
(N )− y1

(N ))2  +ε 

+  
14

 (x2
(N )− 2 )2  + (y2

(N )− 1 )2  +ε

+ 
8

 (x2
(N )− 1 )2  + (y2

(N )− 2 )2  +ε

5

 (x2
(N )− x1

(N ))2  + (y2
(N )− y1

(N ))2  +ε

+  
7

 (x2
(N )− 2 )2  + (y2

(N )− 1 )2  +ε

+  
8

 (x2
(N )− 1 )2  + (y2

(N )− 2 )2  +ε

  ,  

 

y1
(N+1) =  

5y2
(N )

 (x1
(N )− x2

(N ))2  + (y1
(N )− y2

(N ))2  +ε

+ 
5

 (x1
(N )− 2 )2  + (y1

(N )− 1)2  +ε

+ 
6

 (x1
(N )− 1 )2  + (y1

(N )− 2)2  +ε

5

 (x1
(N )− x2

(N ))2  + (y1
(N )− y2

(N ))2  +ε

+  
5

 (x1
(N )− 2)2  + (y1

(N )− 1)2  +ε

+ 
3

 (x1
(N )− 1)2  + (y1

(N )− 2 )2  +ε

 

and 

y2
(N+1) =  

5y1
(N )

 (x2
(N )− x1

(N ))2  + (y2
(N )− y1

(N ))2  +ε 

+ 
7

 (x2
(N )− 2 )2  + (y2

(N )− 1 )2  +ε

+  
16

 (x2
(N )− 1 )2  + (y2

(N )− 2 )2  +ε

5

 (x2
(N )− x1

(N ))2  + (y2
(N )− y1

(N ))2  +ε

+ 
7

 (x2
(N )− 2 )2  + (y2

(N )− 1 )2  +ε

+ 
8

 (x2
(N )− 1 )2  + (y2

(N )− 2 )2  +ε

 

Starting with a feasible initial solution (x1
(0)

, x2
(0)

, y1
(0)

, y2
(0)

) as (1.00,1.10,0.85,1.15) we obtain the successive approximate 

solutions and get the values of x1, x2, y1,y2 as: 

x1 = 1.27, x2 = 1.31,y1 = 1.22, y2 = 1.26.Thus the locations of the two new facilities are given by (1.27, 1.22) and (1.31, 1.26).  But 

this solution does not satisfy the given constraint xj +  yj  – 2 < 0and hence this is not a feasible solution.  Therefore we have to 

consider the case when λj ≠ 0 ( j = 1,2) which will give the optimal location necessarily on the boundary. 
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3.2 Case – II λj ≠ 0 ( j = 1,2) 

With the given data we have the following iterative scheme: 

x1
 N+1 =  

1

 2

5x2
 N 

 (x1
 N 

− x2
 N )2  +

ε

2

+
15

2

1

T11
 N + 

3

2

1

T12
 N 

1

 2

5

 (x1
 N 

− x2
 N )2  +

ε

2

+ 
5

T11
 N +  

3

T12
 N 

and 

𝑥2
 𝑁+1 =  

1

 2

5𝑥1
 𝑁 

 (𝑥2
 𝑁 

− 𝑥1
 𝑁 )2  +

𝜀

2

+
21

2

1

𝑇21
 𝑁 +  

4

𝑇22
 𝑁 

1

 2
 (𝑥2

 𝑁 
− 𝑥1

 𝑁 )2  +
𝜀

2

+  
7

𝑇21
 𝑁 +   

8

𝑇22
 𝑁 

, 

where T11
(N)

=   x1
 N 

−  2 
2

+  x1
 N 

−  1 
2

+  ε 
1/2

 , 

                T12
(N)

=   x1
 N 

−  1 
2

+  x1
 N 

 
2

+  ε 
1/2

 , 

T21
(N)

=   x2
 N 

−  2 
2

+  x2
 N 

−  1 
2

+  ε 
1/2

 and 

T22
(N)

=   x2
 N 

−  1 
2

+  x2
 N 

 
2

+  ε 
1/2

 . 

Starting with a feasible initial solution (x1
(0)

, x2
(0)

)  as (1.0, 1.5) we get the successive approximate solutions and obtain the values 

of x1 and x2 as x1 = 1.20 and x2 = 1.70.  We substitute these values of x1 andx2 in the equation (24) when j = 1 and 2 respectively 

and we get y1 = 0.80 and y2 = 0.30.  Thus the locations of the two new facilities are (1.2, 0.8) and (1.7,0.3). 

 

4. Location of New Facilities in Semi-open Rectangular Areas 

We consider the problem of locating new facilities with respect to multiple existing facilities in a semi-open rectangular area 

which may be given either by 

axj + c ≤ 0 (a> 0, c < 0) or byj + c ≤ 0 ( b > 0, c < 0).     …(30) 

Clearly this type of area is a special case of the area given by (2) when either b=0 or a = 0 respectively.  The equations axj + c = 0  

or byj + c = 0 represent straight lines parallel either to y-axis  or  x-axis respectively.  Thus the only difference is that the area is 

now open whereas in the case considered in section-2, the area is closed.  However, the solution procedure described in section-2 

works equally well for these cases also.  The unconstrained optimum corresponding to the case λ j = 0 will be the same as given 

under thesection-2.1.  If this solution does not satisfy (30), we have to consider the case when λj ≠ 0 (j = 1,2,….., n).  Let us 

consider any one of the two areas, say, 

axj + c ≤ 0 (a> 0, c < 0).      … (31) 

When λj ≠ 0 ( j = 1,2,….., n), we have by one of the Kuhn-Tucker conditions axj + c = 0 which makes all xj fixed and is given by 

xj = − 
c

a
   , (j = 1,2,….., n).  Now in finding the y-co-ordinates of the new facilities we get the expressions for yj (j = 1,2,….., n) 

simply by putting b = 0 in the equation (27A).  Thus the expressions for yj are given by: 

yj  =  

 n
k=1
≠j

E(v ′
jk  ) yk  

 (yj − yk )2+ε 
+ a  m

i=1
E(w ji ) y i

K ji   

 n
k=1
≠j

E(v ′
jk  )

 (yj− yk )2+ε 
+ a  m

i=1

E(w ji )

K ji   

 ,                                                                                             … (32) 

where Kji =  a2 yj − y i 
2

+  ax i + c 2 + εa2 
1/2

. 

For the solution of (32) we use the iterative scheme described under section-2.2. If the area is given by 

byj + c ≤ 0 (b> 0, c < 0),                      ...(33) 

in a similar way the y-co-ordinates of the new locations are given by yj = − 
c

b
   , (j = 1,2,….., n) and the expressions for xj (j = 

1,2,….., n) can be found simply by putting a = 0 in the equation (27) as: 

xj  =  

 n
k=1
≠j

E(v ′
jk )xk  

 (xj− xk )2+ε 
+ b  m

i=1
E(w ji ) x i

Tji   

 n
k=1
≠j

E(v ′
jk )

 (xj− xk )2+ε 
+ b  m

i=1

E(w ji )

Tji   

 ,                                                                                                       … (34)   

whereTji =  b2 xj − x i 
2

+  by i + c 2 + εb2 
1/2

 

For the solution of (34) we use the iterative scheme describedunder section-2.2. It may be mentioned that for solving the problems 

where the new facilities have to be located on a straight line only the algorithm developed under section-2.2 can be utilized. 
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5. Conclusion 

A point by point writing overview uncovers that a little consideration has been paid to multifacility location issue including area 

restriction despite the fact that; maybe every location issue is intrinsically bound by territory requirement or something to that 

affect or the other. It might likewise be specified that the work containing stochastic contemplations has additionally gotten less 

consideration despite the fact that practical nature of the issues requests probabilistic examinations. This has inspired to deal with 

the area limitation part of stochastic multifacility location issue in the present study. Multifacility location issue under triangular 

territory confinement with probabilistic methodology for the weights considered in the objective function and the Euclidean 

distance between the locations has been talked about. 
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