1,475 research outputs found

    Discrete Convex Functions on Graphs and Their Algorithmic Applications

    Full text link
    The present article is an exposition of a theory of discrete convex functions on certain graph structures, developed by the author in recent years. This theory is a spin-off of discrete convex analysis by Murota, and is motivated by combinatorial dualities in multiflow problems and the complexity classification of facility location problems on graphs. We outline the theory and algorithmic applications in combinatorial optimization problems

    Simplicial and Cellular Trees

    Get PDF
    Much information about a graph can be obtained by studying its spanning trees. On the other hand, a graph can be regarded as a 1-dimensional cell complex, raising the question of developing a theory of trees in higher dimension. As observed first by Bolker, Kalai and Adin, and more recently by numerous authors, the fundamental topological properties of a tree --- namely acyclicity and connectedness --- can be generalized to arbitrary dimension as the vanishing of certain cellular homology groups. This point of view is consistent with the matroid-theoretic approach to graphs, and yields higher-dimensional analogues of classical enumerative results including Cayley's formula and the matrix-tree theorem. A subtlety of the higher-dimensional case is that enumeration must account for the possibility of torsion homology in trees, which is always trivial for graphs. Cellular trees are the starting point for further high-dimensional extensions of concepts from algebraic graph theory including the critical group, cut and flow spaces, and discrete dynamical systems such as the abelian sandpile model.Comment: 39 pages (including 5-page bibliography); 5 figures. Chapter for forthcoming IMA volume "Recent Trends in Combinatorics

    A faster strongly polynomial minimum cost flow algorithm

    Get PDF
    Includes bibliographical references.Supported in part by the Presidential Young Investigator Grant of the National Science Foundation. 8451517-ECS Supported in part by the Air Force Office of Scientific Research. AFOSR-88-0088 Supported in part by grants from Analog Devices, Apple Computers, Inc. and Prime Computer.James B. Orlin

    Generalized Max-Flows and Min-Cuts in Simplicial Complexes

    Get PDF
    We consider high dimensional variants of the maximum flow and minimum cut problems in the setting of simplicial complexes and provide both algorithmic and hardness results. By viewing flows and cuts topologically in terms of the simplicial (co)boundary operator we can state these problems as linear programs and show that they are dual to one another. Unlike graphs, complexes with integral capacity constraints may have fractional max-flows. We show that computing a maximum integral flow is NP-hard. Moreover, we give a combinatorial definition of a simplicial cut that seems more natural in the context of optimization problems and show that computing such a cut is NP-hard. However, we provide conditions on the simplicial complex for when the cut found by the linear program is a combinatorial cut. For d-dimensional simplicial complexes embedded into ?^{d+1} we provide algorithms operating on the dual graph: computing a maximum flow is dual to computing a shortest path and computing a minimum cut is dual to computing a minimum cost circulation. Finally, we investigate the Ford-Fulkerson algorithm on simplicial complexes, prove its correctness, and provide a heuristic which guarantees it to halt

    Shortest path and maximum flow problems in planar flow networks with additive gains and losses

    Full text link
    In contrast to traditional flow networks, in additive flow networks, to every edge e is assigned a gain factor g(e) which represents the loss or gain of the flow while using edge e. Hence, if a flow f(e) enters the edge e and f(e) is less than the designated capacity of e, then f(e) + g(e) = 0 units of flow reach the end point of e, provided e is used, i.e., provided f(e) != 0. In this report we study the maximum flow problem in additive flow networks, which we prove to be NP-hard even when the underlying graphs of additive flow networks are planar. We also investigate the shortest path problem, when to every edge e is assigned a cost value for every unit flow entering edge e, which we show to be NP-hard in the strong sense even when the additive flow networks are planar

    A Faster Primal Network Simplex Algorithm

    Get PDF
    We present a faster implementation of the polynomial time primal simplex algorithm due to Orlin [23]. His algorithm requires O(nm min{log(nC), m log n}) pivots and O(n2 m ??n{log nC, m log n}) time. The bottleneck operations in his algorithm are performing the relabeling operations on nodes, selecting entering arcs for pivots, and performing the pivots. We show how to speed up these operations so as to yield an algorithm whose running time is O(nm. log n) per scaling phase. We show how to extend the dynamic-tree data-structure in order to implement these algorithms. The extension may possibly have other applications as well

    Polynomial-time highest-gain augmenting path algorithms for the generalized circulation problem

    Get PDF
    Includes bibliographical references (p. 15-16).Supported in part by NSF. DMS 94-14438 DMS 95-27124 Supported in part by DOE. DE-FG02-92ER25126 Supported as well by grants from UPS and ONR. N00014-96-1-0051by Donald Goldfarb, Zhiying Jin, James B. Orlin

    A strongly polynomial algorithm for generalized flow maximization

    Get PDF
    A strongly polynomial algorithm is given for the generalized flow maximization problem. It uses a new variant of the scaling technique, called continuous scaling. The main measure of progress is that within a strongly polynomial number of steps, an arc can be identified that must be tight in every dual optimal solution, and thus can be contracted. As a consequence of the result, we also obtain a strongly polynomial algorithm for the linear feasibility problem with at most two nonzero entries per column in the constraint matrix.Comment: minor correction

    A dual version of Tardos's algorithm for linear programming

    Get PDF
    Bibliography: p. 11.by James B. Orlin
    • …
    corecore