
A Dual Version of Tardos's
Algorithm for Linear Programming

by
James B. Orlin

Sloan W.P. No. 1686-85 July 1985
Revised June 1986

_�Y____n�_l______ll_11_^1-1__·___�.�_�.�

Abstract

Recently, Eva Tardos developed an algorithm for solving the

linear program min(cx: Ax = b, x > O) whose solution time is

polynomial in the size of A, independent of the sizes of c and b.

Her algorithm focuses on the dual LP and employs an approximation of

the cost coefficients. Here we adopt what may be called a 'dual

approach' in that it focuses on the primal LP. This dual approach

has some significant differences from Tardos's approach which make

the dual approach conceptually simpler.

Subject Classification:

742. A Dual Version of Tardos's Algorithm for Linear

Programming.

1

· _IV1_�II__*___Fl�__I_ · *X�.�---·�·--s�·--------__-_ll�---__--

Introduction

Recently, Eva Tardos [1986] developed a polynomial time

algorithm for the linear program min(cx: Ax = b, x > 0) that runs in

time polynomial in m, n and log(Amax + 1), assuming that the four

basic arithmetic operations are each counted as one step. Indeed,

for linear programs developed from combinatorial problems such as

the multi-commodity flow problem the algorithm is strongly

polynomial, i.e., the number of arithmetic steps is polynomial in

the dimension of the problem rather than in the size of the input.

Tardos's algorithm is based on a generalization of her strongly

polynomial algorithm for minimum cost network flows (Tardos [1985]).

Subsequently, Frank and Tardos 11985] have generalized Tardos's

approach so that it is valid for linear programs (with potentially

an exponential number of constraints) solved by the ellipsoidal

algorithm.

Here we present a 'dual' variant of her algorithm. The major

algorithmic ideas are the same, viz., both algorithms solve a

sequence of approximated problems and in each instance identify at

least one variable that must be zero in an optimal solution.

Nevertheless, our algorithm does differ from Tardos's algorithm in

more significant ways than is indicated by the dualization. On the

negative side, the approximated problems here have m times as many

bits as do the approximations used in Tardos's algorithm. Thus

under the standard models of computation, our algorithm is less

efficient than Tardos's algorithm. On the positive side, our

algorithm is a "single phase" algorithm and is more direct and

conceptually simpler than Tardos's "two-phase" algorithm. The first

2

phase of Tardos's algorithm finds the optimizer face of the LP. The

second phase constructs a basic feasible solution to the optimizer

face. Our algorithm simultaneously constructs a feasible solution

and an optimum basic feasible solution.

Recently, Fujishige [1986] has developed a similar dual

approach to Tardos to solve the capacitated minimum cost flow

problem. His algorithm results in an improvement over Tardos's

algorithm in the theoretical worst case running time, and provides a

worst case time comparable to that of Orlin [1985]. Fujishige's

algorithm has subsequently been improved upon by Galil and Tardos

[1986].

The algorithm described below runs in O(m6. 5 log(Ama x + m + 1))

arithmetic steps. The arithmetic operations of the algorithm

include: addition, subtraction, integer division by a constant,

integer multiplication by a constant and comparisons. In the case

that log(Amax) is polynomially bounded in m and n (as, for example,

in multi-commodity network flow problems and in generalized covering

and set packing problems), then the number of arithmetic operations

is polynomially bounded in m and n. In such a case the algorithm is

called strongly_polynomial as per Tardos [1986].

One naturally may question the real significance of the

existence of a strongly polynomial algorithm for linear programs.

The significance of the concept does not lie in its practicality,

since one would not in practice wish to solve an LP in which

log(Amax), log(bmax) or log(cmax) is exponential in m and n.

Rather, strongly polynomial algorithms are significant in the

theoretical domain.

3

A key theoretical motivation for studying the question of

'strong polynomiality' deals with the geometry of linear programs.

If we compare the linear programs in which log(Amax) is polynomially

bounded to those in which log(Amax) is exponential in m and n, the

difference in terms of the structure of the polyhedra is subtle. It

is of theoretical interest whether the facial structure of linear

programs can grow continually more complex as log(Amax) increases

exponentially.

Similarly, one may wish to know if the complexity of solving

linear programs stems in part from the large numbers involved. Such

is apparently the case in integer programming with a bounded number

of variables. Indeed, there is probably no strongly polynomial

algorithm for 2-variable singly constrained integer programs since

such an algorithm would imply that one could compute whether two

numbers a and b are relatively prime in 0(1) arithmetic steps.

(Consider the integer program min (Ox: ax-by=l; x, y > 0 integer).)

1. The Problem and the Algorithm

Consider the linear programming problem

Minimize cx

Subject to Ax > b (1)

x > O

where c is an integral n-vector, A is an integral m x n matrix, and

b is an integral m-vector. We let Amax = max (aijl : i E [1..m],

j E [1..n]). In general, for any vector or matrix v, vmax denotes

max (vil: vi is a component of v).

The approximation method described below relies on the

following two properties of linear programs:

4

(1) if there is an optimal solution then there is an optimal

solution that is basic;

(2) the non-zero components of each basic solution may be

obtained by premultiplication of the right hand side vector b by the

inverse of some basis B of [A,-I]. Moreover, using Cramer's rule,

we may bound the coefficients of B- 1.

FACT 1. Let M = (Amax)m+l(m)(m!). Let B be any m x m invertible

submatrix of A,-I] and let A = B-1[A,-I]. Then each coefficient

of A has both its numerator and denominator bounded by M.

PROOF. Let M' = (Amax)mm!. Then M' is an upper bound on the

determinants of submatrices of A. By Cramer's rule M' is an upper

bound on the numerator and denominator of each coefficient of B - 1.

Multiplying B-1 by A does not increase the largest denominator and

increases the largest numerator by a factor of at most mAmax. D

Rather than prove a number of additional facts and lemmas prior

to the algorithm, we will first describe the essential aspects of

the algorithm and subsequently prove that the total number of

arithmetic operations for the algorithm is O(m 6. 5 log (Amax + m + 1)).

The following "algorithm" is really an outline of our dual

approach to Tardos's algorithm. Some of the key implementation

details are discussed in the Lemmas and Theorem that follow. The

value M refers to the upper bound on Amax defined in Fact 1.

Although it is not yet apparent, it is very important that the

algorithm will solve both the LP and its dual.

5

ALGORITHM I.

STEP 1. Form an approximation to (1) as follows.

Choose an m-vector b' and an integer k > 1 so that

(i) b = Lbj/ k for j c [1 ..m], and

(ii) either 2(Mm)2 m < bmax < 4(Mm)2 m or else

b = b' and bmax < 2(Mm)2m.

STEP 2. Solve the linear program

Minimize cx

Subject to Ax - Is = b' (2)

x, s > 0

Case 1. Suppose there is no feasible solution to (2). In this

case, there is also no feasible solution to (1) and the algorithm

terminates. (A feasible solution x' to (1) would imply that x'/k is

feasible for (2), a contradiction.)

Case 2. Suppose that the LP (2) is unbounded. In this case

there is a solution y > 0 such that Ay > 0 and cy < 0. If (1) is

feasible, then this vector y will also show that (1) is unbounded.

In this case, we test (1) for feasibility by replacing c by 0 and

returning to Step 2.

Case 3. Suppose that there is an optimal solution. In this

case we let B be an optimal basis, and we go to Step 3.

STEP 3. If B-lb > O, then B is also an optimal basis for (1).

Otherwise partition B into non-empty subbases D and E so that the

'final tableau' with respect to (1) is as follows.

6

Minimize

Subject to xD + NXN = bD (3)

XE + N2XN = bE

XD, xE, xN > ,

where bD > 0, and in addition, for iD, jcE

bi > (Mm)21bjl (4)

STEP 4. (Recursively) find a basic optimal solution x,x toE N

Minimize q (CNXN)

Subject to q(xE + 2XN) q bE (5)

XE' xN > 0.

where q is IDET(B)I, and thus all coefficients of (5) are integral.

If there is no feasible solution to (5), then there is also no

feasible solution to (1). Otherwise, the following solution (6) is

an optimal basic feasible solution for (1).

XE = XE

X- X* (6)N N

D bD Nx*

Moreover, if B is the optimal basis of the basic solution in (6),

then cgBB-l is an optimal dual solution.

To prove that the above 'algorithm' is polynomial in m, n and

log(Ama x) (or equivalently, in n and log M), we still need to fill

in a number of details; however, first let us look at the essential

ideas.

7

= CNXN

If one were very optimistic, one might expect that one could

solve the approximated problem in Step 2 and obtain the optimal

basis. Unfortunately, it is conceivable that an optimal basis of

(2) is not primal feasible for (1). In such a case, we can show

that a splitting such as in (3) is possible. Moreover, the splitting

of basic variables is such that bD is so large relative to bE that

we can be assured that xD > 0 in some optimal solution. Once we can

be so assured, we may remove the variables xD from consideration and

thus reduce the original m constraint problem to a problem with

fewer constraints. We then recursively apply the same algorithm to

the smaller problem, and within m iterations we are through.

(Similarly, we could have, in the spirit of Tardos's algorithm,

replaced the dual inequality constraints yAD < cD by equality

constraints.)

LEMMA 1. We may determine the integer k and the vector b' in Step

in O(m log M) arithmetic steps.

PROOF. (This proof uses the same idea as Tardos, and is included

for completeness.) We first determine bax in at most m-l

comparisons. If bmax 2 (Mm)2m then we let k=1 and b'=b. Otherwise,

we let k =Lbmax/2(Mm)2mJ and we let bj=Lbj/kJ. In the case that

k (Mm)2m, we may determine b' by using binary search in the

interval [O..4(Mm)2 m] to find the greatest integer dj such that

bj djk.

In this way, we reduce the problem of computing Lbj/k to (m log M)

multiplication problems such that in each of these multiplications

the smaller multiplier is less than 4(Mm)2 m. Moreover, to divide by

8

a number less than 4(Mm)2m, we may use standard algorithms which

reduce such a division to a sequence of log(4(Mm)2m) arithmetic

operations that are limited to the basic ones allowed in our

description of strongly polynomial algorithms.

We also note that if bj = bmax and if k t 1, then

2(Mm)2mJ
bj =Lbj/k bj Lbmax = 2(Mm)2m

Also it is easy to show that bi < b < 4(Mm)2m. D

LEMMA 2. The optimal objective values of the linear programs in (3)

and (5) are not unbounded.

O
PROOF. cN > O.

LEMMA 3. Either B-1b > 0, or else there is a partition of B into

non-empty subbases D and E as described in Step 3.

PROOF. If B-1b > 0 then the result is trivially true. Suppose now

that B-lb 0. In particular, k > 1 and bmax > (Mm)2m. And

suppose without loss of generality that

1bl > b21 > ... > bmi. To prove the Lemma we will show that

b1 > (Mm)2m-l k (7)

and we will also show

if bj < 0 then Ibjl < Mmk , (8)

where k is the value determined in Step 1.

9

From (7) and (8) and by our assumption that bj < 0 for some j,

Ibll/bml >(Mm)2m-2 (9)

m-1
Since Ibll/Ibm = Ibjl/lbj+ll > (Mm)2m-2

j=1

it follows that there is some index r such that

Ibr/tbr+lI > (Mm) 2 (1 0)

If there is more than one ind

the least such index. We may

variables 1,...,r and select

r+l,...,m. From our choice

(8), b > 0 for j < r.

To complete the proof of

(7) and (8) are true. We now

ex satisfying (10), then choose

then select D to consist of bas

E to consist of basic variables

of r, br > bl(Mm)-2 m+4 > k(Mm)3 .

the Lemma it suffices

prove (7). Since b =

to prove

Bb,

r to be

ic

By

that

bmax < mBmax bmax < mAmax bl

and thus

b1 > bmax/mAmax > k(Mm)2m- 1

This latter inequality is true since

We now prove (8). Let D = (dij)

chosen b' so that bj-k kbj bj.

Moreover, B-lb' > O. Suppose (B-lb)i

bmax/k >

= B-1.

< 0.

(Mm)2m.

From Step 1, we have

Then

10

__1__�1�_�11111_1____--�-.�.��-��

m m m !

(B-lb)i = E dij bj dij bj - k dij bj (11)
j=1 j=l j=1

m

>- E dijl Ibj - kbjl > -kMm.
j=1

The last inequality is valid since dij M. This completes

the proof of Lemma 3. °

LEMMA 4. Any of the linear programs (5) as recursively obtained by

the algorithm will have a constraint matrix qC for which qCmax < M.

Moreover, for any basis F of C, (F-1)max < M.

PROOF. The coefficients of qC may be obtained by multiplying A by

Det(B)B -1 for some basis B. Thus Dmax < M by Fact 1. Assume now

that the columns and rows have been permuted so that A = [B,N 1,N 2]

and that

I1 0 N1l1 N12
B-1A =

0 I 2 C N2 2

where I and I2 are identity matrices of appropriate dimension. (We

may assume without loss of generality that F is disjoint from I2 by

making duplicates of the columns in F n I2.) If we now pivot so

that [II N11] is transformed into the identity matrix, then O
F

I2 is transformed into C-1. Thus (C- 1)max < M by Fact 1.

LEMMA 5. Algorithm A will either find some subproblem in Step 2

that has no feasible solution or else it will determine the optimal

solution via equation (6).

11

PROOF. If the algorithm finds any subproblem (2) that is not

feasible, then there is no feasible solution to (1) because we have

not created any infeasibilities in the recursion (5) nor have we

created any new infeasibilities by rounding down b in Step 1.

Next we consider the case in which there is a feasible solution

to (1), and we prove our result inductively. Assume that our

recursive algorithm has found an optimal solution (xE,xN) to the

LP(5). We assume without loss of generality that the solution is

basic. Thus there is some basis F of (5) such that

XF = F-1 bE

By Lemma 4, if t = (bE)max, and if i is a basic variable of F,

then xi < Mmt. Also by Lemma 4, (NI)max < M. Thus (N1 XN)max <

M 2 m2t. By our partition in Step 3, each coefficient bi of bD is

such that bi > M 2 m2 t. Thus

bD - N1 XN >

and the solution in (6) is primal feasible. Since it is also dual

feasible, it is optimal. LI

The key detail remaining is the implementation of Step 2. We

refine Step 2 as follows. Let U.11 denote the sup norm.

STEP 2. If 1tclH < 4(Mm) 2 m, then solve (2) using a minor modification

of Karmarkar's algorithm as described below. If c > 4(Mm)2 m, then

solve the dual of (2) using this algorithm recursively.

We will observe that the solution time in (2) is polynomial if

I[cl < 4(Mm)2 m using our slight modification of Karmarkar's [1984]

algorithm, and thus we may solve (1) in polynomial time if

12

Ilcll < 4(Mm)2m. If lcl > 4(Mm)2 m then the dual of (2) is a special

case of (1) in which the cost coefficients are bounded by 4(Mm)2m.

As such we may apply our algorithm recursively.

One cannot use Karmarkar's original algorithm for the following

reason: in its original form Karmarkar's algorithm solves only the

primal problem, whereas in Step 2 above we need to solve both the

primal and dual problems. One easy method of resolving the

difficulty is to replace b' by b' + *, where the j-th component of

c* is eJ for some sufficiently small positive number c. This is the

well known perturbation method which guarantees that any basis is

non-degenerate. As such, we can use Karmarkar's algorithm to

identify an optimal primal solution and then use standard techniques

to move to an optimal basic solution. Because of non-degeneracy

this optimal basic solution has a basis B that is also dual

feasible, and thus B induces both primal and dual optimal solutions.

As for ensuring that the algorithm is still polynomial, we may

choose = /M2 . Cramer's rule shows that the fractional part of

B-1(b ' + *] is non-zero and thus the solution is non-degenerate.

This perturbation leads to an increase in the description of the

right hand side by O(m log M) bits. However, in the case that

bmax > (Mm)2m, this increase in the number of bits due to the

perturbation method is only a constant multiplicative factor of the

number of bits of b'.

An alternative method of resolving the difficulty in Step 2 is

to avoid the need for obtaining an optimal dual solution. Instead,

one can use the Adler and Hochbaum [1985] extension of the ellipsoid

algorithm that runs in time polynomial in n, log(Amax) and log(cmax)

independent of the size of bmax.

13

A plausible method that does not seem to work is solving the

primal and dual problems simultaneously, e.g., one could reformulate

(1) as

minimize ctx - bty

subject to Ax > b

Aty c

x, y >

However, we cannot make the same reductions as stated in Step 2 in

the case that cmax is large, since c appears both in the objective

function and in the right-hand-side.

THEOREM 1. Algorithm 1 solves the linear program (1) in

O(m 6. 5 log(m + Amax + 1)) arithmetic operations.

PROOF. First, the optimality of the algorithm was shown in Lemma 5.

Next, each of the approximated linear programs solved by Karmarkar's

algorithm has an input size L = O(m log M) and thus the number of

arithmetic steps per linear program is 0(m3.5 log M) =

O(m 4 .5 log (m + Amax + 1). (We have m + n variables rather than n

because of the slack variables. Moreover, m + n < 2m by assumption,

and so the running time of Karmarkar's algorithm is O(m 3. 5 log M)

arithmetic operations. Karmarkar includes another factor of L to

handle the precision. We do not include this factor of L since we

are counting only the number of arithmetic operations.) If

Jlcll < 4(Mm)2 m, then the number of linear programs solved in Step 2

is at most m because at least one basic variable is eliminated in

Step 3 at each iteration. If Ucil > 4(Mm)2 m, then to solve (2)

requires the solution of at most m linear programs. Thus there are

0(m 2) linear programs all together for a total running time of

14

�··___�__1_______�__I �1_1 Ill__·I______X_______Ol__lslll�-·-·-- �____

O(m 5. 5 log M) = O(m 6.5 log (m + Amax +1)) for solving the linear

programs. It is easy to verify that the other arithmetic operations

also have time bounded in total by O(m 5. 5 log M).

Conclusions

As noted by Tardos, her algorithm treats a problem of

theoretical interest, i.e., LP's in which cil > (mM)2m or

Ilbl > (mM)2m. Within this domain, Tardos's algorithm is a

significant achievement.

Here we have shown that a dual version of Tardos's algorithm

has a notable conceptual advantage: viz, the algorithm itself is

simpler in that it solves linear programs in one rather than two

phases. Moreover, computationally the algorithm is superior in

special cases, such as for the transshipment problem. (See

Fujishige [1985] and Galil and Tardos [1986].)

A major related theoretical question is: can we find an

algorithm for linear programs whose number of' arithmetic operations

is bounded in m and n and independent of Amax? For this more

general problem, it is not apparent how one can generalize Tardos's

algorithm or the algorithm presented here.

Acknowledgments

I wish to thank Dorit Hochbaum for pointing out that

Karmarkar's algorithm does not necessarily solve the dual LP. I

also wish to thank Leslie Hall and an anonymous referee for

suggestions on how to improve the presentation.

15

References

I. Adler and D. Hochbaum. (1985). On an implementation of the
ellipsoidal algorithm, the complexity of which is independent
of the objective function. In preparation.

A. Frank and E. Tardos. (1985). A combinatorial application of the
simultaneous approximation algorithm. In preparation.

S. Fujishige (1986). A capacity-rounding algorithm for the minimum-
cost circulation problem: a dual framework of the Tardos
algorithm. Math Programming 35, 298-309.

Z. Galil and E. Tardos. (1986). An (n 2 log n(m+n log n)) Minimum
Cost Flow Problem. Submitted for publication.

N. Karmarkar. (1984). A new polynomial time algorithm for linear
programming. Combinatorica, 4, 373-395.

J. Orlin. (1985). Polynomial time simplex and non-simplex
algorithms for the minimum cost flow problem. MIT, Sloan
School working paper.

E. Tardos. (1985). A strongly polynomial minimum cost circulation
algorithm. Combinatorica. To appear.

E. Tardos. (1986). A strongly polynomial algorithm to solve
combinatorial linear programs. Operations Research. To
appear.

16

_1_____1���__1_11__1__--

