14,688 research outputs found

    Is it time to turn our attention toward central mechanisms for post-exertional recovery strategies and performance?

    Get PDF
    • Central fatigue is accepted as a contributor to overall athletic performance, yet little research directly investigates post-exercise recovery strategies targeting the brain • Current post-exercise recovery strategies likely impact on the brain through a range of mechanisms, but improvements to these strategies is needed • Research is required to optimize post-exercise recovery with a focus on the brain Post-exercise recovery has largely focused on peripheral mechanisms of fatigue, but there is growing acceptance that fatigue is also contributed to through central mechanisms which demands that attention should be paid to optimizing recovery of the brain. In this narrative review we assemble evidence for the role that many currently utilized recovery strategies may have on the brain, as well as potential mechanisms for their action. The review provides discussion of how common nutritional strategies as well as physical modalities and methods to reduce mental fatigue are likely to interact with the brain, and offer an opportunity for subsequent improved performance. We aim to highlight the fact that many recovery strategies have been designed with the periphery in mind, and that refinement of current methods are likely to provide improvements in minimizing brain fatigue. Whilst we offer a number of recommendations, it is evident that there are many opportunities for improving the research, and practical guidelines in this area

    Early Diagnosis of Alzheimer's Disease by NIRF Spectroscopy\ud and Nuclear Medicine\ud

    Get PDF
    Novel approaches to Early Diagnosis of Alzheimer's Disease by NIRF Spectroscopy and Nuclear Medicine are presented and related cognitive, as well as molecular and cellular, models are critically evaluated.\u

    Focal Spot, Winter 2009/2010

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1113/thumbnail.jp

    Effects of non-pharmacological or pharmacological interventions on cognition and brain plasticity of aging individuals.

    Get PDF
    Brain aging and aging-related neurodegenerative disorders are major health challenges faced by modern societies. Brain aging is associated with cognitive and functional decline and represents the favourable background for the onset and development of dementia. Brain aging is associated with early and subtle anatomo-functional physiological changes that often precede the appearance of clinical signs of cognitive decline. Neuroimaging approaches unveiled the functional correlates of these alterations and helped in the identification of therapeutic targets that can be potentially useful in counteracting age-dependent cognitive decline. A growing body of evidence supports the notion that cognitive stimulation and aerobic training can preserve and enhance operational skills in elderly individuals as well as reduce the incidence of dementia. This review aims at providing an extensive and critical overview of the most recent data that support the efficacy of non-pharmacological and pharmacological interventions aimed at enhancing cognition and brain plasticity in healthy elderly individuals as well as delaying the cognitive decline associated with dementia

    Focal Spot, Spring 2006

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1102/thumbnail.jp

    Early Diagnosis of Alzheimer's disease by NIRF Spectroscopy and Nuclear Medicine-v.4.0

    Get PDF
    There is an urgent need for the early detection of diseases such as Alzheimer’s (AD) and Cancers in order to enable their successful treatment. Cancer is the second major cause of death after Heart Disease, and AD is the third major cause of death with major, human and financial/economics trillion dollar consequences for the society. Nuclear Medicine is concerned with applications in Medicine of Nuclear Science and Engineering techniques and knowledge. Three major Nuclear Medicine techniques that are established for diagnostic and research purposes are: Positron Emission Tomography (PET) and CAT/CT, Nuclear Magnetic Resonance Imaging (NMRI/MRI). However, these three techniques have also major limitations in terms of either cost or image resolution, as well as patient irradiation in the case of CAT/CT and PET. On the other hand, Near Infrared Chemical Imaging Microspectroscopy and certain Fluorescence spectroscopic techniques are capable of single cancer cell and/or single molecule detection and/or imaging. Such powerful capabilities, combined with low cost of diagnostics, make these novel techniques very attractive means for early detection of diseases such as cancer and Alzheimer’s, that are promising to reduce the fatality rate of patients through adequate diagnosis and treatment of such diseases at early stages. 
Currently NIH provides only inadequate funding for the clinical and research aspects of these novel investigation and clinical diagnostic techniques by FT-NIRS and Fluorescence spectrocopy for early detection of Alzheimer’s and Cancers.
&#xa

    Early Diagnosis of Alzheimer's disease by NIRF Spectroscopy and Nuclear Medicine

    Get PDF
    There is an urgent need for the early detection of diseases such as Alzheimer’s (AD) and Cancers in order to enable their successful treatment. Cancer is the second major cause of death after Heart Disease, and AD is the third major cause of death with major, human and financial/economics trillion dollar consequences for the society. Nuclear Medicine is concerned with applications in Medicine of Nuclear Science and Engineering techniques and knowledge. Three major Nuclear Medicine techniques that are established for diagnostic and research purposes are: Positron Emission Tomography (PET) and CAT/CT, Nuclear Magnetic Resonance Imaging (NMRI/MRI). However, these three techniques have also major limitations in terms of either cost or image resolution, as well as patient irradiation in the case of CAT/CT and PET. On the other hand, Near Infrared Chemical Imaging Microspectroscopy and certain Fluorescence spectroscopic techniques are capable of single cancer cell and/or single molecule detection and/or imaging. Such powerful capabilities, combined with low cost of diagnostics, make these novel techniques very attractive means for early detection of diseases such as cancer and Alzheimer’s, that are promising to reduce the fatality rate of patients through adequate diagnosis and treatment of such diseases at early stages. 
Currently NIH provides only inadequate funding for the clinical and research aspects of these novel investigation and clinical diagnostic techniques by FT-NIRS and Fluorescence spectrocopy for early detection of Alzheimer's and Cancers

    Focal Spot, Summer 2003

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1094/thumbnail.jp

    The amazing brain

    Get PDF
    corecore