102,768 research outputs found

    Off-Policy Deep Reinforcement Learning by Bootstrapping the Covariate Shift

    Full text link
    In this paper we revisit the method of off-policy corrections for reinforcement learning (COP-TD) pioneered by Hallak et al. (2017). Under this method, online updates to the value function are reweighted to avoid divergence issues typical of off-policy learning. While Hallak et al.'s solution is appealing, it cannot easily be transferred to nonlinear function approximation. First, it requires a projection step onto the probability simplex; second, even though the operator describing the expected behavior of the off-policy learning algorithm is convergent, it is not known to be a contraction mapping, and hence, may be more unstable in practice. We address these two issues by introducing a discount factor into COP-TD. We analyze the behavior of discounted COP-TD and find it better behaved from a theoretical perspective. We also propose an alternative soft normalization penalty that can be minimized online and obviates the need for an explicit projection step. We complement our analysis with an empirical evaluation of the two techniques in an off-policy setting on the game Pong from the Atari domain where we find discounted COP-TD to be better behaved in practice than the soft normalization penalty. Finally, we perform a more extensive evaluation of discounted COP-TD in 5 games of the Atari domain, where we find performance gains for our approach.Comment: AAAI 201

    Trajectory-Based Off-Policy Deep Reinforcement Learning

    Full text link
    Policy gradient methods are powerful reinforcement learning algorithms and have been demonstrated to solve many complex tasks. However, these methods are also data-inefficient, afflicted with high variance gradient estimates, and frequently get stuck in local optima. This work addresses these weaknesses by combining recent improvements in the reuse of off-policy data and exploration in parameter space with deterministic behavioral policies. The resulting objective is amenable to standard neural network optimization strategies like stochastic gradient descent or stochastic gradient Hamiltonian Monte Carlo. Incorporation of previous rollouts via importance sampling greatly improves data-efficiency, whilst stochastic optimization schemes facilitate the escape from local optima. We evaluate the proposed approach on a series of continuous control benchmark tasks. The results show that the proposed algorithm is able to successfully and reliably learn solutions using fewer system interactions than standard policy gradient methods.Comment: Includes appendix. Accepted for ICML 201
    • …
    corecore