1,763 research outputs found

    Impact of Vehicle Headlights Radiation Pattern on Dynamic Vehicular VLC Channel

    Get PDF
    This article develops a statistical large-scale fading (path loss) model of a dynamic vehicular visible light communication (VVLC) system. The proposed model combines the impact of inter-vehicle spacing and the radiation intensity distribution as a function of the irradiance angle which changes with the traffic conditions. Three models (Lambertian, Gaussian, and empirical) are utilized to examine the impact of vehicles headlights radiation pattern on the statistical path loss of VVLC system. The analytical model of channel path loss is validated by Monte Carlo simulation with the headlight model simulated with a raytracing software. The path loss values of the Gaussian model differ by 2 dB compared to the Lambertian model, irrespective of the traffic conditions while it differs by 24.6 dB during late night and 8.15 dB during rush hours compared to the empirical model of a Toyota Altis headlight. This variation shows that the radiation intensity distribution should be modelled for each vehicle's headlights from each manufacturer to ensure accurate VVLC channel model. The proposed Gaussian model provides a close approximation to describe such radiation pattern and can easily be adapted to model for different manufacturers' headlights

    A Vision-Based Driver Nighttime Assistance and Surveillance System Based on Intelligent Image Sensing Techniques and a Heterogamous Dual-Core Embedded System Architecture

    Get PDF
    This study proposes a vision-based intelligent nighttime driver assistance and surveillance system (VIDASS system) implemented by a set of embedded software components and modules, and integrates these modules to accomplish a component-based system framework on an embedded heterogamous dual-core platform. Therefore, this study develops and implements computer vision and sensing techniques of nighttime vehicle detection, collision warning determination, and traffic event recording. The proposed system processes the road-scene frames in front of the host car captured from CCD sensors mounted on the host vehicle. These vision-based sensing and processing technologies are integrated and implemented on an ARM-DSP heterogamous dual-core embedded platform. Peripheral devices, including image grabbing devices, communication modules, and other in-vehicle control devices, are also integrated to form an in-vehicle-embedded vision-based nighttime driver assistance and surveillance system

    Deep Reinforcement Learning Algorithms for Hybrid V2X Communication: A Benchmarking Study

    Full text link
    In today's era, autonomous vehicles demand a safety level on par with aircraft. Taking a cue from the aerospace industry, which relies on redundancy to achieve high reliability, the automotive sector can also leverage this concept by building redundancy in V2X (Vehicle-to-Everything) technologies. Given the current lack of reliable V2X technologies, this idea is particularly promising. By deploying multiple RATs (Radio Access Technologies) in parallel, the ongoing debate over the standard technology for future vehicles can be put to rest. However, coordinating multiple communication technologies is a complex task due to dynamic, time-varying channels and varying traffic conditions. This paper addresses the vertical handover problem in V2X using Deep Reinforcement Learning (DRL) algorithms. The goal is to assist vehicles in selecting the most appropriate V2X technology (DSRC/V-VLC) in a serpentine environment. The results show that the benchmarked algorithms outperform the current state-of-the-art approaches in terms of redundancy and usage rate of V-VLC headlights. This result is a significant reduction in communication costs while maintaining a high level of reliability. These results provide strong evidence for integrating advanced DRL decision mechanisms into the architecture as a promising approach to solving the vertical handover problem in V2X

    Detection of Motorcycle Headlights Using YOLOv5 and HSV

    Get PDF
    "Electronic Traffic Law Enforcement" (ETLE) denotes a mechanism that employs electronic technologies to implement traffic regulations. This commonly entails utilizing a range of electronic apparatuses like cameras, sensors, and automated setups to oversee and uphold traffic protocols, administer fines, and enhance road security. ETLE systems are frequently utilized for identifying and sanctioning infractions like exceeding speed limits, disregarding red lights, and turning off the headlights. In Indonesia, there is currently no dedicated system designed to detect traffic violation, especially regarding vehicle headlights. Therefore, this research was conducted to detect vehicle headlights using digital images. With the results of this study, it will be possible to develop a system capable of classifying whether vehicle headlights are on or off. This research employed the deep learning method in the form of the YOLOv5 model, which achieved an accuracy of 94.12% in detecting vehicle images. Furthermore, the white color extraction method was performed by projecting the RGB space to HSV to detect the Region of Interest (ROI) of the vehicle headlights, achieving an accuracy of 73.76%. The results of this vehicle headlight detection are influenced by factors such as lighting, image capture angle, and vehicle type

    An algorithm for accurate taillight detection at night

    Get PDF
    Vehicle detection is an important process of many advance driver assistance system (ADAS) such as forward collision avoidance, Time to collision (TTC) and Intelligence headlight control (IHC). This paper presents a new algorithm to detect a vehicle ahead by using taillight pair. First, the proposed method extracts taillight candidate regions by filtering taillight colour regions and applying morphological operations. Second, pairing each candidates and pair symmetry analysis steps are implemented in order to have taillight positions. The aim of this work is to improve the accuracy of taillight detection at night with many bright spot candidates from streetlamps and other factors from complex scenes. Experiments on still images dataset show that the proposed algorithm can improve the taillight detection accuracy rate and robust under limited light images

    Development of electric vehicle with advanced lighting system and all electric drive

    Get PDF
    Author name used in this publication: K. W. E. ChengAuthor name used in this publication: S. L. HoVersion of RecordPublishe
    corecore