94 research outputs found

    Analysis of GPS Satellite Allocation for the United States Nuclear Detonation Detection System (USNDS)

    Get PDF
    We present an approach for identifying salient input features in high feature to exemplar ratio conditions. Basically we modify the SNR saliency-screening algorithm to improve the solution of the optimal salient feature subset problem. We propose that applying the SNR method to randomly selected subsets (SRSS) has a superior potential to identify the salient features than the traditional SNR algorithm has. Two experimental studies are provided to demonstrate the consistency of the SRSS. In the first experiment we used a noise-corrupted version of the Fisher s Iris classification problem. The first experiment designed to prove the fidelity of the SRSS method. The second application is a real-life industrial problem. The salient features of this dataset are not known beforehand. We compared the performances of the salient feature subsets created by the traditional SNR and the SRSS method. We also realized that the SRSS algorithm improved the current solution to this industrial application

    Proceedings of the Third International Mobile Satellite Conference (IMSC 1993)

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial cellular communications services. While the first and second International Mobile Satellite Conferences (IMSC) mostly concentrated on technical advances, this Third IMSC also focuses on the increasing worldwide commercial activities in Mobile Satellite Services. Because of the large service areas provided by such systems, it is important to consider political and regulatory issues in addition to technical and user requirements issues. Topics covered include: the direct broadcast of audio programming from satellites; spacecraft technology; regulatory and policy considerations; advanced system concepts and analysis; propagation; and user requirements and applications

    Satellite Networks: Architectures, Applications, and Technologies

    Get PDF
    Since global satellite networks are moving to the forefront in enhancing the national and global information infrastructures due to communication satellites' unique networking characteristics, a workshop was organized to assess the progress made to date and chart the future. This workshop provided the forum to assess the current state-of-the-art, identify key issues, and highlight the emerging trends in the next-generation architectures, data protocol development, communication interoperability, and applications. Presentations on overview, state-of-the-art in research, development, deployment and applications and future trends on satellite networks are assembled

    Band sharing and satellite diversity techniques for CDMA.

    Get PDF
    High levels of interference between satellite constellation systems, fading and shadowing are a major problem for the successful performance of communication systems using the allocated L/S frequency bands for Non-Geostationary Earth Orbit (NGEO) satellites. As free spectrum is nonexistent, new systems wishing to operate in this band must co-exist with other users, both satellite and terrestrial. This research is mainly concerned with two subjects. Firstly, band sharing between different systems Code Division Multiple Access (CDMA) and Time Division Multiple Access (TDMA) has been evaluated for maximizing capacity and optimising efficiency of using the spectrum available. For the case of widened channel bandwidth of the CDMA channel, the overlapping was tested under different degrees of channel overlap and different orders of filters. The best result shows that at the optimum degree of channel overlap, capacity increases by up to 21%. For the case of fixed channel bandwidth, the optimum overlapping between CDMA systems depends on the filtering Roll-off factor and achieves an improvement of the spectrum efficiency of up to 13.4%. Also, for a number of narrowband signal users sharing a CDMA channel, the best location of narrowband signals to share spectrum with a CDMA system was found to be at the edge of the CDMA channel. Simulation models have been constructed and developed which show the combination of DS- CDMA techniques, forward error correction (FEC) code techniques and satellite diversity with Rake receiver for improving performance of interference, fading and shadowing under different environments. Voice activity factor has been considered to reduce the effect of multiple access interference (MAI). The results have shown that satellite diversity has a significant effect on the system performance and satellite diversity gain achieves an improvement up to 6dB. Further improvements have been achieved by including concatenated codes to provide different BER for different services. Sharing the frequency band between a number of Low Earth Orbit (LEO) satellite constellation systems is feasible and very useful but only for a limited number of LEOS satellite CDMA based constellations. Furthermore, satellite diversity is an essential factor to achieve a satisfactory level of service availability, especially for urban and suburban environments

    Military Space Mission Design and Analysis in a Multi-Body Environment: An Investigation of High-Altitude Orbits as Alternative Transfer Paths, Parking Orbits for Reconstitution, and Unconventional Mission Orbits

    Get PDF
    High-altitude satellite trajectories are analyzed in the Earth-Moon circular restricted three-body problem. The equations of motion for this dynamical model possess no known closed-form analytical solution; therefore, numerical methods are employed. To gain insight into the dynamics of high-altitude trajectories in this multi-body dynamical environment, periapsis Poincare\u27 maps are generated at particular values of the Jacobi Constant. These maps are employed as visual aids to generate initial guesses for orbital transfers and to determine the predictability of the long term behavior of a spacecraft\u27s trajectory. Results of the current investigation demonstrate that high-altitude transfers may be performed for comparable, and in some cases less, V than conventional transfers. Additionally, transfers are found that are more timely than a launch-on-demand capability that requires 30 days lead time. The ability of satellites in such orbits to provide remote sensing coverage of the surface of the Earth is also assessed and found to be low relative to that of a satellite at geostationary altitude (35,786 km); however, intervals of high performance exist. The current investigation demonstrates not only the potential utility of high-altitude satellite trajectories for military applications but also an effective implementation of methods from dynamical systems theory

    Tightly coupled GPS-gyro integration for spacecraft attitude determination

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1997.Includes bibliographical references (p. 197-199).by Varun Prui.M.S

    A Secure and Efficient Communications Architecture for Global Information Grid Users via Cooperating Space Assets

    Get PDF
    With the Information Age in full and rapid development, users expect to have global, seamless, ubiquitous, secure, and efficient communications capable of providing access to real-time applications and collaboration. The United States Department of Defense’s (DoD) Network-Centric Enterprise Services initiative, along with the notion of pushing the “power to the edge,” aims to provide end-users with maximum situational awareness, a comprehensive view of the battlespace, all within a secure networking environment. Building from previous AFIT research efforts, this research developed a novel security framework architecture to address the lack of efficient and scalable secure multicasting in the low earth orbit satellite network environment. This security framework architecture combines several key aspects of different secure group communications architectures in a new way that increases efficiency and scalability, while maintaining the overall system security level. By implementing this security architecture in a deployed environment with heterogeneous communications users, reduced re-keying frequency will result. Less frequent re-keying means more resources are available for throughput as compared to security overhead. This translates to more transparency to the end user; it will seem as if they have a “larger pipe” for their network links. As a proof of concept, this research developed and analyzed multiple mobile communication environment scenarios to demonstrate the superior re-keying advantage offered by the novel “Hubenko Security Framework Architecture” over traditional and clustered multicast security architectures. For example, in the scenario containing a heterogeneous mix of user types (Stationary, Ground, Sea, and Air), the Hubenko Architecture achieved a minimum ten-fold reduction in total keys distributed as compared to other known architectures. Another experiment demonstrated the Hubenko Architecture operated at 6% capacity while the other architectures operated at 98% capacity. In the 80% overall mobility experiment with 40% Air users, the other architectures re-keying increased 900% over the Stationary case, whereas the Hubenko Architecture only increased 65%. This new architecture is extensible to numerous secure group communications environments beyond the low earth orbit satellite network environment, including unmanned aerial vehicle swarms, wireless sensor networks, and mobile ad hoc networks

    Proceedings of the Fifth International Mobile Satellite Conference 1997

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments

    Space-Based Information Infrastructure Architecture for Broadband Services

    Get PDF
    This study addressed four tasks: (1) identify satellite-addressable information infrastructure markets; (2) perform network analysis for space-based information infrastructure; (3) develop conceptual architectures; and (4) economic assessment of architectures. The report concludes that satellites will have a major role in the national and global information infrastructure, requiring seamless integration between terrestrial and satellite networks. The proposed LEO, MEO, and GEO satellite systems have satellite characteristics that vary widely. They include delay, delay variations, poorer link quality and beam/satellite handover. The barriers against seamless interoperability between satellite and terrestrial networks are discussed. These barriers are the lack of compatible parameters, standards and protocols, which are presently being evaluated and reduced

    A Bibliography of NPS Space Systems Related Student Research, 2013-2022

    Get PDF
    Dudley Knox Library, Naval Postgraduate School.Approved for Public Release; distribution is unlimite
    corecore