8,160 research outputs found

    B-RPM: An Efficient One-to-Many Communication Framework for On-Chip Networks

    Get PDF
    The prevalence of multicore architectures has accentuated the need for scalable on-chip communication media. Various parallel applications and programming paradigms use a mix of unicast (one-to-one) and multicast (one-to-many) to maintain data coherence and consistency. Providing efficient support for these communication patterns becomes a critical design point for on-chip networks (OCN). High performance on-chip networks design advocates balanced traffic across the whole network, which makes adaptive routing appealing. Adaptive routing explores the path diversity of the network, increases throughput, and reduces network latency compared with oblivious routing. In this work, we propose an adaptive multicast routing, Balanced Recursive Partitioning Multicast (B-RPM), to achieve balanced one-to-many on-chip communication. The algorithm derives its functionality from previously proposed algorithm Recursive Partitioning Multicast (RPM). Unlike RPM which uses fixed set of directional priorities and position of destination nodes, B-RPM replicates packet based on the local congestion information and position of destination nodes with respect to current node. B-RPM employs a new deadlock avoidance technique Dynamically Sized Virtual Networks (DSVN). Built upon the traditional virtual networks, DSVN dynamically allocates the network resources to different VNs according to the run-time traffic status, which delivers better resources utilization. We also propose a new scheme for representing multiple destinations in packet head. The scheme works simply by differentiating multicast and unicast packets. The algorithm combined with dynamically sized virtual networks enables us to improve network performance at high load on average by 20% (up to 50%) and saturation throughput of network on average by 10% (up to 18%) over the most recent multicast algorithm. Also the new header representation scheme enables us to save 24% of dynamic link power

    OutFlank Routing: Increasing Throughput in Toroidal Interconnection Networks

    Full text link
    We present a new, deadlock-free, routing scheme for toroidal interconnection networks, called OutFlank Routing (OFR). OFR is an adaptive strategy which exploits non-minimal links, both in the source and in the destination nodes. When minimal links are congested, OFR deroutes packets to carefully chosen intermediate destinations, in order to obtain travel paths which are only an additive constant longer than the shortest ones. Since routing performance is very sensitive to changes in the traffic model or in the router parameters, an accurate discrete-event simulator of the toroidal network has been developed to empirically validate OFR, by comparing it against other relevant routing strategies, over a range of typical real-world traffic patterns. On the 16x16x16 (4096 nodes) simulated network OFR exhibits improvements of the maximum sustained throughput between 14% and 114%, with respect to Adaptive Bubble Routing.Comment: 9 pages, 5 figures, to be presented at ICPADS 201

    Quarc: a high-efficiency network on-chip architecture

    Get PDF
    The novel Quarc NoC architecture, inspired by the Spidergon scheme is introduced as a NoC architecture that is highly efficient in performing collective communication operations including broadcast and multicast. The efficiency of the Quarc architecture is achieved through balancing the traffic which is the result of the modifications applied to the topology and the routing elements of the Spidergon NoC. This paper provides an ASIC implementation of both architectures using UMCpsilas 0.13 mum CMOS technology and demonstrates an analysis and comparison of the cost and performance between the Quarc and the Spidergon NoCs

    Quarc: a novel network-on-chip architecture

    Get PDF
    This paper introduces the Quarc NoC, a novel NoC architecture inspired by the Spidergon NoC. The Quarc scheme significantly outperforms the Spidergon NoC through balancing the traffic which is the result of the modifications applied to the topology and the routing elements.The proposed architecture is highly efficient in performing collective communication operations including broadcast and multicast. We present the topology, routing discipline and switch architecture for the Quarc NoC and demonstrate the performance with the results obtained from discrete event simulations
    • ā€¦
    corecore