64 research outputs found

    Opening the “Black Box” of Silicon Chip Design in Neuromorphic Computing

    Get PDF
    Neuromorphic computing, a bio-inspired computing architecture that transfers neuroscience to silicon chip, has potential to achieve the same level of computation and energy efficiency as mammalian brains. Meanwhile, three-dimensional (3D) integrated circuit (IC) design with non-volatile memory crossbar array uniquely unveils its intrinsic vector-matrix computation with parallel computing capability in neuromorphic computing designs. In this chapter, the state-of-the-art research trend on electronic circuit designs of neuromorphic computing will be introduced. Furthermore, a practical bio-inspired spiking neural network with delay-feedback topology will be discussed. In the endeavor to imitate how human beings process information, our fabricated spiking neural network chip has capability to process analog signal directly, resulting in high energy efficiency with small hardware implementation cost. Mimicking the neurological structure of mammalian brains, the potential of 3D-IC implementation technique with memristive synapses is investigated. Finally, applications on the chaotic time series prediction and the video frame recognition will be demonstrated

    Quantized Neural Networks and Neuromorphic Computing for Embedded Systems

    Get PDF
    Deep learning techniques have made great success in areas such as computer vision, speech recognition and natural language processing. Those breakthroughs made by deep learning techniques are changing every aspect of our lives. However, deep learning techniques have not realized their full potential in embedded systems such as mobiles, vehicles etc. because the high performance of deep learning techniques comes at the cost of high computation resource and energy consumption. Therefore, it is very challenging to deploy deep learning models in embedded systems because such systems have very limited computation resources and power constraints. Extensive research on deploying deep learning techniques in embedded systems has been conducted and considerable progress has been made. In this book chapter, we are going to introduce two approaches. The first approach is model compression, which is one of the very popular approaches proposed in recent years. Another approach is neuromorphic computing, which is a novel computing system that mimicks the human brain

    2022 roadmap on neuromorphic computing and engineering

    Full text link
    Modern computation based on von Neumann architecture is now a mature cutting-edge science. In the von Neumann architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer technology is expected to solve problems at the exascale with 1018^{18} calculations each second. Even though these future computers will be incredibly powerful, if they are based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in capabilities to learn or deal with complex data as our brain does. These needs can be addressed by neuromorphic computing systems which are inspired by the biological concepts of the human brain. This new generation of computers has the potential to be used for the storage and processing of large amounts of digital information with much lower power consumption than conventional processors. Among their potential future applications, an important niche is moving the control from data centers to edge devices. The aim of this roadmap is to present a snapshot of the present state of neuromorphic technology and provide an opinion on the challenges and opportunities that the future holds in the major areas of neuromorphic technology, namely materials, devices, neuromorphic circuits, neuromorphic algorithms, applications, and ethics. The roadmap is a collection of perspectives where leading researchers in the neuromorphic community provide their own view about the current state and the future challenges for each research area. We hope that this roadmap will be a useful resource by providing a concise yet comprehensive introduction to readers outside this field, for those who are just entering the field, as well as providing future perspectives for those who are well established in the neuromorphic computing community

    The Novel Applications of Deep Reservoir Computing in Cyber-Security and Wireless Communication

    Get PDF
    This chapter introduces the novel applications of deep reservoir computing (RC) systems in cyber-security and wireless communication. The RC systems are a new class of recurrent neural networks (RNNs). Traditional RNNs are very challenging to train due to vanishing/exploding gradients. However, the RC systems are easier to train and have shown similar or even better performances compared with traditional RNNs. It is very essential to study the spatio-temporal correlations in cyber-security and wireless communication domains. Therefore, RC models are good choices to explore the spatio-temporal correlations. In this chapter, we explore the applications and performance of delayed feedback reservoirs (DFRs), and echo state networks (ESNs) in the cyber-security of smart grids and symbol detection in MIMO-OFDM systems, respectively. DFRs and ESNs are two different types of RC models. We also introduce the spiking structure of DFRs as spiking artificial neural networks are more energy efficient and biologically plausible as well

    SIMPEL: Circuit model for photonic spike processing laser neurons

    Get PDF
    We propose an equivalent circuit model for photonic spike processing laser neurons with an embedded saturable absorber---a simulation model for photonic excitable lasers (SIMPEL). We show that by mapping the laser neuron rate equations into a circuit model, SPICE analysis can be used as an efficient and accurate engine for numerical calculations, capable of generalization to a variety of different laser neuron types found in literature. The development of this model parallels the Hodgkin--Huxley model of neuron biophysics, a circuit framework which brought efficiency, modularity, and generalizability to the study of neural dynamics. We employ the model to study various signal-processing effects such as excitability with excitatory and inhibitory pulses, binary all-or-nothing response, and bistable dynamics.Comment: 16 pages, 7 figure

    CarSNN: An Efficient Spiking Neural Network for Event-Based Autonomous Cars on the Loihi Neuromorphic Research Processor

    Get PDF
    Autonomous Driving (AD) related features provide new forms of mobility that are also beneficial for other kind of intelligent and autonomous systems like robots, smart transportation, and smart industries. For these applications, the decisions need to be made fast and in real-time. Moreover, in the quest for electric mobility, this task must follow low power policy, without affecting much the autonomy of the mean of transport or the robot. These two challenges can be tackled using the emerging Spiking Neural Networks (SNNs). When deployed on a specialized neuromorphic hardware, SNNs can achieve high performance with low latency and low power consumption. In this paper, we use an SNN connected to an event-based camera for facing one of the key problems for AD, i.e., the classification between cars and other objects. To consume less power than traditional frame-based cameras, we use a Dynamic Vision Sensor (DVS). The experiments are made following an offline supervised learning rule, followed by mapping the learnt SNN model on the Intel Loihi Neuromorphic Research Chip. Our best experiment achieves an accuracy on offline implementation of 86%, that drops to 83% when it is ported onto the Loihi Chip. The Neuromorphic Hardware implementation has maximum 0.72 ms of latency for every sample, and consumes only 310 mW. To the best of our knowledge, this work is the first implementation of an event-based car classifier on a Neuromorphic Chip.Comment: Accepted for publication at IJCNN 202
    • …
    corecore