2,823 research outputs found

    Stochastic forward-backward and primal-dual approximation algorithms with application to online image restoration

    Get PDF
    Stochastic approximation techniques have been used in various contexts in data science. We propose a stochastic version of the forward-backward algorithm for minimizing the sum of two convex functions, one of which is not necessarily smooth. Our framework can handle stochastic approximations of the gradient of the smooth function and allows for stochastic errors in the evaluation of the proximity operator of the nonsmooth function. The almost sure convergence of the iterates generated by the algorithm to a minimizer is established under relatively mild assumptions. We also propose a stochastic version of a popular primal-dual proximal splitting algorithm, establish its convergence, and apply it to an online image restoration problem.Comment: 5 Figure

    A forward-backward view of some primal-dual optimization methods in image recovery

    Get PDF
    A wide array of image recovery problems can be abstracted into the problem of minimizing a sum of composite convex functions in a Hilbert space. To solve such problems, primal-dual proximal approaches have been developed which provide efficient solutions to large-scale optimization problems. The objective of this paper is to show that a number of existing algorithms can be derived from a general form of the forward-backward algorithm applied in a suitable product space. Our approach also allows us to develop useful extensions of existing algorithms by introducing a variable metric. An illustration to image restoration is provided

    Playing with Duality: An Overview of Recent Primal-Dual Approaches for Solving Large-Scale Optimization Problems

    Full text link
    Optimization methods are at the core of many problems in signal/image processing, computer vision, and machine learning. For a long time, it has been recognized that looking at the dual of an optimization problem may drastically simplify its solution. Deriving efficient strategies which jointly brings into play the primal and the dual problems is however a more recent idea which has generated many important new contributions in the last years. These novel developments are grounded on recent advances in convex analysis, discrete optimization, parallel processing, and non-smooth optimization with emphasis on sparsity issues. In this paper, we aim at presenting the principles of primal-dual approaches, while giving an overview of numerical methods which have been proposed in different contexts. We show the benefits which can be drawn from primal-dual algorithms both for solving large-scale convex optimization problems and discrete ones, and we provide various application examples to illustrate their usefulness

    A Non-Local Structure Tensor Based Approach for Multicomponent Image Recovery Problems

    Full text link
    Non-Local Total Variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the Structure Tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the non-local variations, jointly for the different components, through various ℓ1,p\ell_{1,p} matrix norms with p≥1p \ge 1. To facilitate the choice of the hyper-parameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented thanks to the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for multispectral and hyperspectral images. The results demonstrate the interest of introducing a non-local structure tensor regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods
    • …
    corecore