2,078 research outputs found

    Fast, accurate, and transferable many-body interatomic potentials by symbolic regression

    Full text link
    The length and time scales of atomistic simulations are limited by the computational cost of the methods used to predict material properties. In recent years there has been great progress in the use of machine learning algorithms to develop fast and accurate interatomic potential models, but it remains a challenge to develop models that generalize well and are fast enough to be used at extreme time and length scales. To address this challenge, we have developed a machine learning algorithm based on symbolic regression in the form of genetic programming that is capable of discovering accurate, computationally efficient manybody potential models. The key to our approach is to explore a hypothesis space of models based on fundamental physical principles and select models within this hypothesis space based on their accuracy, speed, and simplicity. The focus on simplicity reduces the risk of overfitting the training data and increases the chances of discovering a model that generalizes well. Our algorithm was validated by rediscovering an exact Lennard-Jones potential and a Sutton Chen embedded atom method potential from training data generated using these models. By using training data generated from density functional theory calculations, we found potential models for elemental copper that are simple, as fast as embedded atom models, and capable of accurately predicting properties outside of their training set. Our approach requires relatively small sets of training data, making it possible to generate training data using highly accurate methods at a reasonable computational cost. We present our approach, the forms of the discovered models, and assessments of their transferability, accuracy and speed

    Symbolic Regression in Materials Science: Discovering Interatomic Potentials from Data

    Full text link
    Particle-based modeling of materials at atomic scale plays an important role in the development of new materials and understanding of their properties. The accuracy of particle simulations is determined by interatomic potentials, which allow to calculate the potential energy of an atomic system as a function of atomic coordinates and potentially other properties. First-principles-based ab initio potentials can reach arbitrary levels of accuracy, however their aplicability is limited by their high computational cost. Machine learning (ML) has recently emerged as an effective way to offset the high computational costs of ab initio atomic potentials by replacing expensive models with highly efficient surrogates trained on electronic structure data. Among a plethora of current methods, symbolic regression (SR) is gaining traction as a powerful "white-box" approach for discovering functional forms of interatomic potentials. This contribution discusses the role of symbolic regression in Materials Science (MS) and offers a comprehensive overview of current methodological challenges and state-of-the-art results. A genetic programming-based approach for modeling atomic potentials from raw data (consisting of snapshots of atomic positions and associated potential energy) is presented and empirically validated on ab initio electronic structure data.Comment: Submitted to the GPTP XIX Workshop, June 2-4 2022, University of Michigan, Ann Arbor, Michiga

    ATK-ForceField: A New Generation Molecular Dynamics Software Package

    Full text link
    ATK-ForceField is a software package for atomistic simulations using classical interatomic potentials. It is implemented as a part of the Atomistix ToolKit (ATK), which is a Python programming environment that makes it easy to create and analyze both standard and highly customized simulations. This paper will focus on the atomic interaction potentials, molecular dynamics, and geometry optimization features of the software, however, many more advanced modeling features are available. The implementation details of these algorithms and their computational performance will be shown. We present three illustrative examples of the types of calculations that are possible with ATK-ForceField: modeling thermal transport properties in a silicon germanium crystal, vapor deposition of selenium molecules on a selenium surface, and a simulation of creep in a copper polycrystal.Comment: 28 pages, 9 figure

    Inversion of diffraction data for amorphous materials

    Get PDF
    The general and practical inversion of diffraction data-producing a computer model correctly representing the material explored - is an important unsolved problem for disordered materials. Such modeling should proceed by using our full knowledge base, both from experiment and theory. In this paper, we describe a robust method to jointly exploit the power of ab initio atomistic simulation along with the information carried by diffraction data. The method is applied to two very different systems: amorphous silicon and two compositions of a solid electrolyte memory material silver-doped GeSe3 . The technique is easy to implement, is faster and yields results much improved over conventional simulation methods for the materials explored. By direct calculation, we show that the method works for both poor and excellent glass forming materials. It offers a means to add a priori information in first principles modeling of materials, and represents a significant step toward the computational design of non-crystalline materials using accurate interatomic interactions and experimental information

    Hybrid Bond-Order Potential for Silicon

    Get PDF
    ABSTRACT A new hybrid bond-order potential for silicon is developed. The functional form of the potential is derived from hybrid of expressions from empirical bond-order formalism and first principles approximations. The total energy is expressed as the sum of attractive, repulsive and promotion energies. By introducing a screening function derived from approximations to first principles expressions, the potential is made long-ranged by allowing covalent interactions beyond the first nearest neighbor shell of atoms in agreement with quantum mechanical descriptions of the bonding in silicon. Environment-dependent promotion energy is introduced that accurately accounts for energetic interactions due to changes in hybridization state of atoms during chemical bonding. The treatment of the bond-order has been extended beyond the tight-binding second moment approximations to include screening of the bond strength between two atoms by other atoms in their vicinity. A database consisting of structures, cohesive energies and promotion energies of clusters of 3-8 atoms, equations of state properties for 15 phases of silicon were used to obtain optimized parameters for the potential. The resulting model is able to accurately represent silicon in a wide range of bonding environments. The potential has been validated against widely used interatomic potentials for silicon in the literature for energies and structure of small clusters, equations of state for diamond cubic and other high pressure phases of silicon
    • …
    corecore