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ABSTRACT

A new hybrid bond-order potential for silicon is developed. The functional form of
the potential is derived from hybrid of expressions from empirical bond-oraealism
and first principles approximations. The total energy is expressed asiha attractive,
repulsive and promotion energies. By introducing a screening function derived from
approximations to first principles expressions, the potential is made long-ranged b
allowing covalent interactions beyond the first nearest neighbor shell of atoms
agreement with quantum mechanical descriptions of the bonding in silicon. Environment-
dependent promotion energy is introduced that accurately accounts for energetic
interactions due to changes in hybridization state of atoms during chemical bdriding
treatment of the bond-order has been extended beyond the tight-binding second moment
approximations to include screening of the bond strength between two atomsrby othe
atoms in their vicinity.

A database consisting of structures, cohesive energies and promotion evfergies
clusters of 3—8 atoms, equations of state properties for 15 phases of siliconetetie us
obtain optimized parameters for the potential. The resulting model is ablaitatabc
represent silicon in a wide range of bonding environments. The potential has been
validated against widely used interatomic potentials for silicon in thatliter for
energies and structure of small clusters, equations of state for diamondmdloither

high pressure phases of silicon.
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CHAPTER ONE
INTRODUCTION

Silicon (Si) is the main material used in integrateadtutis for microelectronic
applications. Integrated circuits are used in most modern elasdtrbardware ranging
from chips in cell phones, microprocessors, household electronicgirptanes,
spacecraft and satellites. These products are shaping our world &odhytheir
development is of great technological and economic interest. Silsc@n group IV
element in the periodic table and exists in nature as miner#te iform of silica (Sig)
and silicates, which are compounds of silicon, oxygen and metals. Taefgoar of
silicon takes the diamond cubic lattice structure at ambient conslitiThe diamond
cubic silicon is a semiconductor. That is, it is naturally antetat insulator, but can be
made to conduct electricity under the influence of heat orrelextrrent. This ability is
one of the reasons why silicon is the material of choice foromliectronic applications.
The vast abundance of silicon in the soil as a raw matesalrabkes it economically
attractive compared to other semiconductor elements.

The continued miniaturization of feature size on silicon chipsemiconductor
fabrication to less than 108m size is now helping to advance many electronic
applications [1]. This advancement also comes with difficulty in olimg the quality
and yield of microelectronic appliances as the size of the tifeatures in these
appliances approaches dimensions where quantum effects becoavestraProcesses
such as defects, ion migration, surface reconstruction, fragtdrerack propagation are

some of the underlying phenomena occurring during semiconductor tabrieehich



can negatively affect the yield and quality of microelectropioducts. Current day
research and developments in semiconductor materials are now npcosi
understanding these fundamental processes occurring at the iogticscales in order
to improve product quality and yield.

Computational modeling and simulation is playing an important role i
semiconductor materials design and property predictions in adwdirfebrication [2].
“Computer experiments” through modeling and simulation can be helpha@vemaling
atomistic processes useful for experimental interpretation oteadt help guide
experimental design for product development. These “computer expesinoamt be
achieved through the use of molecular dynamics (MD) simulations.

In MD, the phase space trajectory of a system (positions andtsesdaf all atoms
at all time) is computed by solving Newton’s equations of motionerically [3,4]. The
basic principle in MD is to reproduce the motion of atoms in theesysis they occur in
nature. The macroscopic properties of materials such as tdorperpressure, heat
capacity and density can be obtained through analysis of the atomic motiorsystéma.
MD simulations method can be classified into two major typesssatal MD and ab
initio MD. The most prominent ab initio molecular dynamics satiaoh method is the
Car-Parinello molecular dynamics (CPMD).

In classical MD, potential energy and forces on the atonarneuted using an
interatomic potential representing the interactions betweese tams. The forces are
then used to integrate Newton’s equations of motion in time. The CPMiDethod on

the other hand, does not require an interatomic potential, but rqila@tum mechanical



description of the electrons using density functional theory J(HR@ classical dynamics
of the nuclei are used to perform the simulation. The basidgshgé condensed matter
are inherently described when the electronic degrees of freadotreated explicitly by
guantum mechanics in the CPMD method. Therefore, the Car-PariviBllis capable
of providing accurate prediction of material properties. Howeves, domputational
expense required to solve many important problems of interest bssngéthod can be
several orders of magnitude compare to classical MD thatamse#eratomic potential
[2]. Consequently, only small system and short time scaleaaessible when using
Car-Parinello MD. Furthermore, the Car-Parrinello method isitaise for treating van
der Waals-like forces in condensed phases. A major limitatioclasical molecular
dynamics is the lack of realistic and time-efficient iatemic interaction potentials. The
development of such potentials is essential to the accurate tpmedaf materials
properties and processes through molecular simulation.

There is no dearth of interatomic potentials for silicon in tieediure [6-32]. Most
of the available potentials have provided a wealth of knowledge aicpon of bulk
properties, defects, cluster energetics and surface pragpentiarious potentials have
strengths and shortcomings in regard to their ability to acéyrgmedict various
properties of interest. Some were developed specifically to nohdsters [23,28-29], or
a combination of clusters and bulk properties, liquids and equilibrium beHavi@1-
22] and a whole host of other important characteristics.

A long-standing problem of classical inteatomic potentials fdicosi is

transferability, or the ability to predict with reasonableuaacy the properties of silicon



in wide ranging environments. Some of the most demanding environnaeats
encountered during chemical vapor deposition, ion implantation and etching processes.
These place a stringent requirement on a potential to accuratdigl defects and defect
migrations, surface reconstructions, cluster structures andjieseliquid structures,
grain boundaries, equilibrium properties, scattering cross-sectiwh&igh-temperature
and stress-strain behavior. A good candidate potential should tleengfovide an
understanding of these complex processes and their relationshipheitiical bonding
concepts such as bond formation and breaking, hybridization, bond bending, charge
transfer, radical formation and bonding. A detailed comparative [73] study of some
silicon potentials in use reveals useful insight into their gtrenand weaknesses. While
they all provide reasonable description of equilibrium propertiesubiccdiamond
silicon, they are non-transferable to different silicon environmértie quest to develop
accurate classical potentials that are computationally efticend provide better
transferability in various silicon environments is an ongoing effioth some success
[33-37]. Some of these successes can be attributed to the efidet tm incorporate
approximate quantum mechanical description of the covalent bonding anddoglavi
silicon in its diverse polymorphs [35].

Interatomic potentials for silicon in general can be cleskiinto three major
categories. These are bond-order potentials, cluster potentialerabddded atom
method (EAM) potentials. These potentials differ from one anotherapity due to their
functional representation but are similar in regards to thaipirgcal nature. The

potentials are empirical because they are mathematicakegpagions determined from



experimental properties of silicon. These functions are not in ayyderived from first
principles, however, recent advances [36] in tight binding methods umsoment
approximations in the Green’s functions formalism has lead tessef analytical bond
order potentials (BOP). Potentials derived using the BOP thaoeyobtained by
approximations from first principles. The potential described ia thssertation is a
hybrid of BOP functions combined with other empirical expressionshwiie referred to
as a hybrid bond-order potential (HBOP) for silicon.

The first class of empirical potential for silicon is the boander potentials. The
bond order potential formalism was originally introduced by Afell. In general, the

potential energy for this class of potential can be written as:

Eeon=2.2, fC(rij IVijA (rij )+ b Vin(rij )] 1.1)

i (i)
wherer; is the distance from atonto atom.

Here,\/ijA and Vin are the attractive and repulsive part of the potential energy;aad

the bond order for thig bond. The functioffe(r;;) represents a smooth cutoff function to
limit the range of the potential. The main characteristichf tlass of potential is the
variable and configuration-dependent bond order or the strength of the bond. The
coordination number of the participating atoms and the bond anglesdomith their
neighbors are the main factors affecting the strength of the Bona&:xample, when an
atom has a high coordination number, the bonds formed with its neighlbongeaker

than those atoms with few neighbors. Therefore, bond order decreas®mnmailyt with

increase in coordination number of atomandj forming the bond. Additionally, the



bond-order expression favors open structures with bond angles corresponitioget of

diamond structure.

The functions\/ijA and\/ijR are represented as exponential functions:

VijA(r ' )= Aexd- ot ) 1.2)
and
\/iin(rij ): Bexd‘ ﬂrij ) (1.3)

A, o andB, g are adjustable parameters corresponding to caeftec and characteristic
lengths for the attractive and repulsive componefitshe potential respectively. The
form of these functions, Eqgs. 1.2 and 1.3, showsttie bonding is modeled by pairwise
functions, but the full potential include the boowler (Eq. 1.1) which is a many-body
function depending on the local environment ofteed. The bond-order term is further

expressed in terms of atomic coordinates and aaglésilow:

bij = f(gij) (1.4)
i = Z_Vs(rij T ’9) (1.5)
Vs(rij Tir0)= (o(rij T )g(ejik O ) (1.6)

where f(¢) is usually (1 ®)™*? and
o(rij , rix) is usually represented by an exponential functibn; andri. The functional
form of the term describing the dependence of banmagr on bond angley(Gi, i) is

formulated such that structures with angles cooedmg to the diamond cubic phase are



stabilized. A detail comparison of different fuodal forms used foQ(Gik, i) is
presented in section 2.2.

Extensions to the bond-order model have been elfior applications to different
chemical interactions. For example, the reactivedearder (REBO) potential [38,39]
for hydrocarbons have additional terms in the borter accounting for the influence of
radical energetics andbond conjugation on the bond energies and alsarfcate the
effect of dihedral angle rotation about the carbarbon double bonds. Additional terms
in the form of non-bonded interactions have bedroduced in the potential energy
expression (Eq. 1.1) to enable the REBO potenttabant for dispersive forces as
intermolecular interactions in hydrocarbons [40,44¢ torsional interactions in carbon-
carbon single bonds [40]. A variety of bond-orgetentials have been derived for
silicon following the bond-order formalism [8,12]14The formalism has also been
applied to multi-component systems involving sificavith fluorine and chlorine [42],
silicon-carbon-hydrogen [43], silicon-hydrogen [44hd silicon-germanium systems
[45]. All these extensions have aided in the maaetf several systems and processes of
interest in semiconductor and other materials.

The second class of potential is the cluster piaisnmodeled by two and three-

body interactions. The potential energy is gengrapresented by

Eeon = ZVZ (rij )+ DV (rij T Ui ) (1.7)

i,jk
The pairwise two-body terid’(rj) is the sum over contributions froN(N+1)/2 atomic
pairsi andj depending on the distancgbetween them. Typical functional forms of the

two-body terms are the Morse potential [20], thallBgrg function [16], and the widely



used Stillinger-Weber (SW) type exponential funetid9,30-31]. An example of the

two-body potential used in the SW potential [9@igen by

Vz‘(rij)_{ (Br R q)exp{r —a ], r<a (1.8)

r, >a
whereA, B, p, ganda are positive parameters. The exponential termastaff function
that enables the potential to smoothly go to zéno=aa. The above function (Eqg. 1.8)
can be interpreted physically as representatiorstefic repulsion and electrostatic
interaction between the atoms.

In monoatomic solids, the three boWls(rj, ri, k) is symmetric with respect to
exchange of, j andk atoms in the triple sum. Using the SW potentifl] [@ an example,

the three-body potential is given by
V (rl’r]’rk)z h(rij ’rlk’Hjlk )+ h( ji? jk’HI]k )+ h(rki’rkj’gikj) (19)

and the h function is given by the formula
o g 1
h(ru T O )=4 exr{y(rij —a)’+(r, —a) ]x (cos&jik + 5] (1.10)

where 4 and y are constant parameters. This three-body termejmlsive and by
construction the sum vanishes exactly for the dranstructure € = 109.47). This
function, (Eq. 1.10) vanishes whetos @) = -1/3, therefore other lattices are
destabilized relative to the diamond cubic lattitlke interpretation of this choice is that
the potential has tendency to forsp® covalent bonds in silicon. Additionally, the
functions account for covalent effects through bbedding using the angular term and

stretching of atomic bonds;( ri, rik ). These properties enable the potential to giee th



correct ground state (diamond cubic structure) lné trystal silicon at ambient
conditions. A number of extensions to the clusteteptials have been derived. In an
attempt to predict the correct cluster energies;-bwdy interactions [31] has been added
to Eqg. 1.7, while environmental dependence of tiergy has been achieved through the
use of effective coordination in the two- and thbeely terms to help describe defects
and disordered phases in silicon [30].

The EAM potentials are the third class of silicpotentials available in the

literature. The general form of the potential egday these potentials can be written as

Econ = Z F (o )+%z¢(rij ) (1.11)

i#j
whereFi(p) represents the embedded-atom energy of afaand o denotes the local
electron density at atom) which is computed as a superposition of individatdmic
electron densities from other atoms that are neighlof atomi. The term¢(r;) is the
pairwise interaction between atoimasndj separated by a distange

This functional form works well for close-packedaterials such as metals, but
does not work well for covalent systems due tock laf the angular dependent terms
needed to describe covalent bonding. For use iralentv systems, modifications are
usually made to the EAM functions in the form of difed embedded-atom methods
(MEAM) by introducing explicit angular-dependentnfttions [11,55], or indirectly
through screening functions in the local electrendity terms [24]. An example of such

screening function is described in section 2.3.3.



The current study enumerates the importance &rdifit physical contribution to
covalent bonding starting from the bond-order fdrsma originally introduced by Abell
[46] and implemented for silicon by Tersoff [6]. iFHformalism has found success in
hydrocarbons in the form of the REBO potential [3%he aim is of this work is to
provide a systematic development and evaluatioth@finfluence of different physical
effects and their functional representations inliaos potential. These effects include
screening, in which covalent bonding interactiobwaen two atoms is weakened due to
the presence of other neighboring atoms in thewirenment. Another important
property considered is the promotion energy. Thighe energy associated with the
change of occupancy of atomic orbitals when antreleds promoted from the free atom
$°p? configuration to the hybridp® configuration when forming the solid. The potehisa
also made long-ranged to better reproduce the goamhechanical description of
bonding in silicon. It is important to note that shinteratomic potentials are made short-
ranged and usually limited to first nearest neighbteraction in silicon at equilibrium
densities. In contrast, the quantum mechanicairge®n of covalent bonding between
atoms extends beyond the first nearest neighborsilitcon. The short-range cutoff
distances adopted are normally implemented for coatipnal convenience or difficulty
of dealing with strongly covalent bonded secondrestaand further neighbors that may
result due to the nature of the potential expressiosed. The key remedy for this
shortcoming adopted in this study is to introduoe $creening effect. This essentially
circumvents the problem of strong covalent inteosst when atoms are far apart from

one another in condensed phases.

10



The goal of this research work is to develop adeorder potential for silicon that
is reasonably accurate and time-efficient for usenblecular dynamics simulations for
predicting properties of silicon in crystal, buliguid and surfaces.

In Chapter 2, a brief description of the variownponents of the potential are
presented with their functional forms and justifioa. The development of the model
using screening function, bond-order and promogaergy terms is presented. This is
followed by the fitting procedure for the potenti8lystematic derivation of the potential
through incremental addition of functions and pagters and the improvements obtained
are presented. The justifications for using longgeinteraction are enumerated.

The final potential obtained is used to predictiampns of state for crystalline
phases, cluster energies and promotion energieShepter 3. The final results are
compared with those of existing silicon potenteatsl final concluding remarks are made

in Chapter 4.
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CHAPTER TWO
MODEL DEVELOPMENT
2.1 Introduction

The fundamental basis of the potential descrilerd hrises from the use of coarse-
grained first principles density functional thedoydeduce the pertinent components of
the total energy and their representation in arytioally tractable form suitable for use
in classical molecular dynamics simulations. Apgrate tight binding (TB) methods
have been developed previously with this type of &1 mind. This formalism has been
successful in many theoretical investigatipfiz51]. A reduction of TB equations using
moment approximations to density of states in thee@'s function formalism has led to
a series of analytical bond order potentials (BJ®3,35,37]. In the moment
approximations, theith moment of the local density of states for a gisomi is
determined by summing all the hopping or the boggaths of lengtm that start and
end at atom. This concept provides the link between electratracture calculations
involving the diagonalization of the Hamiltoniandamsing an interatomic potential when
evaluating the energy of atomic systems.

The second-moment approximation based on the B@Ralism was shown to
reduce to the Tersoff potential [6]. However, thecond-moment approximation is
unable to provide a good description of the eneliffgrence among three-dimensional
structural phases, such as diamond, FCC, SC, BAQCGiar.

The fourth-moment description is more accurate abte to provide a good

description of the relative stability among thesdymorphs. However, the complicated
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nature of the expressions in the fourth-moment esioas requires significant
computational expense compared to traditional wakspotentials [36]. The
computational burden using these expressions grexponentially as more distant
neighbors are added to extend the range of thejpmite Here, we devise a similar but
computationally efficient method of obtaining thenkl order, while at the same time
incorporating the effect of long-range interactidmetween the atoms. In this study, both
the bond energy and the bond order are screened| && presented in details in section
2.3. Atoms in the second, third, fourth and fiftighbor shells are included in covalent
bonding through the use of a screening functiore $treening function ensures that
forces on atoms are gradually reduced as the desthatween them increases, and fall
smoothly to zero just after the fifth nearest neighshell in diamond cubic structure.

The binding energy is expressed as a sum oversharttie form

EB = zz fc(rij 1\/R (rij )_ S|j b|j blVA(rij ) +Vprom (21)

i j>i

The pair-additive repulsive part of the potentit, and the attractive functiohs, are

given by:
Velr, )= A{l+r9Je(ﬁ“‘) (2.2)
i
V, (rij ): e (2.3)

wherer; is the distance between atoimendj. The potential is smoothly reduced to zero

by multiplying them by the cutoff functiofy(r;j) [57], given by:
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1 ri<r

ij — "min
fc(rij ): Q (rmax - r.ij )2 + a:I.rij (rmax - r.ij )2 + aZrij2 (r max_rij )2 Fiin < r.ij < Mmax (24)
0 L <r

i = "max

Here we use Bninvalue of 5.5 A andyfax (fcu) of 5.95 A.

The parametersy, & anda, are chosen so thatfc(r;) and its first two derivatives are
continuous atynand by constructiorfe(r;;) and its first derivative are also continuous at
I'max The symbol#\, Q, «, £, and b, are adjustable parameters.

The termdb; is the bond-order for the bond connectirandj, S; represent the screening
of atomsi andj by other atoms in their vicinity, angom is the total promotion energy of
all atoms in the system. Details of the functiorggresentations for the bond-order,
screening function and the promotion energy arerde=l in sections 2.2, 2.3 and 2.4
respectively.

The form of the repulsive and attractive term&q 2.1 - 2.3 are identical to those
in the Tersoff[8] and Brenner[39] bond-order potentials for silicon and carbon
respectively. These potentials are short-rangedh wanly first nearest neighbor
interactions in diamond solid at standard condgidm general, potentials for covalent
system are much longer ranged and this featuresengial for adequate description of
surfaces, amorphous, liquid and vapor phase enesget materials when performing
‘computer experiments’ such as film depositiomracedure that is accompanied by
inherent complex processes such as defect formatbemical reactions, surface

reconstruction and stress-strain behaviors.
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2.2 Bond-Order

In the second-moment approximation, only the fingtarest neighbor atoms
contribute to the bond order. The bond-order esgiom described here is modeled after
the second- moment approximations in the BOP theatty modifications to ensure that
distant atoms up to the fifth nearest neighborlsheso contribute to the overall bond
order.

The bond-order expression is given by:

blj :(blj%bﬁ) (2.5)

where bl}’ represents the bond order resulting from the eighof atom i, and by

represent the bond order contribution due to neghbf atom |.
These terms are given by;

1

\/(u 3 S, * £.(0)* 90, ))

by = (2.6)

(k=)
Where theSg function represents the screening of the individoatributions to the bond

order from thek atoms that are neighborsiof Thek’ atoms are the neighbors of atoms

andk in theik bond.

Sk = [ [~ fo(An Jexd—2(ar.)). (2.7)

k'#i k
and f(4rik) is the cutoff function computed using Eq. 2.4 with argument

Alige = Tiw + ke = Tik.

15



In the second-moment approximation, the dependehdbe bond-order on the

angle @, formed by a pair of nearest neighbor atoms is

9(0 )= { 1+pf|’oa }( ( : j +codf, ) )}2 2.8)

This function has a similar shape as the angulaetion in the Tersoff potential, but with

the advantage of using only one parampieas opposed to three in the Tersoff potential

[8].

The angular expression for Tersoff Potential §8given by:

. C _
o0 )1+ G~ 7 r-cod, ] @9

ijl

Wheredy is the angle between bongisindik andc, d andh are adjustable parameters.
A major drawback of using only this expression t@iculating bond-order is that
structural differentiation in different silicon pbes is not well resolved by the Tersoff
potential and other similar potentials utilizingstfiormalism [33]. Secondly, it is valid
only for atoms within the shell of first nearestgidors, a deficiency that is the probable
caused by the first problem.

An extension of the angular function in Tersoftgntials [6-8] was implemented
in REBO and the adaptive intermolecular REBO (AIRBBotentials [38-40] for carbon
by addition of ad hoc functions and parameters.l§\iese additions help in correcting

for energetics of small hydrocarbon molecules, dpglthem to calculations beyond this

16



fitting region when estimating the %fraction in amorphous carbon at high densities
resulted in unsatisfactory results [52,56].

The empirical bond-order potential for semicondustdeveloped by Conrad and
Scheerscmidt [25] uses a different variant of #®ad moment approximation to TB for
its bond-order model. Similar to HBOP, the angui@ms depend on the hopping

elements (ssand pw) that makes up the,garameter. Here,

ga(eﬁk)= a+b* cos(@iik)+ c* 005(2* Hjik), (2.10)
a=1-b-c, (2.11)
b= i—:, (2.12)
2(1p_p) 219

P, =% (2.14)

Wherea, b andc are parameters determined from TB Hamiltonian botehral matrix
elementssso andppo that depends on the atomic species. A comparisoneocangular
function for all three empirical potentials given Bqgs. 2.8-2.10 is shown in Figure 2.1.
They have closely similar shape between angles d %h degrees, but all of them
approach zero at different bond angles. For exantpe Tersoff potential [8] has its
angular function at a minimum of about 2.0 **18nd bond angle of 126.6 degrees, the

Conrad and Scheerscmidt potential [25] has itsmmimn value of zero at a bond angle of
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101.82 degres while HBOP gives a minimum of zero at the tetdrhé bond angle of
109.47 degree A theoretical interpretation of this function that bond order is
maximum (org(é) is minimum) for bonds in the tetrahedral geométy ~ 109.47). By
careful selection op, = 3 in HBOP, g(6) becomes zero at the tetrahedral angle. In
graphitic silicon with an Spstructure, the bond angles are at ti2grees which is close

to the minimum value af(6) for the HBOP function.

In this study, we follow a more pragmatic approacmpare to the fourth moment
approximation for computing the bond-order by usthg second moment expression
with the range extended with a cutoff function byliuding atoms that are up to 5.95 A
distance apart in the covalent interaction. A nmeteension of the range of the potential
while utilizing Eq. 2.6 results in an unsatisfagtgrotential that is not transferable
between the bulk phases and clusters. The reasdhigopoor transferability is because
atoms that are at larger distances away from ithbond have equal weights of
contribution to the bond order as atoms in the fissghbor shell when using Eq. 2.59 in
section 2.6. This should not be the case as tls¢ fiearest neighbors have greater
influence on the bond order. A more severe prolikethat some of these long distance
neighbors are at lower angles relative to ifhpair in question. These lower the bond
order to unphysical values, especially for shomdsy which are more likely to have
fewer atoms screening them strongly from one ampthat which still have a larger
number of distant neighbors. We therefore remetyydaficiency by screening the bond
order contribution from eaciy bond interaction in angular part of the potentising a

similar screening function as that of bond eneky. .7).
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The idea is to ensure that more distant neighbloasomsi andj that are highly screened
contribute less to the bond order, while those atam the first coordination shell
dominate the angular contribution to the bond omerexpected. The screening of the
bond-order is represented in Eqg. 2.6. In the buflase, the screened bond-order

expression ensures thaatoms (neighbors of thebond) that are farther away from the

T 4 e T T T T T T T T

HBOP
08 | s Conrad and Scheerschmidt = 7

07 b X .

06 g 4

04 - P

(@) (arbitrary units)
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. g
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Figure 2.1 A comparative plot of @( functions for bond-order potentials HBOP,
Tersoff Potential [13] and the potential of Coneadi Scheerscmidt [78]. Tligd) values
for the Tersoff potential and Conrad and Scheerdcpotential are normalized for easy

comparison. The plot for Conrad and Scheerscmitéial is f.(6)]°.
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ij bond and having more intervening atoms are prgseneened. This implies that, for
long distantik andjk bonds, lower numerical values §f in Eq. 2.7 are obtained and
hence a lowering of the angular contribution to Hwad order in Eq. 2.6. Therefore,
shorterik bonds that are in the first neighbor shell of iattion have higher influence on
the bond order as explained earlier.

An important feature of the fourth moment approadiion in the BOP formulation
is that atoms up to and including the third nearesghbors of thej bond and fifth
nearest neighbor of one another are included inpotimg the bond order. While the
current implementation avoids using those complerp$ required by the BOP
formalism, a computationally intensive procedure, devise a method that incorporates
up to the fifth nearest neighbors of tipdbond using a single expression (Eqgs. 2.5-2.8)
that is appropriately screened for the long distaatoms. This implementation gives a
potential that is transferable between the bulkstaly phases and clusters, as

demonstrated in Chapter 3.

2.3 Screening

A key feature of the current potential implemeiotator silicon is the inclusion of
a bond screening ter in the bond energy and bond order expressionsee8ing is a
guantum mechanical effect occurring between atomsondensed phases and even
clusters. The bond energy and bond order betweenatwms is weakened by the

presence of other atoms in their environment dugteening. The quantum mechanical
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nature of the screening owes its origin to intemee due to orbital overlap in covalent
bonding. For example, the covalent interaction leetwa pair of Si atoms at a distance of
5 A apart depends strongly on whether there isrd #tom between them that screens
their interaction by preventing orbital overlap. Agrpression describing the screening
function was derived using approximations from BQ@keory by inverting the
nonorthogonality tight binding matrix [35]. Thig@ession forms the starting point for
our model of screening which is presented in sec2o3.4. Various other ad-hoc
expressions [24,47,53] have been implemented fiamesng in classical potentials. A
common feature of all the screening expressionisasthe covalent interaction between
two atoms is completely screened when another aodirectly on the line connecting
them, but such screening gradually falls off asitiberfering atoms get father away from
the pair of atoms in question. Here, the mathemmbtxpressions used for screening
various potentials will be examined with their damties and differences. Among these
methods are the tight binding potentials for carpbf], the embedded atom methods for
silicon [24] and nickel [53], and analytical bondder potentials (BOP) [35,37]. A

systematic derivation of the screening functiontha current work is also presented.

2.3.1 Ames Group

Tsang, Wang, Chan and Ho [47] at Ames laboratocprporated environmental
dependence in the TB hopping integrals and thevssrrepulsive potential between two
atoms i and j in carbon using a screening functidhe two-center hopping integral in

the minimal basis set in the TB Hamiltonian betwaeagiven pair of atomisand] at
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distancerjj is given by
h (v )= he’(r, Ja-57) (2.15)

Where ¢ and g represent the atomic orbitals s or p and the saorgefunction is

modeled as
af exdgij )_ exd_ é:ij )
5o exdéj )"‘ exd&i ) (219
with
i+ rjl »
é:ij = ﬁlzllex -5, . (2.17)
ij

where &; depends on the position of atomsndj and those of their neighborand A,

[ and f3 are adjustable parameters. The functhﬁ(rij) is the unscreened hopping

integral which depends on the distance betweensatamdj [47]. In this formalism, the

screening functioSlf‘ﬁ can be different for different hopping integraépending on their

environment. The TB hopping integrals, screeningcfion and the pairwise repulsion
are all smoothly cutoff at 5.2.AFor calculating the screening function, all néigting
atoms!| within a circular cutoff radius of 5.2 fkom both atoms andj are included as
shown in Figure 2.2 and Eq.2.17. This screenimgtian was used in the TB expression
to model binding energies of carbon [47] and sHli¢64] in different environments such
as graphite, BCC, SC, FCC and diamond. The exmmessn Eqs. 2.16 and 2.17 are
complicated with no theoretical basis other thawminta the mathematical appeal to

describing the screening effect.
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Figure 2.2. Schematic illustration of the strieg of atoms andj by atoms labeletl
as described in the tight binding implementationdarbon by Tsang, Wang, Chan and
Ho [47]. All atoms labeled within the two circles with cutoff radius of 5.2 Are

included in calculating the screening function&m 2.16 and 2.17.

23



2.3.2 Cai Model

A modified embedded atom method (EAM) potentialditicon developed by Cai
[24] incorporated screening in the embedding enB(gy), wherep; is the local electron
density at atom obtained from linear superposition of electron @& of neighboring
atoms around it. The EAM method [58-59] works welt metals and closely-packed
materials because of the symmetric nature of tAmic arrangement. However, in
covalent systems such as silicon, angular depeerdenthe bond energy makes it more
difficult to model the covalent interactions usiB@M-type models. Cai introduced a
screening function that is able to model this aagblehavior indirectly by multiplying
the individual atomic electron densitfr;) of atomi due to atonj with the screening
function Sy, whereSyc is the screening function due to at&nm the vicinity of atoms
andj. Therefore, the local electron density of ators obtained as the sum of individual

screened electron densities due to its neighbass

P = Zsu' f(rij) (2.18)
i=(i)

where for a many-atom system, the screening otctimeribution to electron density at

atomi by its neighbors except for atgns given by

Slj :kH)Sljk =ex _k(z_)giij (2.19)
#i, ]

(#1,]

with
0 Mo T =T 2 2rij
r. r. 1
ij ij
W =1—| —— == O<r +r,—r, >2r, (2.20)
i ririk + =T ZJ ke T
00 M +1y —1; =0
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The screening cutoff implementation uses a vagialiipsoidal radius of twice the
distance between atomsndj in question, or simply 2;. This choice is arbitrary and
adopted for its mathematical convenience. The tutgflementation for the Cai method
is illustrated in Figure 2.3. The work presentedthins dissertation adopts a similar
strategy to that used by Cai although with crudiffierences. In the current study, we
also use a cutoff criteria depending on the gegnudtthe three atoms involved j and
k), with covalently bonded atomss and | being screened by atok The cut off
implementation for the HBOP also has elliptical syetry, although with a fixed cutoff
distance that does not dependrpulistant. They also differ in how this cutoff fuimet is
implemented.

In Cai’'s implementation, when atom& andj are arranged in a straight line,
with atomk on the line joining atomsandj, or when anglegi is O degrees, from Eq.
2.20, the screenin§jx becomes 0. The physical interpretation of thisnacio is that
atom k completely screens the covalent interadbeiveen atoms andj. On the other
extreme, when the three atoms are arranged ira@glstdine with atom k located at one
end of the line, the screening becomes 1. That@nk has no effect on the covalent
bonding between atomsandj and therefore the multiplication fact§y in Eqg. 2.19 will
be 1. Cai demonstrated that the individual contrdsuto the atomic density given IS
varies from 0 to 1 as the anghx (angle between thig andik bonds) varies from 0 to
180 degrees when using a three atom sys{em&andk) arranged in isosceles triangle

with distancerj = rix. The behavior of§i as a function of angléix presented in Cai’s

work [24], shows that the screeni$y rapidly approaches 1 as soon as the afigle
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approaches 90 degrees for trimer of atoms. Thegefdatures help to connect the
screening function indirectly with angular functeorthat are known to have more
theoretical appeal [13, 46] for covalent systemserEfor different choices of the
parameterr. in Eq. 2.20 the screening functi@j is not too dissimilar for all angles

between 90 and 180 degrees for the isosceles taranple.

Figure 2.3 Schematic illustration of the screenmigatomsi andj by atoms labele&

for silicon MEAM potential of Cai [24]. All atomwithin the ellipse satisfy the condition
ik + rik — ;=2 rj. The smallest ellipse labeledrepresents the cutoff boundary for
atoms participating in screening of atomandj with shortr; distance. The biggest

ellipse labelea with the largest; has larger cutoff radius and more neighbors.
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By physical intuition, the screeningtbé covalent bonding in atomsandj as
described by Cai’s shows that screening decreagpedly as atonk moves away from
the covalent bonded atomsandj. A drawback with this implementation is that
computation of energy for an atom pair at largeéatgisapart in the condensed phase will
involve considerable computational expense duargel number of atoms necessary to
compute the screening function. Even worse, thisegised computational expense is
needed only for the most weakly bound atoms, thesdor which screening is least
useful.Because of mathematical nature of the cutoff imgletation, this method will
require substantial computational expense relativaost classical interatomic potentials
for silicon when performing molecular dynamics siation

An important difference between Cai's hoet and our implementation is that,
while we maintain a similar elliptical screeningtaffi we avoid this pitfall by limiting
the range at which atoms are able to participatgcieening. Nonetheless, the screened
MEAM potential of Cai was used to predict accuratitice constant, cohesive energy,

elastic constants and a negative Cauchy pressikooh in diamond cubic phase.

2.3.3 Baskes Method

One of the pioneers of the EAM method, M. |. BasKB3] argues that the
traditional implementation of the EAM models withshort radial cut off is not general
because long-range psuodopotentials and elecimogtates cannot use short range
cutoffs. However, the justification that small fescon atoms at longer distances can be

ignored has been widely adopted in many classitatatomic potentials for
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silicon [8-10, 12-23]. The Baskes [53] implemeittat of screening was aimed at
extending the range of the EAM potential for nickglgradually reducing the forces on
well separated atoms. In this implementation, twersi andk that are located at the
edge of the minor axis of an ellipse are screelyeatdims that are within the ellipse. This
is illustrated in Figure 2.4. Atoms outside thepskk formed this way are excluded from
screening atoms andk. In a similar manner to Cai, the atomic electdamsities are
multiplied by the screening functidi (screening between atomsandk due to other
atoms j in the system). Here, if atoms are unse@&x = 0 andSx = 1 if they are
completely screened.

The screening function is represented as

Sk = Hsljk (2.21)

jik

where $ is computed as

c:_Cmin
Sljk B fc|:cmax _Cmin:| (222)
with
c_ 2+ Xig )= (X4~ X f -1 (2.23)

1- (X, = Xy )

and the equation for the ellipse in Figure 2.4iveg by

2
. J%yz _ (%fikj (2.24)
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where X; = (rij It and Xy = (rjk /1, with Crinand Gnaxas the limiting values of

C as shown in the ellipses of Figure 2.4y,@nd G,a.x are determined through fitting to

be 0.8 and 2.8 respectivehhe cutoff functiorf. is represented as:

1 x>1
f(x)={1--@-x)‘f 0<x<1 (2.25)
0 x<0
A
C=2.8

dfo ) -
N

v

2 x/ Tk

Figure 2.4 Schematic illustration of screening tiasi andk by atomj. Atoms outside
the ellipse bounded with C = 2.8 do not screen atobendk, while those inside the

ellipse with C = 0.8 screen atornandk completely.
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A unique difference between this iempentation and those presented earlier is
how the cutoff is applied. The cutoff ellipse dege on the distance of the boikdvith
limiting conditions set forth by G, and G.ax The potential expression has a radial cutoff
distance of 4.0 A for thé& bond in nickel. The screening expressions werd is¢he
MEAM potential to successfully reproduce the expemtal binding energies of FCC,
HCP and BCC phases and vacancy formation, vacangyation and stacking fault
energies in nickel [53]. There is no provision wetjfy that those atoms within the small
ellipse with C = 0.8 will completely screen thebond. For example, condensed phase
liquid at high density may have abundant numbecasffigurations with atoms closely
packed within C = 0.8 ellipse of one and other.sTigpe of scenario will lead to several
atom pairs been completely screened by nearby atdmes using Eqg. 2.21 — 2.25 and
thereby resulting in zero contribution to the kamergy of the system by these pairs. In
practice, these atom pairs will still have someatent interaction with each other and
thereby contributing to the total energy. This ntaynsequently lead to a wrong liquid

structure and thereby render the potential unsatisfy in this regime.

2.3.4 Analytical Bond-order Potential

All the previous expressions presented in sectibBsl-2.3.3 are ad hoc schemes
introduced into their respective potentials to midte environmental dependent nature
of covalent bonding through screening. A theordicenotivated expression for the
screening function has been derived [35] from fpahciples and is presented in this

section. Nguyen-Manh, Pettifor and Vitek [35] dedvan analytical screening expression
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to model the environmental dependence ofd¢he ando bond integrals within the two-
center TB approximation by using the BOP theorintert the nonorthogonality matrix.
The expression was derived by expressing the Hammlih matrix in terms of two-center
bond integrals and Slater-Koster angular functiggiag the following assumptions;

(a) All sites have the same on-site energy.

(b) The screening of thg bond is via thes orbitals on the neighborink sites. The
contributions from thg andd orbitals ofk sites are neglected. The contributions
from s, p and d orbitals of the sites and | are considered in the screening
expression.

(c) Three levels of Lanczos recursion are used to atalthe determinant of the
matrix within the BOP theory.

(d) All four-body and other higher contributions argleeted.

(e) The determinant of the off-diagonak and jk elements in the screened
Hamiltonian matrix elements are assumed to bedhesas those of the ij bond

whose screening is of interest.
The final expression for the screening function is

- (Cij )llr (ﬁ )Ilr (ﬁ3)

T 1_‘_0”21( ) ,uz e

2.26
)II ‘T ( )

with theith atom second-moment contribution given by:

(ﬂiz )n . = Ollzr(Rj )"' Z[(l"' 510)/2]OI§U(RK )9,2, (ejik ) (2.27)

ki, |

while theith third-moment contribution is
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(:uia )u' Z (1+ o )Olkjl g9, @ ( jik )gl'r (_ O ) (2.28)

k=i, j

and

B (Rk)OSI(R(J)+QSa(Rk) sro-(Rq)] (]Ik)gl‘r( uk)
[a+5,)! ERK)QBER)X).,(( )) ((,.k))
i\ er R‘ o Rk sto R(j gl'r ik
(CIL )Il'r —k#ZJ; ﬁl'z’(Rj )

(2.29)

with
Oiiji = Om(Rk ) Slo‘(RkJ b| |a( ) (2-30)

ik is the angle between borjcandik andRy, is theab bond distance. Thel’ =s, p ord

represent orbitals and =o, 7, or 6 represent bond types. The average values of the

second and third-moment contributions are writen a

(). = %[(/ulz )u e ¥ (:“2] )u 'r] (2.31)
and
(l_ls )u v = %[(,ué )u . (:usJ )u 'r] (2.32)

The bond integrals are expressed as:
(R )= Al exil- 4 R;) (2.33)
A and A are parameters determined by fitting to first a®tond nearest neighbor

screened LMTO bond integrals. The overlap integaedsexpressed as:

o =exd- 41R;) (2.3)
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The angular functions are defined as follow:

Jos(0) = 1 (2.35)
015(0) = cosQ) (2.36)
01+(0) = sin@) (2.37)
Go(6) = (1/4) (1 + 3cos(@) (2.38)
02+(6) = (V312) sin(D) (2.39)
025(6) = (V3/4) (1 - cos(®)) (2.40)

Jji is the kronecker delta function.

The above expressions Eg. 2.26- 2.40 were apmiedmpute the screened bond
integrals in elemental BCC molybdenum, silicon &mtary MoSp [35]. The bond and
overlap integrals as well as the screening funcéiencut off before the third neighbor
shell. The screening function was also used to Idped potentials for titanium (Ti),
aluminum (Al) and alumina (TiAl) and to prediciethcorrect elastic constants, stacking
fault energies in excellent agreement with expentaleand ab initio values [37]. The
screened BOP expressions also reproduced the taM€BO bond integrals in these
elements (Ti and Al) and TiAl.

For the purpose of computing Eq. 2.26, the ieterice, second and third-moment
contributions (Egs. 2.27, 2.28 and 2.29) are fiedtulated and summed over all the
atoms that are neighbors of atonandj while considering at the same time, the and
d orbitals in thdj bond.

For application of this equation (Eqg. 2.26) toiceih [35], the implication of

cutting off the potential interaction before thérdhneighbor shell in bcc lattice is that
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only atoms in the first and second nearest neigkhells are included in the screening
and therefore considered in the summations in BEg&7-2.29. The computational

expense required to perform this task for use iteowar dynamics applications will be

prohibitive to the extent of making it unattractifge investigating long time dynamical

properties.

In the current work, a further simplifying assumpt was made to reduce the
complexity of the screening expression. We assumaednly thes orbitals participate in
screening of theandj atoms. That is, we are concerned only withith¢' =sandr= o
interactions. If we consider a trimer of atomshwonly onek atom screening thig bond
and substituting Eq. 2.33 and 2.34 for the oveaag bond integral respectively into Eq.
2.29, for eaclij, ik andjk bonds, the interference function simplifies to

. 004 1 1
¢l = (k) ki _Eoii _onzk (2.41)

ij

By writing this explicitly as

Cij _ efﬂ(RijrR,-) _%e—zmk —%eml‘k

(2.42)
it is apparent why Nguyen-Manh, Pettifor and Vi[8k] stated that for thesso bond, the
interference function is ‘not too dissimilar iorin’ to the Ames’ group [47] expression,

which is given by

B
é:ij :ﬁlzex _ﬂz(rl :_r”]

ij
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in Eq. 2.17. An important point to note in thisvgoarison (Egs. 2.41, 2.42 and 2.17) is
that asRx andRy increase, the second and third terms of Eq. 2ethylfaster than the
first term. Then, Eq. 2.40 approaches the formafZ17 and they will become identical
for the case whergs; = 1. A decrease iR; also results in a decrease in the overall
function in both models. These features are esdetatireproduce reasonable physical
behavior for the screening function.

We made further simplification to Eq. 2.26. Bypbstituting Egs. 2.27, 2.28, 2.30,
2.31, 2.32, 2.33, 2.34, 2.35, 2.36 and 2.38 intoZ=2p for the specific case of a single

atom interacting only througtr bonding, we arrived at

; 0,0, -
gl =% (2.43)
l-«o

The above screening expression (Eq. 2.43) is ichrib the BOP result [35] for
thesso bond interaction in a trimer. Using the definitiohoverlap integral in Eq. 2.34 to
obtain a simplified expression for Eq. 2.43, theuteng equation is appealing enough for
efficient use in a classical interatomic potentie did in fact implement this, but we
later discovered that in a disordered phase, sdomi@configurations lead to a scenario
where Eg. 2.41 is singular when= 1. This leads to infinite forces that are natahle
for molecular dynamics simulations.

We made a second assumption in order to circumi¥ensingularity problem by

ignoring in Eq. 2.43. We assume that in Eq. 2.43.
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a << J’ 2.45
5 (2.45)
Therefore the screening expression reduces to
O‘kok' — A\ 1 =i
=g ¢ ] (2.46)

]
Eq. 2.46 is simple enough for straightforward iempéntation in an empirical
potential. The equation also posses desirable mmattieal features that are essential for
physical interpretation of screening in covalennhdiag. Firstly, Eq. 2.46 satisfies the
condition that the screening function take a vaiié when atonk is located in between
atomsi andj and on the line directly connecting them. Undes gtenario the argument
Nk + g — rj = 0 and Eq. 2.46 gives a screening of 1. The skdeature is that the
screening will be O if atomsandj are not neighbors. In other wordsyifapproaches
infinity, then Eq. 2.46 becomes 0. For many-at@ystem, we therefore compute the
screening function for atomsandj in presence of their neighbdtsising a product of all

the three-atom expression in Eq. 2.46. Thexpression is given by:

S = H(l_ fC(Arijk )eXF(_ ﬂ“(rik + e = T ))) (2.47)

ki, ]
where fc(Al’uk) is given by Eq. 2.4 and\ry =1, +1, —T;

Similarly, a,,a, and a, retain their values as presented earlier in secfd. The

inclusion of the cutoff function ensures that thmesning goes smoothly to zero at

elliptic radius ofAr;, = 595A. The function $is zero when atomisandj are completely

screened ang; is 1 when no screening exist. The implementatiotihis scheme can be
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visualized by looking at two atoms labeledndj whose bond energy is to be evaluated
(See Figure. 2.5). Their bond energy is screeneatbgns labelek. Atoms that are
labeledk’ are further away and outside the ellipse, do moeen theij bond. The
introduction of the ellipsoidal cutoff ensures tlbms that are sufficiently far away

from the pair are completely prevented from scregtine bond energy.

Figure 2.5. Schematic illustration of the stiaeg of atoms andj by atoms labeled
within the cut-off ellipse shown. The ellipse siéis the cutoff condition for the potential
under study. Atoms labeldd within the circular bond energy cut-off radiusaibmsi

andj, but outside the ellipse do not screenithateraction.
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2.4 Promotion Energy

In trying to understand the chemical basis foenattion of atoms in tetrahedral
solids such as silicon, several different expressitlave been derived from first
principles to account for various components ofttital energy [49-50, 60-61]. Among
these components is the energy associated witlgehafroccupancy of the orbitals when
electrons are promoted from the free atafp’® configuration to the hybridsp’
configuration when forming the solid. This is knoasmthe promotion energy [49-50].

One of the pertinent features of bonding in texchal silicon is the balance

between promotion energy cost fx;;n3 hybridization and bonding energy gained that
controls thes and p orbital occupancies, a treatment that can be destrivith the
Weaire-Thorpe modgb2]. In this model, the total energy is computedtiae sum of
bond energy, resulting from matrix element betwésn overlapping hybrids of two
different atoms and promotion energy, which is thesite matrix element between
different hybrids on the same atom. A good exangbl¢his is the tight-binding bond
model (TBBM). Here, binding energy is defined as thifference in total energy of the
condensed solid and that of the free atoms fornti§0]. Despite its success in tight
binding (TB) model, the use of promotion energy as additive term to model
interatomic potential has yet to receive propesrdibn, probably due to lack of progress
in simplifying the first principles expression tosampler formula that can be easily
calculated .

This changed in 1990, when Petiffor et al. [33taduced approximations to the

promotion energy derived from the second-momentagmation to the local density of
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states in a minimal basis using tight binding (TBgory. The expression has been used
along with a pair potential and covalent bond eiesrgo estimate the total energy in
Petiffor's analytical bond order potential BOP [34he BOP model including the
promotion energy has been used successfully tagbrexergetic and other properties of
crystals in some covalent [13, 34,] and multi-comgrt systemf63] of interest. To our
knowledge, no empirical potential has explicithedspromotion energy as a functional
term in the potential energy despite the fact f®tmportance was suggested more than
a decade ago [64].

One mathematical definition of promotion energy tanobtained from the tight
binding model exploiting the variational principdé density functional theory (DFT). In
this formalism known as the TBBM [50], the totaleegy of a solid is obtained as a
function of an approximate charge density by itatathe Schrédinger equation once
(that is, non self-consistent solution). The bigdamergy of the solid is then expressed as
a sum of four terms: covalent bond energy, pronmogoergy, electrostatic energy and
exchange correlation energy.

In a more general treatment [48§ing the non-orthogonal basis set the promotion

energy is defined as

Eprom — Z(qa _ N;reeatom)H » (248)

a

This expression calculates the promotion energyhassum of on-site orbital

energiesH,, , weighted by the difference in charge densityveen the hybrids, and

freeatom) .

the free atomsi|,
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q, =2 f.co (cf )*Oﬁa (2.49)
£ n

is use to calculate the gross charge density affabeb in the molecule.

Here f, is the occupation number for the one-electron wawmetion,

andc? andc’ are expansion coefficients, with the overlap madgfined as

Oy, =9, 19,) (2.50)
The orbital-resolved bond order here is defined as

0,, = Z f.ce(cl)x 0, (2.51)

and the summation of),, over all orbitals of atoms andj yield the bond order

0, between the two atoms. This has a physically tramsg meaning in chemical

bonding.
In order to obtain a simplified expression suitatale use in classical molecular

dynamics, Eq. 2.48 was reformulated [33] to defireepromotion energy of an atamas

Epom = O (EZ —EZ AN, J'5,, (2.52)

where (Eg - E;’) is the splitting between andp energy levels on species J,, is a

kronecker delta function for specigsand . The splitting energy is assumed to be

constant anc(ANp)i" is the change in the numbermbrbital electrons on speaieat site

i compared to the free atom. For local charge niitytra(AN, )+ (AN,)=0 so that

promotion energy tends to zero as the atoms moax.ap
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Both (ANp)i" in Eq. 2.52 and the term in the bracket of Eq82dpresent the

change in occupation number due to hybridizatidkgyato understanding the meaning of
promotion energy. In both cases, the total pronmo&nergy is obtained by multiplying

the number of electrons transferred by the spljténergies between tiseandp orbitals

as represented t()E;’ - E;’) in Eq. 2.52.

The BOP theory approximation using a recursive fréanction has been
performed[63] to obtain the promotion energy as a functibmeasurable quantities.

The final expression is given by

E_-sl1-— 1 (2.53)

prom
| By
1+AY —
+ ; 5

Where§ = (gi —gj) is the splitting energy, A is a fitting parametand g; is the

o bond energy between atoimend;.

It is clear from Eq. 2.52 that the promotion eneiggfunction of the bond energy
without the inclusion of the bond order. The proimo energy is a property of an atom
in covalent environment. In general, the promogoergy depends on the environment of
the atom. For example, tisep mixing increases with decreasing volume in Si, &d C
[60]. Since this affects the promotion energy, thrergy is generally expected to be
dependent on the volume and the atomic environi@djt The inclusion of the bond

order should ensure a more complete and accurétetioa, but such treatment will also

41



lead to a more complicated expression that is re@pensive to evaluate in molecular
dynamics simulations.

The inclusion of promotion energy in analytical doorder potentials has been
shown to help in providing a consistent descrip{@®] of second-order properties such
as the bulk modulus. An extensive study of theat$fef different energy contributions in
the TB [66] description of surface reconstructidnSo (110), Si (100) and Si (111) has
shown that lowering of the surface binding energgrusurface reconstruction is due in
part to reduction in the promotion energy. Thangitof the surface atoms that occurs
when a silicon surface undergoes reconstructioattrdouted to the strong tendency to
lower surface energy by means of re-hybridizatidntree surface atoms. This re-
hybridization is best described by including therpotion energy of the system into the
interatomic potential. In view of this importancee have included the effect of
promotion energy in the present potential. We itigated three different expressions,
bearing in mind that promotion energy is a propeftgn atom in its environment.

The first of these expressions defines promotioargn as a function of the
coordination number of the atom in question. Mas motivated by the first principles
Egs. 2.48 and 2.51. We can see that a relatioreshgts between the promotion energy
and effective bond-order of atomwith all its neighboring atoms or, indirectly, the
coordination number.

Brenner [67] has derived the relationship betwd®ncohesive energy and the
bond order starting from the bond energy of an atonm the second moment

approximation. For a regular solid, this bond-ordeas shown previously to be
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proportional to the inverse square root of the ll@oordination number by Abell [46].
Using the specific definition of coordination nuemntas presented by Fournier et al.
[64], a definition of promotion energy consistenthnEq. 2.48 as the product of splitting

energy and effective bond orders between atamd its neighbors is:

1

T 2.54
\1+dz (259

whereo andd are parameters azds the coordination number defined as [64].

[Z S bu}
N 2.55
z 7—TZ So T (2.55)

Vieom ) = 0| 1-

prom

bj andS; retain their original definitions in Egs. 2.6 and 2

The second equation considered in this study isvated by Eq. 2.52 and is given

by

1 (2.56)
prom — ef] 1- 2
\/1+ Gz(z Sj * bl*blj\/ijA)

j#i

\Y

Whereo; and oy are fitting parameters, argj, b, and\/ijA are functions defined by Egs.

2.47, 2.6 and 2.3 respectively.
The idea is to include the bond-order and screefiimgtions in the definition of
promotion energy. However this equation is compdéidaand requires significant

computational expense to perform molecular dynampiagicularly in evaluating the
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forces via the gradient of Eq. 2.56. We therefarepify this expression further by

eliminating dependence on the bond-order and tteesmg functions to reduce to

1 (2.57)

1+ O'z(z bl*\/ijAj

j#

\Y

prom — 91 1-
The above equation, Eq. 2.57 is now similar to Z§3 with the exception that we have
redefined the fitting parameters and allow the tpyj energy to be an adjustable
parameter. We performed fitting of cluster promotienergies using all the three
expressions, Egs. 2.54, 2.56 and 2.57. The reshubts that there is little difference in the
accuracy in going from one equation to another. WWarefore use Eq. 2.57 for the
remainder of this work.

There are problems associated withitii@ementations of Egs. 2.54 and 2.56
that make them less attractive compared to Eq. Eisgtly, it was difficult to enforce the
right boundary conditions (by ensuring that thenpotion energy smoothly reduces to
zero) for Eq. 2.54 because the promotion energgtiom cannot be smoothly reduced to
zero using a cutoff function, primarily because thection represent the energy of an
atom and not an atom pair having an explicit distdapendence. Secondly, the
coordination number function Eq. 2.55 can becomsgudar in some disordered
configurations leading to infinite forces, whichgeoblematic for performing molecular
dynamics simulations. On the other hand, the caramd nature of Eg. 2.56 as
mentioned earlier, make force computations sigaifity expensive in performing MD

simulations.
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2.5 The Case for a Long-Range Interaction
The current potential is completely describgdEqgs. 2.1-2.8 and Eq. 2.57
along with the parameters listed in Table. 2.1. Plaeameters were obtained by
fitting described in section 2.6.

Table 2.1. Parameters for the silicon bond ordéemg@l expressed in equations. 2.1-
2.8 and 2.57.

b, = 44.7104248 eV a = 6.62764953 A &, = 1.5532618 eV
B = 0.940243093 A Q = 270.715816 A &, = 0.193761112 eV
A = 8250.13723 eV L = 0.762678054 A

The potential is made long-ranged by allowing sii@toms up to and including the
fifth-nearest neighbor shell in the diamond culbi@age to interact covalently. This is
a marked difference from most short-ranged potentthat consider covalent

interactions only between the first nearest neighb®he long-range nature of the
covalent interactions is in agreement with quantaechanical descriptions of the
bonding in silicon as shown Figure 2.6. In theifegthe dimer potential energy curve
for the Tersoff [8] and SW [9] potentials are toleod-ranged compared to the
guantum mechanical MCRI results for silicon. Italso essential to note that an
accurate description of processes involving clgsteuch as vapor deposition or ion
implantation will require clusters interacting witte bulk surface at distances longer
than the first-nearest neighbors. This will requimeg-range treatment of the covalent
interactions which are essential for accurate detsan of these dynamical processes

occurring in vapor deposition, crystal growth andhang. A short-ranged potential
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will usually cut off these interactions too early ean be seen in Figure 2.6. For
example, when atoms are ejected from the bulk saidiaring etching or when atoms
or clusters of atoms approach the bulk surface ftarge distances during vapor
depositions, they will have interactions that anegtranged. Similarly, in condensed
phases such as liquids at high densities, osajland destabilizing effect can occur
when atoms in the shell of second nearest neigtdrerdrawn into the cut-off region.

This effect has been shown to result in unphysibakacteristics such as disordered

structures having lower energies than the natimendnd cubic phase [68].

Qualmtum Mechanicai MRCI +-
Tersoff
1 [ -
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_ +_,..
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L
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Figure 2.6 Comparative plots of two-body potentiabrgy curves for silicon. The

multirefrence configuration interaction (MRCI) dagaints were taken from Ref. [73].
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Long-range interactions have bewpléemented for classical silicon potentials
[20, 68-69]. However, the extended range alone doésecessarily guarantee a better
potential. In the case of the potential of Peard@akai, Halicioglu and Tiller (PTHT)
[69], the minimum energy configuration turns outht® the simple hexagonal structure
instead of the traditional diamond cubic. It is wtdar if this flaw can be corrected by
better fitting. The problem might be due to aneir@mt limitation of the functional form
itself.

We introduce screening functionshi@ binding energy expression, a theoretical
procedure that has proven effective for extendimg tange of interatomic potentials
[24,37]. The question about how far the rangehefpgotential needs to be extended has
been addressed using different arguments. In tke cathe MEAM potential [11] for
silicon, the potential range was set at a pointresitee fit to the potential becomes
optimum with respect to the cutoff distance. WHoe a silicon tight binding potential
[70] the cutoff distance was moved to the point rehthe clathrate structure becomes
higher in energy than the diamond structure. A nampelling argument about what
constitutes a “good” cutoff distance was invesegatising a fit to phonon frequencies
[16-19]. An illustration of the effect of cut-offistance on the error in fitting the current
potential can be visualized in Figures 2.7. A ray fit of the potential P1 (described in
section 2.6) to the equation of state propeffig&ohesive energyBo (bulk modulus)B
(pressure derivative of bulk modulus), angdequilibrium volume) to 11 different silicon
bulk phases was performed at 6 different cutoffaises of 4.75 A, 5.0 A, 5.25 A, 5.50

A, 5.75 A and 5.95 A. The mean absolute averagar émrequation of state properties
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decreases with increasing cutoff distances andchbegisaturate after 5.75 A, which can
be viewed as a specific parameterization of the ABNote that the HBOP in general
shows lower average error compare to the Tersd#rpial for silicon. On the basis of

the above study and in order to reproduce the copfeonon behavior, a cutoff distance

of 5.95 A is used for the current potential insalbsequent fits
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Figure 2.7 Plots of absolute average percent @mrequations of state properties of 11
silicon phases namely: diamond, hexagonal diam8@],FCC, BCC, BC8, R8, ST12,
simple hexagonalp-Sn and BCT5. Where Ey, is the Cohesive energ\o is the
equilibrium volumepBy is bulk modulus, an&’'= dB/dPas a function of potential cutoff

distances. The Tersoff potential is indicated at distance of 3.0A.
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2.6 Fitting Procedure
Four different screened potentials were studitdtisg with the simplest form and
then increasing the complexity by adding new fuonti and parameters. The starting

potential, named P1, is written as

Eg = zz fc(rij IVR (rij )_ Sib; blvA(rij )] (2.58)

i
where all symbols retain their definitions as givgnEqs. 2.2-2.5 and Egs. 2.7-2.8 except
that thes bond-order is given by

1

\/(u > 1.0 g(cods, ))]

(k=#,j)

by = (2.59)

Thus this potential include screening only in tlead energy and not in the bond order,
and does not include promotion energy.

The second potential named P2 is writte

EB = zz fc(rij 1\/R (rij )_ S|j b|j blVA(rij ) +Vprom (260)

e
This is exactly Eq. 2.58 with the addition of th@motion energy Wom defined in Eq.
2.57 with unscreened bond order Eq. 2.59 rather Hup 2.6.

The third potential, named P3, is definedHay 2.58 withb;; given by Eq. 2.6. P3
has screening introduced in the bond-order, butides the promotion energy term. The
final potential named, P4, is completely describgdEqgs. 2.1-2.8, 2.57 and Table 2.1.
This is the most complex of the four potentials amdudes both a screened bond order

as well as a contribution from the promotion enefdyis systematic procedure of adding
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terms and parameters to the equation enable ugasseheir influence on the accuracy
and the behavior of the potential with respechtartaddition or omission to the potential
expression.

Starting with P1, the potentials wech fitted to reproduce the Murnaghan
equation of state (EOS) parameters for 15 silidmaisps and cluster binding energies for
clusters SSig shown in Appendix 1.1. Additionally, ¥m in potentials P2 and P4 were

fitted to cluster promotion energies [64]. Therktaghan EOS [77] is given by

BV IRYANAAN
Eb(V):EO+(ah)] 5(1—70}(70] 1 s

Where Ey(V) is the cohesive energy as a function of volufg,s the equilibrium
cohesive energy, is the equilibrium volumeBy is the bulk modulus and s the
pressure derivative of the bulk modulus.

The fitting database consists of 15 differenteii phases at various strains ranging
from 0.8 to 1.2, and the binding and promotion giesr of the 17 silicon cluster
structures shown in Appendix 1.1. The choice a$ thtting database is aimed at
exploring the wide polymorphic arrangement of aiste silicon bulk phases including
high-coordinate phases, and the opposite extrent@wéfoordinate clusters. The goal is
that this will enable the potential to perform waell the intermediate structures like
surfaces, amorphous, defects and liquids. A compmactice is to fit potentials to
equilibrium properties such as lattice constantdiesive energies, phonon frequencies
and elastic constants of diamond cubic silicon. &gomes other non-equilibrium

properties are included to improve transferabilltpwever, the use of a large fitting
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database does not necessarily guarantee that thatipb will be transferable to some
other extreme conditions away from equilibrium reyresented in the fitting database.

Another problem is that the potential expressicas have inherent physical
limitations that are not easily remedied by addmgye functions and parameters. Having
a large number of parameters and functions caneljguh [14], but the fundamental
flaws may still be apparent in configurations faonh equilibrium. Large number of
parameters might be unhelpful in explaining thessficttncies if the physical
interpretations of these parameters are unrelatétetproblem.

Silicon is one of the most challenging elemems modeling and simulations
primarily because of its many diverse polymorphthwhe ability to exist in covalent or
metallic bonding at different pressures. Siliconstérs can also take properties between
these two extremes, and silicon’s surface behawaads defects are also complex. It is
therefore pertinent to take all these systems aawosideration when developing and
performing a fit to a potential. An important prdoee for probing the limits of any
potential expression was demonstrated for the “gluadel potentials for aluminum [71].
The authors performed extensive tests for over 2blals on a large database from
experiments and ab initio calculations. The strhateged in the study called for dividing
the database into two parts, one for fitting theeptals and the others for the testing. A
similar procedure has been adopted with succesdadorinum and nickel potentials [72].
By following the change in the root mean squar®rein the properties between the
fitting and testing stage, it was clear that the okmore parameters does not necessarily

result in a better fit. However, by rigorous fitlirio the database, it was possible to
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ascertain the optimum number of parameters and &wactional representations that
provide an optimal fit to the available data. Wepéyy a similar approach used in these
studies [71-72]n development of the current potential. One of ¢checial lessons from
those studies is that a functional form with as ésafour parameters was able to perform
at the same level of accuracy as potentials witte rparameters. The performance of
these two functional forms also happens to beithi bf the possible accuracy that can
be obtained from the large database used. It i mportant that the choice of the
functional form used reflects the physical bondohg@racteristics of the system than it is
to introduce elaborate numbers of non-physicallyivated parameters.

The database used for EOS properties for thelitbrsiphases were obtained from
references 74-76, 102-110 and 126 as displayediioeT3.1 of Chapter 3. All binding
and promotion energies for clusters were obtainech DFT work of Fournier, Sinnott,
and DePristo [64]. The fitting was carried outrbynimizing an objective function using
a global minimization algorithm referred to as toatrolled random search method [116-
117, 133-136].

The objective function is defined as;
L M i A0 2

where p, the numerical values of the properties k in pHiaae computed by HBOP and

p,° are the corresponding experimental/DFT valueso$é properties and, are the

weights used in fitting the model to the properaesM is the total number of properties

used andL is the total number of silicon phases and clustegsd for the fitting.
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This objective function is used to perform an opetion in a multidimensional
parameter space. A preliminary selection of anahgtarting point in parameter space
was done by randomly generating a large (about0ODO),combination of numerical
values of potential parametew, (Q, o, £, b1, A4, o1 and o). In order to determine what
constitute a good range of parameter values, wenieea five different interatomic
potentials in the literature that share similarrelgeristics to our potential [8, 25, 32,
131, 132]. In Table 2.2, the list of these potdatiand the numerical values of their
parameters are shown. It is pertinent to note ttieegde potentials are each a sum of two
exponential functions (Eq. 1.1 -1.3) with four nrajparametersA, a, by and g as
described in Chapter 1. From Table 2.2, good rarfgesthese parameters ware
determined based on typical values among all tpesentials. These ranges serve as the
initial domain that was used to generate randombtaations of parametew, «, b; and

f for the HBOP model. The initial domain for thesggmeters was set as follow:

100< A<5000eV, 2.&a<7.0A' 10<b;<1200.0eV and184<3.0A.

Table 2.2 Parameters in silicon potentials havimegform defined in Eqgs. 1.1 -1.3

Potential by (V) B (A A (eV) a (A
Tersoff? 471.1800 1.7322 1830.8000 2.4792
Conrad and 75.0300 1.6600 1845.8640 2.6000
Scheerschmid?

Khor and Sharm4 | 230.5726 1.3415 2794.2386 3.1327
Dodson? 155.0800 1.3969 1614.6 2.7793
Ackland® 16.6359 1.1448 208.4428 5.6736

a) Ref. 8, Ref. 25, % Ref. 32, % Ref 131, Ref. 132
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For the parametdd, a good starting point was identified from the REBotential, which
uses an identical expression to that of HBOP. Aievaif about 0.3 A was used as the
final optimized value in REBO while experience dagrifitting of this potential (REBO)
shows that Q can take values up to 10,000 A. Wiettie set 0.% Q < 100,000 A.

The screening function implemented in the BOP [B&$ the coefficient of the
overlap and hopping integrals for silicon takindues ranging from 0.60 and 0.95'A
The parametek is the screening coefficient in HBOP and it has tble of controlling
the strength of the screening between two atons fheir neighbors. Ift >> 1 A*, then
the screening curve decays quickly to zero at niists less than 1 Aresulting into a
weak screening for most physically realistic coafagions. On the other hand, values of
A << 1 A'can result in a screening effect that is too strdfgrefore) values ranging
from 0.1 to 5.0 A were chosen as an initial domain, to span a wadge of parameter
values that is sufficient to capture the two exeeraf weak and strong screening.

A careful look at the BOP [63] potential using mi@tion energy reveals that in
HBOP corresponds to the splitting energy of silic@ed for computing the promotion
energy in the BOP theory. The splitting energyibé@n in BOP is 7.0 eV, but a DFT
study [64] and TB method [62] have both computetlies close to 4.0 eV for this
energy. The splitting energy is derived from th#oet calculations in the BOP
promotion energy, but for the sake of flexibilithe corresponding value ef in HBOP
is treated as an adjustable parameter. We conygaiie the parameteA in Eq. 50 of
reference 63. Therefore, the following initial domeere chosen fogn ando, : 0.5< o1

<15.0eV and 0.5 6> <20.0 eV.
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Confining these parameters to the lins#$ above, 100,000 random parameter
values were generated using a uniform distributv@thin the bounds for each parameter.
In the next stage, these parameters were randamipioe to form a complete seA{Q,

a, B, b, A, on , op} of 100,000 points in the 8-dimensional paramejgsice. Each set of
parameters completely defined the HBOP potentigs(R.1- 2.8 and 2.57). The set of
parameters along with experimental/DFT propertrebtheir respective weights were fed
into a MD simulation using Clemson University congmol to compute the objective
function in Eq. 2.62. For the weights, we have emaothe following values after several
adjustments to obtain the best possible fit. Faménd and hexagonal diamond phases,

the following weights were used.

03 -4 43
0 =10""eV, 07" =107"eV, 0™ =50x10*A 0y~ =5x10 A

0

03 o3 )
a)g(i’amond — 10—4ev/A ’wBHOEXD — 5X10—4eV/A ’wgllamond — 5X10_4,0)BH.EXD — 10—3

For the remaining 13 phasgs$n, BC8, R8, SHEX, FCC, BCC, SC, HCP, ST12, BCT5,

Imma, Si4, and Sig), the following weights were assigned to the E@$pprties;

3 3 3

oL =25x10*eV,0) =10 °A 0L =75x10 “eV/A ,0L =5x10 .
For cluster binding energies, the weights assigreeied from 1CG eV for the highest
binding energy cluster Si3.1 to 2.5 x 36V for the lowest binding energy cluster Si8.1.
An equal weight of 18 eV was assigned for all cluster promotion energies

The Clemson University condor poohsists of hundreds of workstations with
about 1500 processors running Windows, Solaris landx operating systems. After

completing all the 100,000 objective function or-shuare ) evaluation, the numerical
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values are then sorted in increasing order of thewvalues. At the end of the initial
function evaluation, the parameter sets with loyfevalues were found to havein the
vicinity of 0.7 A* to 0.9 A%, This sorting procedure helps to shrink the oVgratameter
domain for subsequent optimization. In the nexyetd 60 sets of parameters with the
lowesty?were used in subsequent global optimization inGR&S algorithm.

In general, the idea behind the CR§orghm [133-136] is to start with a
predetermined number of parameter $¢ts an initial search domaib. All the trial
pointsN must satisfy the upper and lower bounds on eagdhhlan forming the domain
D. In the current study, thesevariables are the parameter st Q,a, 5, b1, 4, o1, o»}.
The limits specified for these parameters earli®& A <5000 eV, 2.&a<7.0 A%
10<b;<1200.0 eV and 1.8 <3.0 A*, 0.5< 61 <15.0 eV and 0.5 o, < 20.0 eVand
0.1<A <5.0 A% form the domair for which these parameters will be optimized.

The objective function (Eq. 2.62) is then evalda# each of th&l trial points
(160 for this study) and the corresponding numeésialues are stored &8\) in an array
A. The arrayA forms a set of objective function values and tlkenresponding parameter
set that were used to determine #ieThe values of(N) are sorted so that the set with
the lowest value is stored as pointvith function valuef,, while those with the highest
function value are stored as pokhiwith function valuey. The suggested number of trial
pointsN can vary from 10( + 1) to as high as 25[133-134], depending on the domain
size and nature of the problem in question. Thgelathe value oN used, the bigger is

the size of computer memory required for storagpgae and the slower the convergent
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of the optimization. For this studyy = 2 (20 * 8 parameters = 160). The iteration
begins by randomly selecting+ 1 distinct pointsRy, R......... Rn+1, from N to form a
simplex of points im-space. The set of paramet&s; is arbitrarily taken as the pole or
vertex of the simplex. The image of the pdPis computed as the next trial point for
minimization of the objective function. The triabint P is computed fronR,.; and the

centroid G of the remainingpointsR;, R ........ R, as follow:

P=2xG-R, (2.63)
whereP,R and ﬁml are position vectors inrspace of the corresponding points.

There are different variant of the CRS algorithnffedng in definition of the poinf.
The definition ofP used for this fitting work can be found in referes 116 and 117.

The procedure is illustrated diagrammatically igufe 2.8. The poinP is checked to
ensure that all the parametersnaking up the point satisfy the constraints orratary
conditions set for the optimization. If any of tbenstraint is not satisfied, (that is, one of
the parameters is outside the bound) then, @®irg discarded and +1 new distinct
points are randomly selected frashand used to generate a new trial péint If those
conditions are satisfied, the objective function.(E.62) is evaluated with the parameters
defined by the poinP asf,. Now, f, is compared withy, the highest function value in
arrayA. If f, < fy then pointH is replaced, ifA by P. The point with the second highest
function in the previous set now becomes pbintvith the new highest function value in
array A. However, if f, > fy, then pointP is discarded and then new trial points are

chosen from arrag to generate a new poiRtand the procedure is repeated.
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Input {n=# of variables or parameters,
N= # of trial points, S (n,N) = coordinates of
each trial point in domain D}

.

Evaluate the objective function (chi-square) at each of the
N points in D and store the results of each coordinate and
function value in array A{f{N}, S(n,N)}

:

Determine the stored points H with the greatest function value
fnu and L with the least function value f;

Select n points R, ....R,+1 at random from S(n,M) excluding L, let R; = L. Perform
Simplex around the n+1 points using reflection through the centroid G to obtain a
new trial point P = 2G - Rn+1

<
Replace f4 (the current highest function value in
array A) by f, and its respective coordinates
No Stop cri 3.4 tisfied?
< p criterion-satisfied?

Yes, stop and print results

Figure 2.8 Flow diagram description of the CRS&atgm.
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As the optimization proceeds, increasmgnber of points with lower function
values are generated and replace points with hidbection values inA. The
optimization will get to a stage where all the gsim A will cluster around minima with
a function value lower thafp. Note that the function valde changes as the optimization
progressesThe procedure is terminated once a maximum numlbeitecations is
achieved or when the difference between the highestion valuedy and the lowest
function valud in arrayA falls below a define threshold.

In fitting the HBOP potential, the optimizationnsetimes reached a point where all
the points inA are clustered around a boundary of one of thenpetex variablen. When
such scenario occurs, most of the new pdgenerated will falls outside the domain of
the parametem and a lot of wasteful computation occurs, therelering the efficiency
of the algorithm. It may be possible that a lowandtion value thaf exists outside this
boundary where the optimization is trapped. Theggfthe algorithm must be monitored
at run time to determine if such condition is emteved. A simple solution that was
adopted in fitting the HBOP potential is to stop thptimization and expand the domain
(by increasing the range for the affected parametethe particular parameter that is
trapped and restarting the procedure with the dtareayA that was present at the stop
time. The optimization is then continued until ttegmination criteria are reached or
another boundary “trap” is encountered. If a bowupddrap” is encountered, the
expansion of the domain is repeated as describ@ekadnd the optimization is continued
until the final termination is achieved. The optation procedure used for this fitting is

by no means a ‘fire and forget’ type of computati@tause of the possibility of
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boundary “trap” that may lower the efficiency okthlgorithm or possibly result in the
optimization missing the “true” global minima. Tkérre, the progress of the
optimization must be monitored for changes in pat@mand function values so as to
detect this boundary “trap” as it happens.

The CRS optimization was carried out den@&on University Palmetto cluster
with Intel core 2 quad core processors running.a8 ZHz. Evaluating the objective
function (Eq. 2.62) takes about 150 seconds of @P&htral processing Units) time, or
about 24 iterations per hour. The computationatiregnent is inefficient for a single
CPU because of the number of iterations required donvergence. The current
optimization requires more than 12,000 functionleatons for convergence. It was
observed that using an initial randomly generatadameters ofN = 160 sets, the
optimization failed to converge after 20,000 fuantievaluations. This is the reason why
Condor was used to evaluate a large pool of indiaiting points. By so doing, quality
starting points were extracted for subsequent CRBnation and this help reduce the
number of function evaluations needed for convergenTo speed up the optimization,
the function evaluation was reformulated througk tise a parallel communication
procedure (using OpenMP) which subdivides the foncgvaluation into 8 independent
parts, with each part running on its own core withinode. The nodes consist of two
Core 2 quad processors, where each processor taeg The final sum (Eq. 2.62) is
then collated at the end of the run to give ##value. This procedure reduces the
average time to evaluate the function to about @8msds, a five-fold decrease in

execution time.
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The choice of the CRS algorithm for thiolgem was made because of the
complex nature of the objective function. The datile of the objective function can be
discontinuous in some regions of parameter spabés makes the use of gradient
methods problematic for minimization. The methodoahas the advantage that no
gradient evaluation is required. The algorithm Isoasimple to implement as gradient
implementation for the objective function is highlgn-trivial. However when gradients
are available, it can be inefficient compare talggat and Hessian methods, as it requires
more function evaluations and convergence to theima can be slow. The final
optimized parameters for potential P1, P2 and B3jaren in Appendix 2.1 -2.3, while

those for P4 are shown in Table 2.1.
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CHAPTER THREE
EQUATIONS OF STATE AND CLUSTER PROPERTIES
3.1 Equations of state for silicon phases

An important consideration for the developmenttloé model is to ensure that
silicon has the appropriate temperature and presphiase diagram. This property
ensures that silicon has the correct energies @adiwes under different conditions of
temperature and pressure. In order words, we dagnansferable potential that gives the
correct phase transitions and accurate structurésnergies for bulk, defects, clusters,
liquid and surfaces.

Silicon exists in diverse number of phases at lpgessure. This “polymorphic
perversity” [6-7] makes it a challenge to developaacurate and transferable interatomic
potential capable predicting properties away fromnative diamond cubic phase. To our
knowledge, 13 phases of silicon have been obseexp@rimentally. Most of these
crystalline phases of silicon were discovered dyhigh pressure and heat induced phase
transitions [103, 105, 109-110].

The 15 structures of silicon (alustiures in Table 3.1 except the Cmca phase) at
various strains used as input to fit the currertepiial span a wide range of the bulk
structures and densities. The results of the eguaif state (EOS) parameters for 16
phases (13 experimental and 3 hypothetical phaded)con computed using HBOP and
compared with DFT/experimental values are preseittedable 3.1. The computed
equilibrium energies and volume are in excellenteament with DFT values. The

absolute error in equilibrium cohesive energiesarldme as computed using HBOP are
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less than 5 % for most phases. The potential shovg®od transferability between
different silicon bulk environments. It is expectibat intermediate arrangements within
these structures will also be adequately desciiyenlir model.

The native diamond cubic phase (Si-I3ib€on is fourfold coordinated with each
bond at a tetrahedral angle of about 109af7ach other. One of the criteria for judging
the validity of an interatomic potential for silicas to determine if the lowest energy
structure is the diamond cubic phase. Among allattkered phases presented in Table
3.1, the diamond cubic phase has the lowest cohesiergy. With the exception of the
bulk modulus B, the other three EOS properties predicted by HB@Rliamond cubic
phase are in excellent agreement with experimewddlies [75-76,102]. All EOS
properties with double digit errors are shown itdidaces in Table 3.1. We observe that
most of the least accurate results come fByrandB’. The prediction of these properties
(Bo and B’) by various theoretical DFT methods are found t® ibconsistent
[74,104,106,119-121] because of the assumptioningfatity of bulk modulus with
pressure [i.eB(P) = By + B'P] in the first-order Murnaghan EOS. This assumption
sometimes breaks down at high pressure®, $ifBy). A second-order equation [based on
B(P) = By + B'P + 1/2B P is required to obtain more consistent valuesXpandB’
[115]. Therefore, it is not clear how well the HB@Btential performs in terms of these
properties, but the cohesive energies and volumeweall reproduced by our model. The
EOS properties with especially large percent emwbr3 digits, are found in the
hypothetical phases of silicon (SC and BCC). A nemdf experimental works on phase

transition of silicon at high pressures have besfopmed [103,105,109,110,124,125].
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Table 3.1. Equation of state properties for siliagstalline phases computed using
HBOP and compared alongside with DFT and experiaterdlues. The abbreviated
phases are (FCC = face-centered cubic, BCC = bedtered cubic, SC = simple cubic,
HCP = hexagonal close packed, SHEX = simple hexagélieXD= hexagonal diamond.

The equilibrium energies, are in units of electron volts (eV), equilibriurolume, V,,

in units of (&), the bulk modulusBy, in units of Pascal (Pa) ai is dimensionless.

Phases EOS DFT/Experimental HBOP Absolute
Parameters % error
Diamond Eo -4.6299% -4.6305 0.01
Vo 20.0240” 20.3268 1.51
Bo 0.610% 0.7951 30.15
B 4.240° 4.2573 0.41
B-Sn Eo -4.4077 -4.4844 1.73
Vo 14.8859 15.2295 2.31
Bo 0.7265 0.7435 2.35
B 3.8898 4.8420 24.48
BCS8 Eo -4.5042 -4.4047 2.21
Vo 18.2619" 18.2151 0.26
Bo 0.5890° 0.5910 0.34
B 5.5400° 6.0525 9.25
RS Eo -4.5057 -4.3683 3.05
Vo 17.4949 17.7897 1.69
Bo 0.5478 0.6786 23.88
B 3.8980 5.6130 44.00
SHEX Eo -4.3946 -4.4825 2.00
Vo 14.6400 14.9292 1.98
Bo 0.7268 0.7130 1.90
B 3.9597 7.7785 96.44
FCC Eo -4.1580 -4.3844 5.44
Vo 14.3372 15.0147 4.73
Bo 0.5118" 0.5843 14.17
B 4.2200" 3.6715 13.00
HCP Eo -4.1855 -4.3825 4.70
Vo 15.0180" 14.8031 1.43
Bo 0.4431" 0.5407 22.01
B 3.9100" 4.4508 14.06
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Table 3.1 Continue:

ST12 Eo -4.4945 -4.3498 3.22
Vo 17.6500° 17.9877 1.91
Bo 0.5820° 0.5650 2.93
B 3.4700° 6.2963 81.45
HEXD Eo -4.6140 -4.5598 1.18
Vo 19.7575 20.1322 1.90
Bo 0.6110 0.7254 18.72
B 4.2400 4.6936 10.70
Cmca Eo -4.2625" -4.4142 3.60
Vo 14.2404) 14.6419 2.82
Bo 0.6269 0.6491 3.54
B 4.4427" 4.6363 4.36
Imma Eo -4.4089% -4.4932 1.91
Vo 15.0250 15.0412 0.11
Bo 0.5448% 0.7609 39.66
B 4.8900Y 4.8822 0.16
Sigs Clathrate Eo -4.5550" -4.5597 0.10
Vo 23.0910" 21.7914 5.63
Bo 0.5669" 0.4732 16.54
B 5.2000" 6.8398 31.53
Siss Clathrate Eo -4.5609" -4.5456 0.33
Vo 23.4281" 21.4219 8.56
Bo 0.5922" 0.4789 19.14
B 4.0000" 7.0005 75.01
BCT5 Eo -4.3800 -4.5158 3.10
Vo 16.7700 16.9109 0.84
Bo 0.6439 0.7437 15.59
B 3.8597 5.2353 35.64
SC Eo -4.3437 -4.4189 1.73
Vo 15.7653 15.9117 0.93
Bo 0.6999 0.4253 39.24
B 3.3715 7.0719 109.75
BCC Eo -4.1790 -4.3227 3.44
Vo 14.2427 14.5752 2.33
Bo 0.6849 0.3655 46.64
B 3.2545 6.7929 108.72

YRef 76. " Ref. 75. “Ref. 102. Y Ref 103. © Ref 104,123. " Ref. 105
9 Refs. 106,110. "Ref107. " Ref 108,109,126
All data for DFT/Experimental EOS data are fronerehce 74 except where indicated.
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Application of pressure to diamond cubic silicon diamond anvil cell
experiments results in phase transition to¥#&n phase (Si-Il) in the pressure range of
10-12 GPa [110,127,129]. Theoretical studies usdty methods [74,119,126] have
confirmed that the3-Sn structure is indeed the first phase to appeasgreement with
experimental results. Further application of pressuup to 248 GPa
[105,108,115,119,124] have resulted in phase tiansito other crystalline phases with
a consensus on the transition order which canfresented as follow:

Diamond (Si-I)=> B-Sn (Si-ll) > Imma (Si-XI) > SHEX (Si V) > Cmca (Si-VI)
>HCP (Si-VIl) > FCC (Si-X)

The BC8 phase (Si-lll) can be obtdity decompressing thg&Sn phase to
ambient pressures at room temperatures [103,124).HEXD (Si IV) was found when
heating BC8 structure between 200-8D@t ambient pressure [103,123]. When fiHen
phase is decompressed to ambient pressure 8€70%k ST-12 (Si-IX) is formed. The
silicon clathrates (2} and Sie) are usually obtained as synthesized caged congigsoun
[130]. Further studies on phase transition in eflicising HBOP will form the subject of
future work.

For comparison purposes, the computed energiedattnck parameters for six
silicon phases are presented in Table 3.2 for tB®P model along with those predicted
by six other interatomic potentials in the literatuThree of these potentials, namely, the
Tersoff (T3) [8], Stillinger-Webber (SW) [9], anchi@aironmental-dependent interatomic
potential (EDIP) [10] are widely used interatomiotgntials for silicon in various

applications. In computing the root mean squarergthe experimental lattice parameter
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[75] and energy [76] of the cubic diamond phasm@lwith DFT cohesive energies and
lattice parameters for five other silicon phases,(BCC, FCCB-Sn and BCS8 structures)
were taken as the correct standard in column 3 ablel 3.2. To ensure proper
comparison, only the lattice parametea Were used for the non-cubic phasgssn and
BC8. This is to ensure consistency among all thases considered. The root mean
square errors in lattice parameter and energieshforseven interatomic potentials are
presented in Figure 3.1.

The Tersoff potential [8] and second generatioBREpotential for silicon (2B-Si)
[12] both give root mean square values much leas 0.1 A for the lattice parameters.
This excellent agreement with experimental and Dfalues can be attributed to the
inclusion of these quantities in the fitting datsddor these potentials. The potential
developed in this work gives a consistently loweotr mean square error of
approximately 0.1 (A or eNn both lattice constant and cohesive energids.ithportant
to mention that all of these properties were alseduo fit the current potential. The less
accurate results come from the high coordinatiomlmer phases (FCC and BCC) where
our model predicted lower energies than those of B&lues. This shortcoming can be
observed visually on the equation of state plofSigure 3.2. A plausible explanation for
this problem is that bond energies involving atoargin highly coordinated phases are
not optimally screened despite the large numberseafest neighbors contributing to the
screening. This ultimately results in an overallvén energy for the structure than
expected. It may be possible to remedy this prabley optimizing the screening

coefficientA with respect to other parameters in the potentia¢ EDIP model shows
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Table 3.2: The cohesive energies and lattice pasmior silicon phase$SC= simple cubicBCC= body center
cubic, FCC = face center cubig¢-Sn= beta tin HCP = hexagonal close packed). The energigare in

units of electron volts (eV) while the latticerpmeters @are in Angstrom units A.

Structure | PropertiesExp/DFT? | HBOP | T® |[sw® |EDIPY | MEAM? | 2B-Si’ | BOP#4
Diamond | A 5.429" | 5458 | 5432|5431 | 5.429 | 5.429 | 5429 | 5.430
Cubic Eo -4.63" -4.63 | -4.63| -4.63 | -4.65 -4.63 -4.63 | -4.63
SC Ao 2.515 2515 | 2.544 | 2.612| 2503 | 2.404 | 2.545 | 2.530
Eo -4.34 442 | -431| -4.34| -4.10 -4.28 413 | -4.21
BCC Ao 3.088 3.160 | 3.084 | 3.245| 3.243 | 3.187 | 3.076 | 3.010
Eo -4.18 -432 | -420| -4.33| -3.036 | -4.11 -4.02 | -4.03
FCC ao 3.855" | 4.069 | 3.897| 4.147| 4.081 | 4.363 | 3.944 | 3.881
Eo -4.16 -438 | -3.87 | -4.21| -2.79 -3.93 -3.37 | -4.11
B-Sn ao 4.822 4738 | 4.905| 4.969| 4.760 | 4.169 | 4.819 | 4.828
Eo -4.41 -4.48 | -4.30 | -4.42 | -3.96 -4.32 -421 | -4.30
BCS8 ao 6.640° | 6.637 | 6.644| 6.591| 5.910 6181 6.657 | 6.185
Eo -4.50 441 | -4.39 | -4.43 | -4.40 -4.55 -431 | -455
RMS Error 0.099 | 0.04| 0.155 0.319 0.391 0.04  0.1p6
in Eo (eV)
RMS Error 0.121 | 0.135 0.074 0.759 0.110 0.358  0.097
in ao (A)

YRef. 74." Refs. 8,73 Refs. 9, 30, 73’ Refs. 10, 12, 30! Ref. 11" Ref. 129 Refs. 12, 137 Ref 75.” Ref. 76.
) Ref. 1059 Ref. 103.

Cohesive energy and lattice constant for diamoridecare from experiment (Exp), while data for otpbases, SC,
BCC, FCC-Sn and BC8 are from DFT results of reference fseekwhere indicated.



unusually high root mean square deviations for hmttperties among the pack. The
extent of this error in equilibrium structures arergies should be taken seriously when
using the EDIP model for applications that may Imegphase transitions and structural
rearrangements. The EDIP model however prediatsl gesults for defects and elastic

properties [30].

~ ™
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RMS Error
(A or eV)
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M Lattice Parameter a
06 tquilibrium Energy k
0.5 +
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Figure 3.1: The root mean square (RMS) deviatimmfrexperiment/DFT for lattice
parametersd” and cohesive energids among six silicon phases (diamond, SC, BCC,
FCC, B-Sn and BCS8 structures) for potentials indicatedhim abscissa. HBOP (current
model), T3 (Tersoff Potential), SW (Stillinger-Wekieotential), EDIP (Environmental
dependent interatomic potential), MEAM (Modified leadded atom method), 2B-Si
(REBO for silicon), BOP4 (Bond order potential faificon).
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Figure 3.2: Equations of state curves for silipilases. The bottom panel represents the

DFT results of Need and Mujica [74] with the cokesenergy of the diamond structure

normalized to the experimental value. The top pantte result of the HBOP model.
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3.2 Clusters

Clusters of silicon are generated in etching pses or can be deposited during
crystal growth. Thus accurate prediction of enecgeéind structures of small silicon
clusters is of paramount importance in explainiogns of the phenomena encountered in
silicon nanoelectronic applications. Silicon clustef Sy with n up to 200 have been
studied extensively using experimental [78-83] ahdoretical [64, 84-93methods.
These studies have provided a wealth of informasibaut structures, energies, cluster
rearrangements, polarizabilities, ion mobility, aadization potentials of silicon clusters
and the trends observed in these properties.

An important consideration that is of great ing¢rm developing an interatomic
potential is to reproduce different cluster struesuwith correct relative energies and to
predict the correct global minimum structure amaay given cluster of sizen.
Extensive global optimization studies [94-100] haeen carried out to determine global
minimum structures or to test the accuracy of sdvempirical potential models using
clusters up ton < 50. The lesson from these studies is that no cuempirical potential
is able to predict all the correct global geomstagen for cluster of size< 10.

Experimental [78,101] investigations have onlytabished global minimum
structures for silicon clusters (biwith n < 7 and there is disparity among the global
minima for structures with > 8 obtained using theoretical quantum mechanicé&hous
in the literature. The differences in the levetludory between these quantum mechanical
methods such as the generalized valence bond mé¢8epdHatree-Fork calculations

[85], density functional theory, [64 ] couple cleistheory [87] and quantum Monte Carlo
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calculations [88] are primarily due to differenedatment of electron correlation with
direct effect on the final energy differences amtmgse clusters. The energies obtained
by these quantum mechanical methods are usualginglat as the differences between
large numerical values computed using differentinitedns of zero point energies.
Smaller clusters witim < 6 with double and/or triple bonds, having the sammber of
atoms but different structural arrangements canesiomes exhibit very low energy
differences in the order of 0.05 eV. The resulaiflat potential energy surface in the
vicinity of these structures. Such a scenario sonest leads to wrong prediction of the
global minimum structure.

The current potential is based on the fundamemntatiple that covalent bonding
between two atoms is weakened in the presencehef oteighboring atoms and their
bond order is dependent on the local environmehis Tmportant physics is what is
essential for differentiating between different gonments, viz: bulk surfaces, clusters,
liquid and amorphous structures. We focus on ptedj the energy differences among
small clusters of interest£ 8) that constitute the major by-product of lasklaton,
etching and crystal growth processes. We therdfbtae potentials to energies of 17
clusters of silicon (§j n< 8) and equations of state for 15 bulk phases.ay mot be
possible to obtain a complete one to one mappinthe@fguantum mechanical potential
energy surface with a classical potential but tbal gs to provide reasonably accurate
ground state energies and energy differences betamall clusters in comparison with
guantum mechanical results. The cohesive energiegsisiers of silicon $tSiyp clusters

calculated using (HBOP) are presented and compeitedDFT
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Table 3.3 Cohesive energies (eV) for the most stablicon clusters of $iSi;o from

various interatomic potentials and DFT results [6Fhe abbreviations shown are
interpreted as (HBOP, current model), (T3, Tergudtential [8]), (SW, Stillinger and
Weber Potential [9] ), (B& A, Potential of Bouldand Anderson [14]), (SWG, Stillinger,
Weber and Gong potential [15,100]), (Li ,Johnstowl 8Murrell potential [16-19,94]),
(BH, Biswas and Herman potential [20]), (CH, Thedywamic interatomic force field
potential of Chelikowsky et al [21-23]). The rootamn square error (RMS) is in units of

ev.
Cluster A DFT =~ HBOP T3 SW B&A SWG LIM BH CH
Sis 7.82 7.64 7.66 4.44 7.81 5.26 590 546 5.10
Siy 12.36 1192 13.01 8.65 13.36  8.6§ 10.69 9.12  1Q.40
Sis 16.50 15.77 20.06 11.57 16.47 12.48 15.03 12.50 0115%.
Sie 20.72 19.62 26.07 15.15 21.33 16.64 19,50 16.20 7020.
Sky 2491 2350 30.20 1791  23.68 20.88 23.70 20.33 5024.
Sig 28.01 27.14 35.04 2296 27.75 25.03 28.76 25.322029.
Sig 3283 3158 39.22 2596 3395 29.51 3219 29.27 30338.
Shio 37.68 36.33 43.36 29.94 3794 3396 37.43 33.395037.
RMS 1.00 490 5.72 0.73 3.59 126 3.74 1.38
error

results [64] as well as those from seven interatopatentials in the literature in Table

3.3 and Figure 3.5. The structural geometries arauigies of all the clusters were taken

from reference 64 as we believe DFT calculationge gyround state energy values

consistent with those obtained from experimentssorall silicon clusters without the
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need for scaling usually associated with Hartredfemd Mpller-Plesset methods [14].
The binding energies computed by our model agreer&dly with DFT values as
presented in Figure 3.3. The trend in energy wittlusster structures with the same

number of atoms also follows closely with theirresponding theoretical values.

——HBOP —#—DFT
Clusteridentity

Szl 532 %23 5240 sl 942 A3 sidd il Sida SiSL iS22 53 554 SiSS din.L %71 sigl

0
A2
-1d /
-6 +
i
-20

-22 \

-24 A
26
28
-30

Cluster Energies (eV}

Figure 3.3: Binding energies of silicon clusterg Bith 3< n < 8 for the hybrid bond-
order potential ¢) and those obtained from DFT methell Cluster identity corresponds

to the labels in Appendix 1.1.
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At the moment, we are content that ooteptial is able to reproduce accurate
binding energies for the clusters of interest. Fhatter plot shown in Figure 3.4 also
confirms a good correlation (> 0.97) between owdjmted cluster energies and those of
DFT values. An important comparison between theé noean square errors in cohesive
energies of small silicon clusters {&i;g) and the DFT values [64] from Table 3.2
among eight interatomic potentials for silicon regented in a bar chart shown in Figure

3.5.

DFT Cluster Energy {eV)

Ao -25 20 15 10 5 / 0

-10

HBOP Cluster Energy {eV)

-20

-25

58]
D

Figure 3.4: A scattered plot of silicon cluste®s, ( n< 8) binding energies for the HBOP
(vertical axis) along with their corresponding D#alues (horizontal axis). The straight
line shown in the figure is the y = x plot. A poifailing on the line corresponds to a

perfect agreement between DFT and HBOP bindingggrfer the cluster in question.
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The current model shows a reasonable agreementtiethry in comparison with the
general trend. The Tersoff [8] potential (T3) aridliBger-Weber Potential [9] which are
known to give good results for the energies antic&afparameters for bulk structures,
(Table 3.1) turn out to perform poorly in termsabdster energies (Table 3.2). This is a

sign of poor transferability of these potentiatsnfrbulk to cluster properties.

4 —
2 —
1 =
T3 SW BE&A

HEOP

n
1

Root Mean SqJare Errorin Cluster Energies{eV)
(84}
1

SWG  LIM BH CH

Figure 3.5: The root mean square (RMS) deviat@) from DFT cohesive energies of
global minimum silicon clustersSis-Si;p among eight interatomic potentials described in

Table 3.2 above.
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In applications such as ion implantatietching and vapor deposition where
clusters are either added or removed from the butkace, energies of isolated clusters
of silicon atoms must be correctly predicted, othee the outcome of such “computer
experiments” will be questionable if not complettdise.

In performing molecular simulations where clustarg involved, a candidate
potential then needs to predict the cluster ensrgigh reasonable accuracy. Therefore,
care must be taken to access the merit of usirggenpal where error in cluster energies
may give a completely different outcome from thpemxment values.

The potential of Bouldin and Anderson (B &A) [1ghows the lowest root mean
square error in this comparison of cluster enerdibe B & A potential was fitted using
all these cluster structures as input into comp@taequations having more than 30
parameters, but the use afbonding expression within their formalism helps in
predicting accurate energies for the lower numbesters S with (n = 3-6) where
others potentials are less impressive. It also napb to point out that the LIM, HBOP
and CH potentials were also fitted to scaled tearffork [85] and DFT [64] energies.
The modified Stillinger-Weber potential or SWG [180], which is a refit of the original
SW potential to include cluster energies in thiniif database was able to reduce the root
mean square error from about 5.7 eV to approxima&d eV, a substantial difference,
but not convincing enough to make it accurate foster applications. This shows that
without any modifications the two and three bodpressions used for these potentials
(SW and SWG) are not suitable for a transferabieramomic potential for silicon. In a

similar manner the potential P1 in this study faite simultaneously predict bulk and
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cluster energies and structures as demonstrateelction 2.6. This explains why the T3
potential also failed to predict good cluster eresgThe T3 and P1 potential presented in
the previous chapter are analogous, except thaaB Ecreening incorporated in the bond
energy equations. The success of the current n{plDP) stems from the introduction
of screening within the bond order expression, auie that is absent in the Tersoff

potential.

3.3 Promotion Energy

The promotion energy as defined in section 1.1 lwannterpreted as energetic
penalty due to under-coordination or over-coordomain clusters and bulk systems. The
inclusion of this contribution to the energy prossdan essential means of simultaneously
modeling these two regimes within a single poténti@del. The expression for the
promotion energy described in Eq. 1.15 was usednmdeling this behavior within the
current potential. Promotion energies resultingfioFT [64] calculations were obtained
by multiplying the excitation energy fsfp?to sp’ with 2-ns. Where 2 ns is the number
of electron promoted from the s to p orbitals. Thantityns known as thes orbital
population of atom i, was obtained using Mullikeralysis.

The results displayed in Figure 3.6 show a reasienagreement in promotion
energy for this study with those of DFT results][6Bhe accuracy of the DFT results
cannot be ascertained in any way as the matherhdétaition of the promotion energy
used in the study was formulated with simplifyirgg@amptions. Furthermore, the use of

Mulliken analysis for computing atomic charges gisesents its own additional error in

78



the overall energy. However, the results are usatuh basis for establishing a trend
among the clusters. The current potential exhieitstively flat promotion energy values
for clusters of size 3 and 5 even though the sirest of these same size clusters are
different from one another. A possible reason liag shortcoming may be due to neglect
of n-bonding existing in some of these small clusterslBOP model. As the size of the
cluster increases, for Swith n> 7, the predicted promotion energies are closéheo

corresponding DFT values.

10

—+—HBOP ——DFT

m

=)}
I

Promotion Energy
w

S
|

2:"\,/\/

Si3.1 Si3.2 Si3.3 Si3.4 Sid.1 Si4.2 Sid.3 Sid.4d Si45 Sid6 5i5.1 5i5.2 Si5.3 Si5.4 Si5.5 Si6.1 Si7.1 Sig.1
Cluster Identity

Figure 3.6: Promotion energy values for the ailicclusters in Appendix 1.1
computed using the hybrid bond order potential @latth their corresponding DFT [64]

values.
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A correlation coefficient of 0.86 between the DRBrpotion energies and those obtained
by our potential (Figure 3.7) is not perfect bubwhk a reasonable description of the
promotion energy. Further improvement in this qugnwill form part of our future

work.

10

DFT Promotion Energy (eV)
(%3]

0] 2 4 6 8 10

HBOP Promotion Energy (eV)

Figure 3.7: A comparative scatter plot of DFT potimn energies of clusters shown in
Appendix 1.1 (vertical axis) along with their capending values predicted by the
hybrid bond order potential (horizontal axis). Bieight line shown in the figure is the y
= X line. A point falling on the line corresponasa perfect agreement between DFT and

HBOP promotion energy for the cluster in question.
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3.4. Average Coordination

The average coordination number of atoms in srsiiton clusters helps in
understanding the bonding behavior and servestast &or the accuracy of an empirical
potential [21-22]. Similar to promotion energy, teerage coordination is a measure of
covalent character with covalently bonded atomsrtpa coordination of about 4.0 in
the bulk, while those displaying metallic charadt@wve values in excess of 4.0 [64].
Atoms at surfaces can have coordination numbessthes 4.0 and this is true for most
small silicon §j clusters withn < 6. The aim of this work is not to duplicate ttelier
study [64] of this property, but rather, to tese taccuracy of the hybrid bond-order
potential in predicting average coordination nursberclusters.

Average coordination numbers for the clusters tundy (Appendix 1.1) were
computed using the bond order values and Eq. 1Tlte computations were done for
two different potentials having different cut offstainces at 2.8 A and 5.95 AThe
potential with 2.8 Awas optimized by fitting the expression to equatiaf state
properties, cluster energies and promotion enerigiea similar manner as the final
potential with a cut off distance of 5.95 A. Thiea is to compare a potential with the
same expression but different cut-off distancesvas shown earlier in chapter two and
Figure 2.2 that the current implementation requéiresit off distance of more than 5.75 A
to have an optimum potential. The calculated avecaprdination numbers at
2.8 A and 5.95 A are presented in Figure 3.8.rEsalts obtained for the 5.95 A cut off
potential reproduces the coordination numbers beftas is not surprising as the longer-

ranged potential tends to capture most of the emnvahteractions among the atoms in the
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cluster. The covalent interactions actually decaiyegslowly as the interatomic distance
increases, a characteristic that is not fully dbscr by potentials that include only effects
from first neighbor shells. The short range cutiofHBOP potential clearly does not
give a good indication of the real coordination @ be seen in Figure 3.8. The

coordination numbers at 2.8 A are lower for mosstrs in the group.

6
—=—DFT
5 —+—HBOP ( rcut =5.95 A)
HBOP (rcut=2.8 A)
4

Coordination Number
w

Si3.1 Si3.2 Si3.3 si3d sS4l Sid.2 sid3  Sidd Sids Si5.1 Si5.2 Si5.3 Si5.4 Si5.5 Sib.1 Sib.2 Si7.1 Sis.1
Cluster Identity

Figure 3.8: A comparison of DFT average coordoratiumber obtained from reference
64 with those calculated by the current potentiaémusing a cut of distances of 2.80 A

and 5.95 A for the potential energy expression.
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A scatter plot comparing average coordination remsitobtained with the DFT values
(with a correlation R> 0.98) appears in Figure 3.9. It is interestingnaie that the
average coordination numbers were not used toh#t potential in this study and
therefore, the excellent agreement between ouresadund those of DFT studies is an
indication of the importance of using a long range off distance for a realistic

interatomic potential.

Silicon Potential Coordination Number
w
‘

0] 1 2 3 4 5 &

DFT Coordination Number

Figure 3.9: A scatter plot of cluster average dowtion numbers for the hybrid bond
order potential (vertical axis) along with theirr@sponding DFT values (horizontal
axis). The straight line shown in the figure is the x line. A point falling on the line

corresponds to a perfect agreement between DFT silimbn potential average

coordination for the cluster in question.
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A careful look at Figure 3.8 shows that cluster3. & and Si4.5 have lower
coordination numbers compared to the DFT valuegs&hwo clusters (Appendix 1.1)
are linear chains. Atom number 2 in Si3.3 (ApperidiX) should completely screen both
atoms numbers 1 and 3 from each other as can befreee Eq. 2.3. This is expected to
lead to zero sigma orbital interaction. Tedond order from the current potential that
has atoms 1 and 3 completely screened from eaehn byhatom 2 leading to an average
coordination of (1 + 2 + 1)/3 = 1.33. However thereuld be somer-bond interactions
from non-orthogonal overlaps of the2pnd 3 orbitals in silicon which would thus
increase the average coordination number in anyeimsdch as DFT, that allows these
n-bonding interactions. The lower values of coaoatitn numbers obtained by the
hybrid potential also stem from the fact that ooorclination numbers were defined only
by o-bond order alone, while DFT study [64] hawbond interactions as is evident from
their bond order values greater than unity in somde&/idual bonds.

A similar situation happens for cluster Si4.5 wathaverage coordination number of

(1 +2 +2 +1)/4 = 1.5. An inclusion of-bond order in the definition of coordination
number should be useful in minimizing the differemcobserved in the average
coordination number and possibly lead to even battediction of the promotion

energies.
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CHAPTER FOUR
CONCLUDING REMARKS

A new hybrid bond-order potential (HBO®R)s been developed for silicon. To our
knowledge, this work is the first attempt to incdugromotion energy in an empirical
potential. Additionally, screening of bond energgtvieeen atoms is implemented using
approximations to first principle equations. Alhet interatomic potentials [24, 53-54]
including screening effect have used ad-hoc funstiand equations. We believe that our
scheme allows for retracing back any error to ayprations made to the first principle
equations. Promotion energy is a quantum mechaprogerty of atoms in a covalently
bonded system. Quantum mechanical estimation ofmg@tion energy requires
diagonalization of Hamiltonian matrix element [2&]too complex and computationally
intensive procedure that is beyond the scope afsial potentials. Petiffor et al. [36]
used the second-moment approximation to the lomasitly of states in a minimal basis in
tight binding (TB) theory to derive a simplified @ession for promotion energy suitable
for use in molecular dynamics simulation [33-34jeTpromotion energy expression used
in the current work was fitted using the DFT [64bmotion energies for small silicon
clusters $Sig. The energies calculated with the HBOP (represkby potential P4 in
section 2.6) agree well with those of DFT with arelation coefficient of 0.86.

Cluster binding energies were computedl7 different silicon structures of size
Siz-Siip using HBOP, and we obtained excellent agreemetit WFT [64] values. A
direct comparison between cluster energies from PB&hd those of DFT gives a

correlation coefficient of 0.97 for the 17 struesirtested. Most of the bond-order
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potentials give cluster energies that are in gogdceement with the DFT values.
Structures with the lowest energies fog-Sho clusters were compared in terms of the
root-mean-square (rms) deviation from the DFT bigdenergies, for HBOP and seven
well known potentials for silicon in the literatureThe rms error obtained from bond-
order potentials, namely: HBOP, the Bolding and émsdn Potential (B & A) [14] and
thermodynamic interatomic force field (TIFF) potahtof Chelikowsky et al [23] are
generally lower than those of cluster potential§V(SSWG and BH). The exception
comes from the Tersoff potential with a much higimas error compared with other bond
order potentials. Similarly, the LIM potential hasich lower rms error compared to
other cluster potentials in the group. It is wantiting that cluster energies were not used
in fitting the Tersoff potential used for this coangon. Nonetheless, attempts were made
to perform a fitting of Tersoff potential using ster energies with little improvement
over the original potential [89,96]. This shortaomof the Tersoff potential is similar to
the failure of one of our potential named P1. ThepBtential failed to simultaneously
reproduce cluster and bulk properties. At this jiom; few observations can be deduced
about why other bond-order potential types are essfal in simultaneously predicting
good bulk and cluster properties while the Tergaffential fails in this regard. Firstly,
starting from HBOP, we discovered that inclusiorpodmotion energy term in potential
P1 (Eq. 2.58) to obtain potential P2 (Eq. 2.60) fttchg to bulk and cluster properties
did not remedy this problem. We observed thattetusnergies are poorly reproduced in
both potentials P1 and P2 (Appendix 2.5). Howewdnen the bond-order term in

potential P1 is screened to give potential P3, upsiitting to cluster and bulk properties,
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we immediately obtained a transferable potentighwekcellent cluster energies and bulk
properties compared to P1 and P2 (Appendix 2.4-Zl'g primary reason for this
improvement has more to do with our implementattean the functional form used. In
the HBOP implementation, the covalent interactisnmade long-ranged such that this
interaction decays slowly to zero at 5.95 A. Therefatoms that are within this cutoff
region are allowed to interact covalently with eather and thus have non-zero bond-
order. In computing the bond order for potentRlsand P2, all atoms within the cutoff
region are considered to have equal weight corttabuo the bond-order, but differing
only in the angular contribution. In general, th@) function in Eq. 2.8 was derived
using the second moment approximation to densittafes in BOP theory, and is
therefore valid only for the first nearest neighbbell of atoms. In essence, to obtain the
bond-order of atomsandj, then, all k atoms that are first nearest neighlwdratoms
andj are considered in computing the bond-order. Howeaentials P1 and P2 utilized
this function also for long distance neighbor atdne$ atoms andj whose bond order is
desired. The result is a lowering of the bond-ofderclosed packed structures leading to
a non transferable potential. By screening the bmdér, we ensures that thdseatom
neighbors that are at larger distance fromijthmnd have lesser contribution to the bond
order compared tk atoms that are in the first nearest neighbor shigils explains why
potential P3 with no promotion energy term stiltmarform potential P2 that includes
promotion energy but lacks bond-order screeningpialix 2.1-2.5). This finding is also
a testament to the fact that careful choice of tional representation of an empirical

potential is more important than using large numbkmparameters and performing
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elaborate fitting to experimental database. In ggsnario, potential P3 with only 7
parameters outperform potential P2 (with 9 pararaedad an additional function) when
subject to the same fitting database (Appendix225}- The Bolding and Anderson
potential with an rms error of 0.7€V is impressive considering that average DFT
binding energy of all the 8 clusters is about 22\6 This excellent agreement can be
attributed to the use of complicatecand 7 bond-order (or interference functions as they
call it) and the rigorous fitting of the potenttal all the clusters tested here. Tdhvand ~
bond order were carefully formulated using largenbar of parameters and functions to
account for physical and chemical bonding effeetsilicon bulk and crystal phases. The
original TIFF potential [83] was found to be lekan satisfactory for predicting binding
energies for clusters of Sor n < 10. Chelikowsky, Glassford and Phillips [6] iddieiil
that some of these clusters have under-coordinatehs with “dangling bonds” that
result in open structures and makes it difficutt dosimple angular function used in their
potential to simultaneously reproduce the bulk ahgter energies in silicon. This is
similar to the problem with the Tersoff potentidheve the use of simple angular function
for first neighbor shell of atoms is unable to sitameously predict good bulk and cluster
properties. The TIFF potential was later modifigdifitroducing an additional function
called “dangling-bond vector” into the potentialpegssion to discriminate between
“covalent” structures (those with average coordomahumber less than or equal to four)
and “metallic” structures (those with average comation number greater than four)

within the system [6]. The “dangling-bond vectoritroduced is ad hoc but effective
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because it identifies the physical bonding efféett tdetermines the potential energy of
the system for a given atomic structure.

The cluster potentials of SW [9], and thedified form of it referred to here as
SWG [15,100], as well as the Biswas and Hamman (@¥@ntial [20], all are unable to
predict good binding energies for small clustefse BWG form was rigorously fitted to
cluster energies, but it was only able to redueerths error to about 3.5 e¥n error that
is still about 3.5 times the magnitude of HBOP eallihe BH potential with an rms error
of about 3.8eV use similar two-body function to SW, but the egmital is made
environment-dependent through the use of coordinatumber. However, this effort was
still not enough to overcome the error in clusterdimg energies in silicon. The Li,
Johnston and Murrell (LJM) potential [94] is similep SW, SWG and BH potentials,
however, the LIM potential gives good results falkland cluster properties with an rms
error in cluster binding energies of about 1.3 ebhe functional form of the LIM two
and three-body potentials are different from otbtleister potentials considered in this
study. For example, the LIM two-body potential epresented as a Rydberg function
while the three-body term uses a symmetry coordm#hat are functions of the bond
distances. The LIJM potential was rigorously fittegsing cluster energies of siliconySi
with N < 50. Despite the success of the LIM potentiafailed to reproduce some
closed- packed structures reported from DFT stufiés These structures are capped
trigonal bipyramid for Si pentagonal bypyramid for Siand tetracapped tetrahedron for

Sig clusters.
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As a test for the HBOP potential, the averagordination number was computed for
all the 17 clusters (Appendix 1.1) and to our sggve obtain an excellent agreement
with DFT results. A correlation coefficient greatban 0.98 was obtained between our
potential and DFT results for cluster energiespdeghe fact that average coordination
number was not used in the fitting database. Bypasison, we discovered that average
coordination values are poorer for an optimizeceptal with the same functional form
but a short-range cutoff distance of 2.8 A. Thiscttpancy may be due to screening
length that is insufficient to adequately desctie coordination at 2.8 A cutoff distance
compared to 5.95 A distance used in HBOP.

Equations of state were computed X6r different silicon phases, namely;
diamond, face-centered cubic (FCC), body-centerdaicc(BCC), simple cubic (SC),
hexagonal closed packed (HCP), hexagonal diamamgles hexagonalp-Sn, BC8, RS,
ST12, Cmca, Imma, BCT5, andsSand Sig clathrates. The binding energies and lattice
parameters (or equilibrium volume) obtained forthk phases are in good agreement
with experimental and DFT results. The rms errarscohesive energies and lattice
parameters in six of the 15 phases obtained for PIB@ better than those for most of
the potentials compared. We found that the presdarative of bulk modulus have
larger error compared to the cohesive energiesegndibrium volume. This property is
second order derivative with respect to energy amen quantum mechanical DFT
methods are not able to give consistent values vdadgulating the equations of state

properties.
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In summary, a new bond-order pogritas been developed based on hybrid of
theoretically motivated functions and physicallyaligtic empirical expressions. A
screening function derived from approximationsitst forinciple expressions is included
to account for long range covalent interaction leemvatoms in silicon. Additionally, the
potential also accounts for the promotion energwtoins in the system, the first time
such interaction is included in an empirical patEntThe final potential is transferable
between various bulk phases and clusters. We legetleat intermediate structures, such
as liquids and surfaces will be adequately desdrtipethe model. Overall, good results
that compare favorably with experimental and DFTuagpns of states and cluster

energies were obtained with the HBOP model.
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APPENDIX

Appendix 1.1

Si3.1
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Si3.2
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Appendix 2.1

Parameters for potential P1

26.2961767 eV
0.873523073 A
4466.88719 eV
6.00848751°A
91.4655993 A
1.32226923 A

>0 >RT
T I T I T T

Equations of state properties for potential P1

Phase EOS Properties
Eo (eV) Vo (A% Bo (Pa) B’

Diamond -4.1415 18.3892 0.5664 6.0972
HEXD -4.1540 19.0009 0.5507 5.2052
Siye -4.1534 23.4710 0.3919 4.3274
Sizg 4.1483 23.8855 0.3906 4.2372
R8 -4.6637 17.6449 0.7478 3.6673
BC8 -4.5807 17.9841 0.6563 4.2268
ST12 -4.5922 18.0722 0.6835 3.6332
Imma -4.9329 17.7857 0.1806 4.7024
B-Sn -4.9199 17.3627 0.2803 3.6844
SHEX -4.9427 16.5329 0.5117 1.9356
BCT5 -4.6196 16.7020 0.5873 4.4028
SC -4.9282 15.8514 0.6476 3.5665
Cmca -5.3231 13.0074 1.6215 2.5256
HCP -4.8503 13.7579 0.2993 5.9185
BCC -4.8010 14.6914 0.1807 5.9272
FCC -4.8896 13.6340 0.4001 5.3231
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Appendix 2.2

Parameters for potential P2

48.5209607 eV
1.00381802 A
4661.59945 eV
6.2050596 A
141.051925 A
1.16950394 A
1.55362842 eV
0.551940787 eV

>0R >T

Q
[t

Q
N

Equations of state properties for potential P2

E(eV) Vo(A) Bo (Pa) B’

Diamond -3.5673 18.5424 0.5739 6.3501
HEXD -3.6002 19.2053 0.5695 5.334
Sige -3.7683 23.6284 0.4281 4.3712
Siaq 3.7680 24.0329 0.4283 4.2775
R8 -4.1207 17.8113 0.8217 3.6820
BC8 -4.0375 18.1628 0.7048 4.2873
ST12 -4.0574 18.2730 0.7478 3.6343
Imma -4.3999 19.6669 0.1326 4.6258
B-Sn -4.3735 18.2725 0.2819 3.4918
SHEX -4.3806 16.9989 0.5661 1.9133
BCT5 -4.0466 16.7907 0.5803 5.5348
SC -4.3541 16.1038 0.6954 3.5733
Cmca -4.2212 15.0567 0.3367 4.8373
HCP -4.2099 15.1364 0.2140 5.5344
BCC -4.1969 17.3801 0.0968 5.3056
FCC -4.2438 14.5747 0.3317 5.1235
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Appendix 2.3

Parameters for potential P3

28.6357093 eV
0.86111338 A
28371.5588 eV
7.16998122 A
195.514969 A
0.761229862 A

(oo

Equations of state properties potential P3

E(eV) Vo (A% Bo (Pa) B’

Diamond -4.5712 20.2955 0.6858 4.5536
HEXD -4.5145 20.1161 0.6274 4.9947

Sisg -4.4759 21.6151 0.4267 6.9594
Sizg 4.4964 21.4069 0.4497 7.8892

R8 -4.3850 17.8571 0.5818 5.7695
BCS8 -4.4121 18.2620 0.5211 6.1237
ST12 -4.3689 18.0628 0.4953 6.3475
Imma -4.5024 15.0312 0.6082 5.0750

B-Sn -4.5006 15.1871 0.6405 4.8945
SHEX -4.4957 15.0014 0.5886 7.1861
BCT5 -4.5023 16.9085 0.6202 5.4475
SC -4.4427 15.8448 0.3760 6.9991
Cmca -4.4478 14.7962 0.4463 4.9842
HCP -4.4261 14.7590 0.4490 4.3243
BCC -4.3806 14.4880 0.3225 6.5794
FCC -4.4258 14.9792 0.4740 3.6053
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Appendix 2.4
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Appendix 2.5

Cluster cohesive energies for Potentials P1 — P4

Cluster | DFT Cohesive | P1 Energy | P2 Energy | P3 Energy | P4 Energy
Energy (eV) (eV) (eV) (eV) (eV)
Si3.1 -7.8200 -8.0834 -7.7326 -8.0653 -7.6400
Si3.2 -7.7500 -7.4123 -6.9502 -7.5324 -7.018J7
Si3.3 -7.2600 -5.5616 -4.6929 -7.1760 -6.575¢
Si3.4 -6.4700 -6.1624 -5.4370 -7.0993 -6.4920
Si4.1 -12.3600 -11.6873 -11.1172 -12.0440 -11.82B5
Si4.2 -11.6900 -11.7487 -11.2507| -12.1338 -11.91)73
Si4.3 -11.6400 -9.5187 -8.1760 -9.3707 -8.7654
Si4.4 -10.9300 -11.6946 -11.5264 -11.8301 -11.62Pp4
Si4.5 -9.9000 -7.5578 -6.2937 -10.4116 -9.8440
Si5.1 -16.5000 -16.6728 -15.9229 -15.7608 -15.47p8
Si5.2 -15.4700 -14.9915 -14.0438 -15.8916 -15.77p2
Si5.3 -15.1800 -16.8365 -16.0732 -15.8936 -15.62[78
Si6.1 -20.7200 -21.4287 -20.4639 -19.5310 -19.14p0
Si6.2 -20.6900 -21.3653 -19.3692 -19.0964 -19.04P1
Si6.3 -19.9900 -21.7211 -19.8692 -19.6523 -19.61[72
Si7.1 -24.9100 -25.6799 -23.9703 -23.8421 -23.5015
Si8.1 -28.0100 -28.6900 -26.0533 -27.4729 -27.1414
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