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ABSTRACT 

 

         A new hybrid bond-order potential for silicon is developed. The functional form of 

the potential is derived from hybrid of expressions from empirical bond-order formalism 

and first principles approximations. The total energy is expressed as the sum of attractive, 

repulsive and promotion energies. By introducing a screening function derived from 

approximations to first principles expressions, the potential is made long-ranged by 

allowing covalent interactions beyond the first nearest neighbor shell of atoms in 

agreement with quantum mechanical descriptions of the bonding in silicon. Environment-

dependent promotion energy is introduced that accurately accounts for energetic 

interactions due to changes in hybridization state of atoms during chemical bonding. The 

treatment of the bond-order has been extended beyond the tight-binding second moment 

approximations to include screening of the bond strength between two atoms by other 

atoms in their vicinity.  

 A database consisting of structures, cohesive energies and promotion energies of 

clusters of 3–8 atoms, equations of state properties for 15 phases of silicon were used to 

obtain optimized parameters for the potential. The resulting model is able to accurately 

represent silicon in a wide range of bonding environments. The potential has been 

validated against widely used interatomic potentials for silicon in the literature for 

energies and structure of small clusters, equations of state for diamond cubic and other 

high pressure phases of silicon.  
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CHAPTER ONE 

INTRODUCTION 

 Silicon (Si) is the main material used in integrated circuits for microelectronic 

applications.  Integrated circuits are used in most modern electronics hardware ranging 

from chips in cell phones, microprocessors, household electronics, to airplanes, 

spacecraft and satellites. These products are shaping our world today and their 

development is of great technological and economic interest. Silicon is a group IV 

element in the periodic table and exists in nature as minerals in the form of silica (SiO2) 

and silicates, which are compounds of silicon, oxygen and metals. The pure form of 

silicon takes the diamond cubic lattice structure at ambient conditions. The diamond 

cubic silicon is a semiconductor. That is, it is naturally an electrical insulator, but can be 

made to conduct electricity under the influence of heat or electric current. This ability is 

one of the reasons why silicon is the material of choice for microelectronic applications. 

The vast abundance of silicon in the soil as a raw material also makes it economically 

attractive compared to other semiconductor elements. 

 The continued miniaturization of feature size on silicon chips in semiconductor 

fabrication to less than 100 nm size is now helping to advance many electronic 

applications [1]. This advancement also comes with difficulty in controlling the quality 

and yield of microelectronic appliances as the size of the circuit features in these 

appliances approaches dimensions where quantum effects becomes relevant. Processes 

such as defects, ion migration, surface reconstruction, fracture and crack propagation are 

some of the underlying phenomena occurring during semiconductor fabrication which 
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can negatively affect the yield and quality of microelectronic products. Current day 

research and developments in semiconductor materials are now focusing on 

understanding these fundamental processes occurring at the atomic length scales in order 

to improve product quality and yield.   

 Computational modeling and simulation is playing an important role in 

semiconductor materials design and property predictions in advance of fabrication [2]. 

“Computer experiments” through modeling and simulation can be helpful in revealing 

atomistic processes useful for experimental interpretation or at least help guide 

experimental design for product development.  These “computer experiments” can be 

achieved through the use of molecular dynamics (MD) simulations.   

 In MD, the phase space trajectory of a system (positions and velocities of all atoms 

at all time) is computed by solving Newton’s equations of motion numerically [3,4]. The 

basic principle in MD is to reproduce the motion of atoms in the system as they occur in 

nature. The macroscopic properties of materials such as temperature, pressure, heat 

capacity and density can be obtained through analysis of the atomic motion of the system.  

MD simulations method can be classified into two major types: classical MD and ab 

initio MD. The most prominent ab initio molecular dynamics simulation method is the 

Car-Parinello molecular dynamics (CPMD).    

          In classical MD, potential energy and forces on the atoms are computed using an 

interatomic potential representing the interactions between these atoms. The forces are 

then used to integrate Newton’s equations of motion in time. The CPMD [5] method on 

the other hand,  does not require an interatomic potential, but rather, quantum mechanical 
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description of the electrons using density functional theory (DFT) and classical dynamics 

of the nuclei are used to perform the simulation. The basic physics of condensed matter 

are inherently described when the electronic degrees of freedom are treated explicitly by 

quantum mechanics in the CPMD method.  Therefore, the Car-Parrinello MD is capable 

of providing accurate prediction of material properties. However, the computational 

expense required to solve many important problems of interest using this method can be 

several orders of magnitude compare to classical MD that uses an interatomic potential 

[2]. Consequently, only small system and short time scales are accessible when using 

Car-Parinello MD. Furthermore, the Car-Parrinello method is unsuitable for treating van 

der Waals-like forces in condensed phases. A major limitation of classical molecular 

dynamics is the lack of realistic and time-efficient interatomic interaction potentials. The 

development of such potentials is essential to the accurate prediction of materials 

properties and processes through molecular simulation.  

 There is no dearth of interatomic potentials for silicon in the literature [6-32]. Most 

of the available potentials have provided a wealth of knowledge in prediction of bulk 

properties, defects, cluster energetics and surface properties.  Various potentials have 

strengths and shortcomings in regard to their ability to accurately predict various 

properties of interest. Some were developed specifically to model clusters [23,28-29], or 

a combination of clusters and bulk properties, liquids and equilibrium behavior [14,21-

22] and a whole host of other important characteristics. 

 A long-standing problem of classical inteatomic potentials for silicon is 

transferability, or the ability to predict with reasonable accuracy the properties of silicon 
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in wide ranging environments. Some of the most demanding environments are 

encountered during chemical vapor deposition, ion implantation and etching processes.  

 These place a stringent requirement on a potential to accurately model defects and defect 

migrations, surface reconstructions, cluster structures and energies, liquid structures, 

grain boundaries, equilibrium properties, scattering cross-sections and high-temperature 

and stress-strain behavior. A good candidate potential should therefore provide an 

understanding of these complex processes and their relationship with chemical bonding 

concepts such as bond formation and breaking, hybridization, bond bending, charge 

transfer, radical formation and π bonding. A detailed comparative [73] study of some 

silicon potentials in use reveals useful insight into their strengths and weaknesses. While 

they all provide reasonable description of equilibrium properties of cubic diamond 

silicon, they are non-transferable to different silicon environments. The quest to develop 

accurate classical potentials that are computationally efficient and provide better 

transferability in various silicon environments is an ongoing effort with some success 

[33-37].  Some of these successes can be attributed to the effort made to incorporate 

approximate quantum mechanical description of the covalent bonding and behaviors of 

silicon in its diverse polymorphs [35].   

 Interatomic potentials for silicon in general can be classified into three major 

categories. These are bond-order potentials, cluster potentials and embedded atom 

method (EAM) potentials. These potentials differ from one another primarily due to their 

functional representation but are similar in regards to their empirical nature.  The 

potentials are empirical because they are mathematical representations determined from 
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experimental properties of silicon. These functions are not in any way derived from first 

principles, however, recent advances [36] in tight binding methods using moment 

approximations in the Green’s functions formalism has lead to series of analytical bond 

order potentials (BOP). Potentials derived using the BOP theory are obtained by 

approximations from first principles. The potential described in this dissertation is a 

hybrid of BOP functions combined with other empirical expressions which we referred to 

as a hybrid bond-order potential (HBOP) for silicon.  

 The first class of empirical potential for silicon is the bond-order potentials. The 

bond order potential formalism was originally introduced by Abell [17].  In general, the 

potential energy for this class of potential can be written as: 

( ) ( ) ( )[ ]
( )

∑∑
≠

+=
i ij

ij
R

ijijij
A

ijijccoh rVbrVrfE                                                                           (1.1) 

where r ij is the distance from atom i to atom j.   

Here, A
ijV  and R

ijV  are the attractive and repulsive part of the potential energy and bij is 

the bond order for the ij  bond.  The function fc(r ij) represents a smooth cutoff function to 

limit the range of the potential. The main characteristic of this class of potential is the 

variable and configuration-dependent bond order or the strength of the bond. The 

coordination number of the participating atoms and the bond angles formed with their 

neighbors are the main factors affecting the strength of the bond. For example, when an 

atom has a high coordination number, the bonds formed with its neighbors are weaker 

than those atoms with few neighbors. Therefore, bond order decrease monotonically with 

increase in coordination number of atoms i and j forming the bond. Additionally, the 
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bond-order expression favors open structures with bond angles corresponding to those of 

diamond structure.  

 The functions A
ijV  and R

ijV  are represented as exponential functions: 

( ) ( )ijij
A

ij rArV α−= exp                                                                                                     (1.2) 

and 

( ) ( )ijij
R

iij rBrV β−= exp                                                                                                     (1.3) 

A, α and B, β are adjustable parameters corresponding to coefficients and characteristic 

lengths for the attractive and repulsive components of the potential respectively. The 

form of these functions, Eqs. 1.2 and 1.3, shows that the bonding is modeled by pairwise 

functions, but the full potential include the bond order (Eq. 1.1) which is a many-body 

function depending on the local environment of the bond. The bond-order term is further 

expressed in terms of atomic coordinates and angles as follow: 

( )ijij fb ξ=                                                                                                                       (1.4) 

( )∑
≠

=
jik

ikijij rrV
,

3 ,, θξ                                                                                                        (1.5) 

( ) ( ) ( )ijkjikikijikij grrrrV θθϕθ ,,,,3 =                                                                                    (1.6) 

where  f(ξ) is usually (1 + ξ)-1/2 and  

ϕ(r ij , rik) is usually represented by an exponential function of r ij and r ik. The functional 

form of the term describing the dependence of bond order on bond angle, g(θjik, θijk) is 

formulated such that structures with angles corresponding to the diamond cubic phase are 
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 stabilized. A detail comparison of different functional forms used for g(θjik, θijk) is 

presented in section 2.2. 

 Extensions to the bond-order model have been derived for applications to different 

chemical interactions. For example, the reactive bond-order (REBO)  potential [38,39] 

for hydrocarbons have additional terms in the bond order accounting for the influence of 

radical energetics and π-bond conjugation on the bond energies and also incorporate the 

effect of dihedral angle rotation about the carbon-carbon double bonds.  Additional terms 

in the form of non-bonded interactions have been introduced in the potential energy 

expression (Eq. 1.1) to enable the REBO potential account for dispersive forces as 

intermolecular interactions in hydrocarbons [40,41] and torsional interactions in carbon-

carbon single bonds [40].  A variety of bond-order potentials have been derived for 

silicon following the bond-order formalism [8,12,14]. The formalism has also been 

applied to multi-component systems involving silicon with fluorine and chlorine [42], 

silicon-carbon-hydrogen [43], silicon-hydrogen [44] and silicon-germanium systems 

[45]. All these extensions have aided in the modeling of several systems and processes of 

interest in semiconductor and other materials.  

 The second class of potential is the cluster potentials modeled by two and three-

body interactions. The potential energy is generally represented by 

( ) ( )∑ ∑+=
ji kji

jkikijijcoh rrrVrVE
, ,,

'
3

'
2 .,,                                                                                (1.7) 

The pairwise two-body term V’2(r ij) is the sum over contributions from N(N+1)/2 atomic 

pairs i and j depending on the distance r ij between them. Typical functional forms of the 

two-body terms are the Morse potential [20], the Rydberg function [16], and the widely 
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used Stillinger-Weber (SW) type exponential functions [9,30-31]. An example of the 

two-body potential used in the SW potential [9] is given by 

( ) ( ) ( )[ ]






>

<−−
=

−−−

ar

ararrBrA
rV

ij

ijij
q

ij
p

ij
ij ,0

,exp 1
'

2                                                             (1.8) 

where A, B, p, q and a are positive parameters. The exponential term is a cutoff function 

that enables the potential to smoothly go to zero at r = a. The above function (Eq. 1.8) 

can be interpreted physically as representation of steric repulsion and electrostatic 

interaction between the atoms.  

 In monoatomic solids, the three body V’3(r ij, rik, r jk) is symmetric with respect to 

exchange of i, j and k atoms in the triple sum. Using the SW potential [30] as an example, 

the three-body potential is given by 

( ) ( ) ( ) ( )ikjkjkiijkjkjijikikijkji rrhrrhrrhrrrV θθθ ,,,,,,,,'
3 ++==                                          (1.9)  

and the h function is given by the formula 

( ) ( ) ( )[ ] 






 +×−+−= −−

3

1
cosexp,, 11

jikikijjikikij ararrrh θγγλθ                                     (1.10) 

where λ and γ are constant parameters. This three-body term is repulsive and by 

construction the sum vanishes exactly for the diamond structure (θjik = 109.47°).  This 

function, (Eq. 1.10) vanishes when cos (θjik) = -1/3, therefore other lattices are 

destabilized relative to the diamond cubic lattice. The interpretation of this choice is that 

the potential has tendency to form sp3 covalent bonds in silicon. Additionally, the h 

functions account for covalent effects through bond bending using the angular term and 

stretching of atomic bonds (r ij, rik, r jk ). These properties enable the potential to give the 
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correct ground state (diamond cubic structure) of the crystal silicon at ambient 

conditions. A number of extensions to the cluster potentials have been derived. In an 

attempt to predict the correct cluster energies, four-body interactions [31] has been added 

to Eq. 1.7, while environmental dependence of the energy has been achieved through the 

use of effective coordination in the two- and three-body terms to help describe defects 

and disordered phases in silicon [30].  

 The EAM potentials are the third class of silicon potentials available in the 

literature. The general form of the potential energy for these potentials can be written as 

( ) ( ),
2

1
∑∑
≠

+=
ji

ij
i

iicoh rFE φρ                                                                                        (1.11) 

where Fi(ρi) represents the embedded-atom energy of atom i, and ρi denotes the local 

electron density at atom i, which is computed as a superposition of individual atomic 

electron densities from other atoms that are neighbors of atom i. The term φ(r ij) is the 

pairwise interaction between atoms i and j separated by a distance r ij  .  

 This functional form works well for close-packed materials such as metals, but 

does not work well for covalent systems due to a lack of the angular dependent terms 

needed to describe covalent bonding. For use in covalent systems, modifications are 

usually made to the EAM functions in the form of modified embedded-atom methods 

(MEAM) by introducing explicit angular-dependent functions [11,55], or indirectly 

through screening functions in the local electron density terms [24]. An example of such 

screening function is described in section 2.3.3. 
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 The current study enumerates the importance of different physical contribution to 

covalent bonding starting from the bond-order formalism originally introduced by Abell 

[46] and implemented for silicon by Tersoff [6]. This formalism has found success in 

hydrocarbons in the form of the REBO potential [39]. The aim is of this work is to 

provide a systematic development and evaluation of the influence of different physical 

effects and their functional representations in a silicon potential.  These effects include 

screening, in which covalent bonding interaction between two atoms is weakened due to 

the presence of other neighboring atoms in their environment. Another important 

property considered is the promotion energy. This is the energy associated with the 

change of occupancy of atomic orbitals when an electron is promoted from the free atom 

s2p2 configuration to the hybrid sp3 configuration when forming the solid. The potential is 

also made long-ranged to better reproduce the quantum mechanical description of 

bonding in silicon. It is important to note that most interatomic potentials are made short-

ranged and usually limited to first nearest neighbor interaction in silicon at equilibrium 

densities.  In contrast, the quantum mechanical description of covalent bonding between 

atoms extends beyond the first nearest neighbors in silicon. The short-range cutoff 

distances adopted are normally implemented for computational convenience or difficulty 

of dealing with strongly covalent bonded second-nearest and further neighbors that may 

result due to the nature of the potential expressions used. The key remedy for this 

shortcoming adopted in this study is to introduce the screening effect.  This essentially 

circumvents the problem of strong covalent interactions when atoms are far apart from 

one another in condensed phases.  
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 The goal of this research work is to develop a bond-order potential for silicon that 

is reasonably accurate and time-efficient for use in molecular dynamics simulations for 

predicting properties of silicon in crystal, bulk, liquid and surfaces.   

 In Chapter 2, a brief description of the various components of the potential are 

presented with their functional forms and justification. The development of the model 

using screening function, bond-order and promotion energy terms is presented. This is 

followed by the fitting procedure for the potential. Systematic derivation of the potential 

through incremental addition of functions and parameters and the improvements obtained 

are presented. The justifications for using long-range interaction are enumerated. 

 The final potential obtained is used to predict equations of state for crystalline 

phases, cluster energies and promotion energies in Chapter 3. The final results are 

compared with those of existing silicon potentials and final concluding remarks are made 

in Chapter 4. 
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CHAPTER TWO 

MODEL DEVELOPMENT 

2.1 Introduction 

 The fundamental basis of the potential described here arises from the use of coarse-

grained first principles density functional theory to deduce the pertinent components of 

the total energy and their representation in an analytically tractable form suitable for use 

in classical molecular dynamics simulations.  Approximate tight binding (TB) methods 

have been developed previously with this type of aim in mind. This formalism has been 

successful in many theoretical investigations [47-51]. A reduction of TB equations using 

moment approximations to density of states in the Green’s function formalism has led to 

a series of analytical bond order potentials (BOP) [33,35,37].   In the moment 

approximations, the nth moment of the local density of states for a given atom i is 

determined by summing all the hopping or the bonding paths of length n that start and 

end at atom i. This concept provides the link between electronic structure calculations 

involving the diagonalization of the Hamiltonian and using an interatomic potential when 

evaluating the energy of atomic systems. 

  The second-moment approximation based on the BOP formalism was shown to 

reduce to the Tersoff potential [6].  However, the second-moment approximation is 

unable to provide a good description of the energy difference among three-dimensional 

structural phases, such as diamond, FCC, SC, BCC and HCP.   

 The fourth-moment description is more accurate and able to provide a good 

description of the relative stability among these polymorphs. However, the complicated 
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nature of the expressions in the fourth-moment expansions requires significant 

computational expense compared to traditional classical potentials [36]. The 

computational burden using these expressions grows exponentially as more distant 

neighbors are added to extend the range of the potential.  Here, we devise a similar but 

computationally efficient method of obtaining the bond order, while at the same time 

incorporating the effect of long-range interactions between the atoms. In this study, both 

the bond energy and the bond order are screened as will be presented in details in section 

2.3. Atoms in the second, third, fourth and fifth neighbor shells are included in covalent 

bonding through the use of a screening function. The screening function ensures that 

forces on atoms are gradually reduced as the distance between them increases, and fall 

smoothly to zero just after the fifth nearest neighbor shell in diamond cubic structure. 

 The binding energy is expressed as a sum over bonds in the form  

( ) ( ) ( )[ ] prom
i ij

ijAijijijRijcB VrVbbSrVrfE +−=∑∑
>

1              (2.1) 

The pair-additive repulsive part of the potential, VR, and the attractive function, VA, are 

given by: 

( ) ( )ijr

ij
ijR e

r

Q
ArV

β−











+= 1                    (2.2)       

  ( ) ( )ijr
ijA erV α−=                  (2.3) 

where r ij  is the distance between atoms i and j. The potential is smoothly reduced to zero 

by multiplying them by the cutoff function, fc(r ij) [57], given by:  
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Here we use a rmin value of 5.5 Å and rmax (rcut) of 5.95 Å.   

The parameters a0, a1 and a2 are chosen so that   fc(r ij) and its first two derivatives are 

continuous at rmin and by construction  fc(r ij)  and its first derivative are also continuous at 

rmax. The symbols A, Q, α, β, and  b1 are adjustable parameters. 

The terms bij is the bond-order for the bond connecting i and j, Sij  represent the screening 

of atoms i and j by other atoms in their vicinity, and Vprom is the total promotion energy of 

all atoms in the system.  Details of the functional representations for the bond-order, 

screening function and the promotion energy are described in sections 2.2, 2.3 and 2.4 

respectively. 

 The form of the repulsive and attractive terms in Eq. 2.1 - 2.3 are identical to those 

in the Tersoff [8] and Brenner [39] bond-order potentials for silicon and carbon 

respectively. These potentials are short-ranged, with only first nearest neighbor 

interactions in diamond solid at standard conditions. In general, potentials for covalent 

system are much longer ranged and this feature is essential for adequate description of 

surfaces, amorphous, liquid and vapor phase energetics of materials when performing 

‘computer experiments’  such as  film deposition, a procedure that is accompanied by 

inherent complex processes such as defect formation, chemical reactions, surface 

reconstruction and stress-strain behaviors.  
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2.2 Bond-Order 

 In the second-moment approximation, only the first nearest neighbor atoms 

contribute to the bond order.  The bond-order expression described here is modeled after 

the second- moment approximations in the BOP theory with modifications to ensure that 

distant atoms up to the fifth nearest neighbor shells also contribute to the overall bond 

order. 

 The bond-order expression is given by: 

( )
2

σσ
jiij

ij

bb
b

+
=                  (2.5)                                                                           

where σ
ijb  represents the bond order resulting from the neighbors of atom i, and  σjib  

represent the bond order contribution due to neighbors of atom j.  

These terms are given by; 

( ) ( )







+

=

∑
≠ ),(

**1

1

jik
jikikcik

ij

grfS

b

θ

σ
                (2.6) 

Where the Sik function represents the screening of the individual contributions to the bond 

order from the k atoms that are neighbors of i.  The k’ atoms are the neighbors of atoms i 

and k in the ik bond.  

 ( ) ( )( )( )∏
≠

∆−∆−=
kik

ikkikkcik rrfS
,'

'' exp1 λ .              (2.7) 

and  fc(∆r ikk’) is the cutoff function computed using Eq. 2.4 with the argument  

∆r ikk’  = r ik’ + rkk’ - rik. 
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 In the second-moment approximation, the dependence of the bond-order on the 

angle ijkθ  formed by a pair of nearest neighbor atoms is 

( ) ( ( ) )
2

cos
1

1 







+



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


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



+
= jikjik pp

p
g θθ

σσ

σ
              (2.8) 

This function has a similar shape as the angular function in the Tersoff potential, but with 

the advantage of using only one parameterσp  as opposed to three in the Tersoff potential 

[8].   

 The angular expression for Tersoff Potential [8] is given by: 

( ) ( )( )[ ]22

2

2

2

cos
1

ijl

ijk
hd

c

d

c
g

θ
θ

−+
−+=                (2.9) 

Where θijk is the angle between bonds ij and ik and c, d and h are adjustable parameters.  

A major drawback of using only this expression for calculating bond-order is that 

structural differentiation in different silicon phases is not well resolved by the Tersoff 

potential and other similar potentials utilizing this formalism [33]. Secondly, it is valid 

only for atoms within the shell of first nearest neighbors, a deficiency that is the probable 

caused by the first problem.   

  An extension of the angular function in Tersoff potentials [6-8] was implemented 

in REBO and the adaptive intermolecular REBO (AIREBO) potentials [38-40] for carbon 

by addition of ad hoc functions and parameters. While these additions help in correcting 

for energetics of small hydrocarbon molecules, applying them to calculations beyond this 
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fitting region when estimating the sp3 fraction in amorphous carbon at high densities 

resulted in unsatisfactory results [52,56].    

 The empirical bond-order potential for semiconductors developed by Conrad and 

Scheerscmidt [25] uses a different variant of the second moment approximation to TB for 

its bond-order model. Similar to HBOP, the angular terms depend on the hopping 

elements (ssσ and ppσ) that makes up the pσ parameter. Here, 

 

( ) ( ) ( )jikjikjik cbag θθθσ *2cos*cos* ++= ,                 (2.10) 

cba −−=1 ,                        (2.11) 

σp

c
b

4
= ,                         (2.12) 

( )2
2

12 σ

σ

p

p
c

+
= ,                                                                                                         (2.13) 

σ
σ

σ ss

pp
p =                        (2.14) 

Where a, b and c are parameters determined from TB Hamiltonian bond integral matrix  

elements ssσ and ppσ that depends on the atomic species. A comparison of the angular 

function for all three empirical potentials given by Eqs. 2.8-2.10 is shown in Figure 2.1. 

They have closely similar shape between angles 0 and 90 degrees, but all of them 

approach zero at different bond angles.  For example, the Tersoff potential [8]  has its 

angular function at a minimum of about 2.0 * 10-5 and bond angle of 126.6 degrees, the 

Conrad and Scheerscmidt potential [25] has its minimum value of zero at a bond angle of  
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101.82 degrees, while HBOP gives a minimum of zero at the tetrahedral bond angle of 

109.47 degrees. A theoretical interpretation of this function is that bond order is 

maximum (or g(θ) is minimum) for bonds in the tetrahedral geometry (θjik ~ 109.47). By 

careful selection of pσ = 3 in HBOP, g(θ) becomes zero at the tetrahedral angle. In 

graphitic silicon with an sp2 structure, the bond angles are at 120 degrees , which is close 

to the minimum value of g(θ) for the HBOP function.  

 In this study, we follow a more pragmatic approach compare to the fourth moment 

approximation for computing the bond-order by using the second moment expression 

with the range extended with a cutoff function by including atoms that are up to 5.95 Å 

distance apart in the covalent interaction. A mere extension of the range of the potential 

while utilizing Eq. 2.6 results in an unsatisfactory potential that is not transferable 

between the bulk phases and clusters. The reason for this poor transferability is because 

atoms that are at larger distances away from the ij  bond have equal weights of 

contribution to the bond order as atoms in the first neighbor shell when using Eq. 2.59 in 

section 2.6. This should not be the case as the first nearest neighbors have greater 

influence on the bond order. A more severe problem is that some of these long distance 

neighbors are at lower angles relative to the ij  pair in question. These lower the bond 

order to unphysical values, especially for short bonds, which are more likely to have 

fewer atoms screening them strongly from one another, but which still have a larger 

number of distant neighbors. We therefore remedy this deficiency by screening the bond 

order contribution from each ij  bond interaction in angular part of the potential using a 

similar screening function as that of bond energy (Eq. 2.7). 
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The idea is to ensure that more distant neighbors of atoms i and j that are highly screened 

contribute less to the bond order, while those atoms in the first coordination shell 

dominate the angular contribution to the bond order as expected. The screening of the 

bond-order is represented in Eq. 2.6. In the bulk phase, the screened bond-order 

expression ensures that k atoms (neighbors of the ij  bond) that are farther away from the 

 

 

Figure 2.1 A comparative plot of g(θ) functions for bond-order potentials HBOP, 

Tersoff Potential [13] and the potential of Conrad and Scheerscmidt [78]. The g(θ) values 

for the Tersoff potential and Conrad and Scheerscmidt potential are normalized for easy 

comparison. The plot for Conrad and Scheerscmidt potential is [gσ(θ)]2. 
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ij  bond and having more intervening atoms are properly screened. This implies that, for 

long distant ik and jk bonds, lower numerical values of Sik in Eq. 2.7 are obtained and 

hence a lowering of the angular contribution to the bond order in Eq. 2.6. Therefore, 

shorter ik bonds that are in the first neighbor shell of interaction have higher influence on 

the bond order as explained earlier. 

 An important feature of the fourth moment approximation in the BOP formulation 

is that atoms up to and including the third nearest neighbors of the ij  bond and fifth 

nearest neighbor of one another are included in computing the bond order. While the 

current implementation avoids using those complex loops required by the BOP 

formalism, a computationally intensive procedure, we devise a method that incorporates 

up to the fifth nearest neighbors of the ij  bond using a single expression (Eqs. 2.5-2.8) 

that is appropriately screened for the long distance atoms. This implementation gives a 

potential that is transferable between the bulk crystal phases and clusters, as 

demonstrated in Chapter 3. 

 

 

2.3  Screening 

 A key feature of the current potential implementation for silicon is the inclusion of 

a bond screening term Sij in the bond energy and bond order expressions.  Screening is a 

quantum mechanical effect occurring between atoms in condensed phases and even 

clusters. The bond energy and bond order between two atoms is weakened by the 

presence of other atoms in their environment due to screening. The quantum mechanical 
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nature of the screening owes its origin to interference due to orbital overlap in covalent 

bonding. For example, the covalent interaction between a pair of Si atoms at a distance of 

5 Å apart depends strongly on whether there is a third atom between them that screens 

their interaction by preventing orbital overlap. An expression describing the screening 

function was derived using approximations from BOP theory by inverting the 

nonorthogonality tight binding matrix [35].  This expression forms the starting point for 

our model of screening which is presented in section 2.3.4. Various other ad-hoc 

expressions [24,47,53] have been implemented for screening in classical potentials. A 

common feature of all the screening expressions is that the covalent interaction between 

two atoms is completely screened when another atom is directly on the line connecting 

them, but such screening gradually falls off as the interfering atoms get father away from 

the pair of atoms in question. Here, the mathematical expressions used for screening 

various potentials will be examined with their similarities and differences. Among these 

methods are the tight binding potentials for carbon [47], the embedded atom methods for 

silicon [24] and nickel [53], and analytical bond order potentials (BOP) [35,37]. A 

systematic derivation of the screening function for the current work is also presented. 

 

2.3.1 Ames Group 

 Tsang, Wang, Chan and Ho [47] at Ames laboratory incorporated environmental 

dependence in the TB hopping integrals and the pairwise repulsive potential between two 

atoms i and j in carbon using a screening function.  The two-center hopping integral in 

the minimal basis set in the TB Hamiltonian between a given pair of atoms i and j at  
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distance rij   is given by 

 ( ) ( )( )αβαβαβ
ijijoij Srhrh −= 1                     (2.15) 

Where α  and β  represent the atomic orbitals s or p and the screening function is 

modeled as 
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where ijξ  depends on the position of atoms i and j and those of their neighbors l and β1, 

β2 and β3 are adjustable parameters. The function ( )ijo rhαβ  is the unscreened hopping 

integral which depends on the distance between atoms i and j [47]. In this formalism, the 

screening functionαβ
ijS  can be different for different hopping integrals depending on their 

environment. The TB hopping integrals, screening function and the pairwise repulsion 

are all smoothly cutoff at 5.2 Å.  For calculating the screening function, all neighboring 

atoms l within a circular cutoff radius of 5.2 Å from both atoms i and j are included as 

shown in Figure 2.2 and Eq.2.17.  This screening function was used in the TB expression 

to model binding energies of carbon [47] and silicon [54] in different environments such 

as graphite, BCC, SC, FCC and diamond. The expressions in Eqs. 2.16 and 2.17 are 

complicated with no theoretical basis other than having the mathematical appeal to 

describing the screening effect. 
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Figure 2.2.      Schematic illustration of the screening of atoms i and j by atoms labeled l 

as described in the tight binding implementation for carbon by Tsang, Wang, Chan and 

Ho [47]. All atoms labeled l within the two circles with cutoff radius of 5.2 Å are 

included in calculating the screening functions in Eq. 2.16 and 2.17.  
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2.3.2 Cai Model 

 A modified embedded atom method (EAM) potential for silicon  developed by Cai 

[24] incorporated screening  in the embedding energy F(ρi), where ρi is the  local electron 

density at atom i obtained from linear superposition of electron densities of neighboring 

atoms around it. The EAM method [58-59] works well for metals and closely-packed 

materials because of the symmetric nature of their atomic arrangement. However, in 

covalent systems such as silicon, angular dependence in the bond energy makes it more 

difficult to model the covalent interactions using EAM-type models. Cai introduced a 

screening function that is able to model this angular behavior indirectly by multiplying 

the individual atomic electron density f(r ij) of atom i due to atom j with the screening 

function Sijk, where Sijk  is the screening function due to atom k in the vicinity of atoms i 

and j. Therefore, the local electron density of atom i is obtained as the sum of individual 

screened electron densities due to its neighbors j as 

( )
( )
∑
≠

=
ij

ijiji rfSρ                        (2.18) 

where for a many-atom system, the screening of the contribution to electron density at 

atom i by its neighbors except for atom j is given by 
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 The screening cutoff implementation uses a variable ellipsoidal radius of twice the 

distance between atoms i and j in question, or simply 2 r ij.  This choice is arbitrary and 

adopted for its mathematical convenience. The cutoff implementation for the Cai method 

is illustrated in Figure 2.3. The work presented in this dissertation adopts a similar 

strategy to that used by Cai although with crucial differences.  In the current study, we 

also use a cutoff criteria depending on the geometry of the three atoms involved (i, j and 

k), with covalently bonded atoms i and j being screened by atom k. The cut off 

implementation for the HBOP also has elliptical symmetry, although with a fixed cutoff 

distance that does not depend on r ij distant. They also differ in how this cutoff function is 

implemented. 

              In Cai’s implementation, when atoms i, k and j are arranged in a straight line, 

with atom k on the line joining atoms i and j, or when angle θjik is 0 degrees, from Eq. 

2.20, the screening Sijk becomes 0.  The physical interpretation of this scenario is that 

atom k completely screens the covalent interaction between atoms i and j. On the other 

extreme, when the three atoms are arranged in a straight line with atom k located at one 

end of the line, the screening becomes 1. That is, atom k has no effect on the covalent 

bonding between atoms i and j and therefore the multiplication factor Sij in Eq. 2.19 will 

be 1. Cai demonstrated that the individual contribution to the atomic density given by Sijk 

varies from 0 to 1 as the angle θjik (angle between the ij  and ik bonds) varies from 0 to 

180 degrees when using a three atom systems (i, j and k) arranged in isosceles triangle 

with distance r ij = r ik.  The behavior of Sijk as a function of angle θjik presented in Cai’s 

work [24], shows that the screening Sijk rapidly approaches 1 as soon as the angle θjik 
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approaches 90 degrees for trimer of atoms. These key features help to connect the 

screening function indirectly with angular functions that are known to have more 

theoretical appeal [13, 46] for covalent systems. Even for different choices of the 

parameter re in Eq. 2.20 the screening function Sijk is not too dissimilar for all angles 

between 90 and 180 degrees for the isosceles trimer example.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Schematic illustration of the screening of atoms i and j by atoms labeled k    

for silicon MEAM potential of Cai [24].  All atoms within the ellipse satisfy the condition 

r ik + r jk – rij  ≥ 2 rij. The smallest ellipse labeled a represents the cutoff boundary for k 

atoms participating in screening of atoms i and j with short r ij distance. The biggest 

ellipse labeled c with the largest r ij has larger cutoff radius and more neighbors. 
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            By physical intuition, the screening of the covalent bonding in atoms i and j as 

described by Cai’s shows that screening decreases rapidly as  atom k moves away from 

the covalent bonded atoms i and j. A drawback with this implementation is that 

computation of energy for an atom pair at large distant apart in the condensed phase will 

involve considerable computational expense due to large number of atoms necessary to 

compute the screening function. Even worse, this increased computational expense is 

needed only for the most weakly bound atoms, the ones for which screening is least 

useful. Because of mathematical nature of the cutoff implementation, this method will 

require substantial computational expense relative to most classical interatomic potentials 

for silicon when performing molecular dynamics simulation 

          An important difference between Cai’s method and our implementation is that, 

while we maintain a similar elliptical screening cutoff, we avoid this pitfall by limiting 

the range at which atoms are able to participate in screening. Nonetheless, the screened 

MEAM potential of Cai was used to predict accurate lattice constant, cohesive energy, 

elastic constants and a negative Cauchy pressure of silicon in diamond cubic phase.  

 

2.3.3 Baskes Method 

 One of the pioneers of the EAM method, M. I. Baskes [53] argues that the 

traditional implementation of the EAM models with a short radial cut off is not general 

because long-range psuodopotentials and electrostatic forces cannot use short range 

cutoffs. However, the justification that small forces on atoms at longer distances can be 

ignored has been widely adopted in many classical interatomic potentials for  
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silicon [8-10, 12-23].  The Baskes [53] implementation of screening was aimed at 

extending the range of the EAM potential for nickel by gradually reducing the forces on 

well separated atoms. In this implementation, two atoms i and k that are located at the 

edge of the minor axis of an ellipse are screened by atoms that are within the ellipse. This 

is illustrated in Figure 2.4. Atoms outside the ellipse formed this way are excluded from 

screening atoms i and k.  In a similar manner to Cai, the atomic electron densities are 

multiplied by the screening function Sik (screening between atoms i and k due to other 

atoms j in the system).  Here, if atoms are unscreened Sik = 0 and Sik = 1 if they are 

completely screened. 

 The screening function is represented as 

∏
≠

=
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and the equation for the ellipse in Figure 2.4 is given by 
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where   ( )2/ ikijij rrX =   and  ( )2/ ikjkjk rrX =  with Cmin and Cmax as the limiting values of 

C as shown in the ellipses of Figure 2.4. Cmin and Cmax  are determined through fitting to 

be 0.8 and 2.8 respectively. The cutoff function fc is represented as: 
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Figure 2.4 Schematic illustration of screening of atoms i and k by atom j. Atoms outside 

the ellipse bounded with C = 2.8 do not screen atoms i and k, while those inside the 

ellipse with C = 0.8 screen atoms i and k completely. 
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              A unique difference between this implementation and those presented earlier is 

how the cutoff is applied.  The cutoff ellipse depends on the distance of the bond ik with 

limiting conditions set forth by Cmin and Cmax. The potential expression has a radial cutoff 

distance of 4.0 Å for the ik bond in nickel. The screening expressions were used in the 

MEAM potential to successfully reproduce the experimental binding energies of FCC, 

HCP and BCC phases and vacancy formation, vacancy migration and stacking fault 

energies in nickel [53]. There is no provision to justify that those atoms within the small 

ellipse with C = 0.8 will completely screen the ik bond. For example, condensed phase 

liquid at high density may have abundant number of configurations with atoms closely 

packed within C = 0.8 ellipse of one and other. This type of scenario will lead to several 

atom pairs been completely screened by nearby atoms when using Eq. 2.21 – 2.25 and 

thereby  resulting in zero contribution to the total energy of the system by these pairs. In 

practice, these atom pairs will still have some covalent interaction with each other and 

thereby contributing to the total energy. This may consequently lead to a wrong liquid 

structure and thereby render the potential unsatisfactory in this regime. 

 

2.3.4 Analytical Bond-order Potential 

 All the previous expressions presented in sections 2.3.1-2.3.3 are ad hoc schemes 

introduced into their respective potentials to model the environmental dependent nature 

of covalent bonding through screening. A theoretically motivated expression for the 

screening function has been derived [35] from first principles and is presented in this 

section. Nguyen-Manh, Pettifor and Vitek [35] derived an analytical screening expression 
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to model the environmental dependence of the σ ,π  and δ  bond integrals within the two-

center TB approximation by using the BOP theory to invert the nonorthogonality matrix. 

The expression was derived by expressing the Hamiltonian matrix in terms of two-center 

bond integrals and Slater-Koster angular functions using the following assumptions; 

(a) All sites have the same on-site energy. 

(b) The screening of the ij  bond is via the s orbitals on the neighboring k sites. The 

contributions from the p and d orbitals of k sites are neglected. The contributions 

from s, p and d orbitals of the sites i and j are considered in the screening 

expression. 

(c) Three levels of Lanczos recursion are used to evaluate the determinant of the 

matrix within the BOP theory. 

(d) All four-body and other higher contributions are neglected. 

(e) The determinant of the off-diagonal ik and jk elements in the screened 

Hamiltonian matrix elements are assumed to be the same as those of the ij bond 

 whose screening is of interest.  

 The final expression for the screening function is  

( ) ( ) ( )
( ) ( ) ( ) τττ

τττ
τ µµ

µµ

'3'2
2
'

'3'2'1
' 21 llllijll

llllll
ij

ij
ll RO

c
S

+−+

+−
=                   (2.26) 

with the ith atom second-moment contribution given by: 

( ) ( ) ( )[ ] ( ) ( )∑
≠

++=
jik

jikliklsoijllll
i gRORO

,

222
''2 2/1 θδµ τστττ              (2.27) 

while the ith  third-moment contribution is 
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( ) ( ) ( ) ( )ijkljikl
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and 

 ( )

( )[ ]
( ) ( ) ( ) ( )[ ] ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )∑
≠





























 +

−−+

+

=
jik ijll

ijklkjsljkslijll

jiklijllkislikls

ijkljiklkjsliklskjslikls

o

ll
ij

R

gRRORO

gROROR

ggRROROR

c
, '

2
''''

2
'

'''

'1

4/1

τ

τσστ

ττσσ

ττσσσ

τ

τ β

θβ

θβ

θθββ

δ

     (2.29) 

with 

     ( ) ( ) ( )jillkjsliklsikji ROROROO σσσ ''
3 =                     (2.30) 

θjik is the angle between bond ij  and ik and Rab is the ab bond distance. The l, l’  = s, p or d  

represent orbitals and τ  =σ, π, or δ  represent bond types.  The average values of the 

second and third-moment contributions are written as 

 ( ) ( ) ( )[ ]τττ µµµ '2'2'2 2

1
ll

j
ll

i
ll +=                     (2.31) 

and 

( ) ( ) ( )[ ]τττ µµµ '3'3'3 2

1
ll

j
ll

i
ll +=                             (2.32) 

The bond integrals are expressed as: 

( ) ( )ijllllijll RAR µν
τ

µν
τ

µν
τ λβ ''' exp−=                      (2.33) 

A and λ are parameters determined by fitting to first and second nearest neighbor 

screened LMTO bond integrals. The overlap integrals are expressed as: 

( )ijllll RO µν
τ

µν
τ λ '' exp−=                     (2.34) 
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The angular functions are defined as follow: 

goσ(θ) = 1                         (2.35) 

g1σ(θ) = cos(θ)                        (2.36) 

g1π(θ) = sin(θ)                        (2.37) 

g2σ(θ) = (1/4) (1 + 3cos(2θ))                     (2.38)  

g2π(θ) = (√3/2) sin(2θ)                       (2.39) 

g2δ(θ) = (√3/4) (1 - cos(2θ))                     (2.40)   

δij is the kronecker  delta function. 

 The above expressions Eq. 2.26- 2.40 were applied to compute the screened bond 

integrals in elemental BCC molybdenum, silicon and binary MoSi2 [35].  The bond and 

overlap integrals as well as the screening function are cut off before the third neighbor 

shell. The screening function was also used to developed potentials for titanium (Ti), 

aluminum (Al) and alumina (TiAl)  and to predict their correct elastic constants, stacking 

fault energies in excellent agreement with experimental and ab initio values [37]. The 

screened BOP expressions also reproduced the correct LMTO bond integrals in these 

elements (Ti and Al) and TiAl.   

 For the purpose of computing  Eq. 2.26, the interference, second and third-moment 

contributions (Eqs. 2.27, 2.28 and 2.29) are first calculated and  summed over all the k 

atoms that are neighbors of atoms i and j while considering at the same time, the s, p and 

d orbitals in the ij  bond.  

 For application of this equation (Eq. 2.26) to silicon [35], the implication of   

cutting off the potential interaction before the third neighbor shell in bcc lattice is that 
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only atoms in the first and second nearest neighbor shells are included in the screening 

and therefore considered in the summations in Eqs. 2.27-2.29. The computational 

expense required to perform this task for use in molecular dynamics applications will be 

prohibitive to the extent of making it unattractive for investigating long time dynamical 

properties. 

 In the current work, a further simplifying assumption was made to reduce the 

complexity of the screening expression. We assume that only the s orbitals participate in 

screening of the i and j atoms. That is, we are concerned only with the l = l’ = s and τ = σ 

interactions.  If we consider a trimer of atoms with only one k atom screening the ij  bond 

and substituting Eq. 2.33 and 2.34 for the overlap and bond integral respectively into Eq. 

2.29, for each ij , ik and jk bonds, the interference function simplifies to 

22
1 2

1

2

1
jkik

ij

kjikij OO
O

OO
c −−=                      (2.41) 

By writing this explicitly as 

( ) jkikijjkik RRRRRij eeec λλλ 22
1 2

1

2

1 −−−+− −−=                    (2.42) 

it is apparent why Nguyen-Manh, Pettifor and Vitek [35] stated that for the  ssσ bond, the 

interference function is   ‘not too dissimilar in form’ to the Ames’ group [47] expression, 

which is given by 
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in Eq. 2.17.  An important point to note in this comparison (Eqs. 2.41, 2.42 and 2.17) is 

that as Rik and Rjk increase, the second and third terms of Eq. 2.41 decay faster than the 

first term. Then, Eq. 2.40 approaches the form of Eq. 2.17 and they will become identical 

for the case where β3 = 1. A decrease in Rij also results in a decrease in the overall 

function in both models. These features are essential to reproduce reasonable physical 

behavior for the screening function. 

 We made further simplification to Eq. 2.26.  By substituting Eqs. 2.27, 2.28, 2.30, 

2.31, 2.32, 2.33, 2.34, 2.35, 2.36 and 2.38 into Eq. 2.26 for the specific case of a single k 

atom interacting only through σ  bonding, we arrived at 

α

α
σ −

−
=

1
kjikij

ss

OO
S                        (2.43) 

where,  ijkjikjkikij OOOOOO 2222 −++=α                 (2.44) 

 

 The above screening expression (Eq. 2.43) is identical to the BOP result [35] for 

the ssσ bond interaction in a trimer. Using the definition of overlap integral in Eq. 2.34 to 

obtain a simplified expression for Eq. 2.43, the resulting equation is appealing enough for 

efficient use in a classical interatomic potential. We did in fact implement this, but we 

later discovered that in a disordered phase, some atomic configurations lead to a scenario 

where Eq. 2.41 is singular when α = 1. This leads to infinite forces that are not suitable 

for molecular dynamics simulations. 

 We made a second assumption in order to circumvent the singularity problem by 

ignoring α  in Eq. 2.43. We assume that in Eq. 2.43. 
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ij

kjik

O

OO
<<α                         (2.45) 

Therefore the screening expression reduces to 

( )ijkjik rrr

ij

kjik
ij e

O

OO
S

−+−
==

λ
                     (2.46)

 Eq. 2.46 is simple enough for straightforward implementation in an empirical 

potential. The equation also posses desirable mathematical features that are essential for 

physical interpretation of screening in covalent bonding. Firstly, Eq. 2.46 satisfies the 

condition that the screening function take a value of 1 when atom k is located in between 

atoms i and j and on the line directly connecting them. Under this scenario the argument 

r ik + rkj – rij = 0 and Eq. 2.46 gives a screening of 1. The second feature is that the 

screening will be 0 if atoms i and j are not neighbors. In other words, if r ij approaches 

infinity, then Eq. 2.46 becomes 0.  For many-atoms system, we therefore compute the 

screening function for atoms i and j in presence of their neighbors k using a product of all 

the three-atom expression in Eq. 2.46. The   Sij  expression is given by: 

( ) ( )( )( )∏
≠

−+−∆−=
jik

ijjkikijkcij rrrrfS
,

exp1 λ                (2.47) 

where ( )ijkc rf ∆  is given by Eq. 2.4 and  ijjkikijk rrrr −+=∆   .  

Similarly, 10 ,aa  and 2a  retain their values as presented earlier in section 2.1. The 

inclusion of the cutoff function ensures that the screening goes smoothly to zero at 

elliptic radius of
o

Α=∆ 95.5ijkr . The function Sij is zero when atoms i and j are completely 

screened and Sij is 1 when no screening exist. The implementation of this scheme can be 
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visualized by looking at two atoms labeled i and j whose bond energy is to be evaluated 

(See Figure. 2.5). Their bond energy is screened by atoms labeled k. Atoms that are 

labeled k’ are further away and outside the ellipse, do not screen the ij  bond. The 

introduction of the ellipsoidal cutoff ensures that atoms that are sufficiently far away 

from the pair are completely prevented from screening the bond energy. 

 

 

 

 

Figure 2.5.      Schematic illustration of the screening of atoms i and j by atoms labeled k 

within the cut-off ellipse shown. The ellipse satisfies the cutoff condition for the potential 

under study. Atoms labeled k’ within the circular bond energy cut-off radius of atoms i 

and j, but outside the ellipse do not screen the i-j  interaction. 
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2.4 Promotion Energy 

 In trying to understand the chemical basis for interaction of atoms in tetrahedral 

solids such as silicon, several different expressions have been derived from first 

principles to account for various components of the total energy [49-50, 60-61]. Among 

these components is the energy associated with change of occupancy of the orbitals when 

electrons are promoted from the free atom s2p2 configuration to the hybrid sp3 

configuration when forming the solid. This is known as the promotion energy [49-50]. 

  One of the pertinent features of bonding in tetrahedral silicon is the balance 

between promotion energy cost for sp3 hybridization and bonding energy gained that 

controls the s and p orbital occupancies, a treatment that can be described with the 

Weaire-Thorpe model [62]. In this model, the total energy is computed as the sum of 

bond energy, resulting from matrix element between the overlapping hybrids of two 

different atoms and promotion energy, which is the on-site matrix element between 

different hybrids on the same atom. A good example of this is the tight-binding bond 

model (TBBM). Here, binding energy is defined as the difference in total energy of the 

condensed solid and that of the free atoms forming it. [50]. Despite its success in tight 

binding (TB) model, the use of promotion energy as an additive term to model 

interatomic potential has yet to receive proper attention, probably due to  lack of progress 

in simplifying the first principles expression to a simpler formula that can be easily 

calculated .  

This changed in 1990, when Petiffor et al. [33] introduced approximations to the 

promotion energy derived from the second-moment approximation to the local density of 
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states in a minimal basis using tight binding (TB) theory. The expression has been used 

along with a pair potential and covalent bond energies to estimate the total energy in 

Petiffor’s  analytical bond order potential BOP [34]. The BOP model including the 

promotion energy has been used successfully to predict energetic and other properties of 

crystals in some covalent [13, 34,] and multi-component systems [63] of interest. To our 

knowledge, no empirical potential has explicitly used promotion energy as a functional 

term in the potential energy despite the fact that it’s importance was suggested more than 

a decade ago [64]. 

One mathematical definition of promotion energy can be obtained from the tight 

binding model exploiting the variational principle of density functional theory (DFT). In 

this formalism known as the TBBM [50], the total energy of a solid is obtained as a 

function of an approximate charge density by iterating the Schrödinger equation once 

(that is, non self-consistent solution). The binding energy of the solid is then expressed as 

a sum of four terms: covalent bond energy, promotion energy, electrostatic energy and 

exchange correlation energy. 

In a more general treatment [49] using the non-orthogonal basis set the promotion 

energy is defined as 

( )∑ −=
α

αααα HNqE freeatom
prom                                (2.48) 

This expression calculates the promotion energy as the sum of on-site orbital 

energies Hαα , weighted by the difference in charge density between the hybrids qα and 

the free atoms ( freeatomNα ).   
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( )∑∑=
β

βα
βα

α Occfq
n

nnn *                       (2.49) 

is use to calculate the gross charge density of orbitalα  in the molecule. 

Here nf  is the occupation number for the one-electron wave function ϕα 

and α
nc  and β

nc  are expansion coefficients, with the overlap matrix defined as 

〉〈= αββα ϕϕ |O                        (2.50) 

The orbital-resolved bond order here is defined as  

( )∑=
n

nnn Occf βα
βα

αβθ *                      (2.51) 

and the summation of αβθ  over all orbitals of atoms i and j yield the bond order 

ijθ between the two atoms. This has a physically transparent meaning in chemical 

bonding. 

In order to obtain a simplified expression suitable for use in classical molecular 

dynamics, Eq. 2.48 was reformulated [33] to define the promotion energy of an atom i as 

( )( ) µα
ααα δ
ip

i
spprom NEEE ∆−=∑                  (2.52)    

where ( )αα
sp EE −  is the splitting between s and p energy levels on species α.  δµα is a 

kronecker delta function for species µ and α.  The splitting energy is assumed to be 

constant and ( )α
ipN∆  is the change in the number of p orbital electrons on specie α at site 

i compared to the free atom. For local charge neutrality  ( ) ( ) 0=∆+∆ sp NN   so that 

promotion energy tends to zero as the atoms move apart.  
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Both ( )α
ipN∆  in Eq. 2.52 and the term in the bracket of Eq. 2.48 represent the 

change in occupation number due to hybridization, a key to understanding the meaning of 

promotion energy. In both cases, the total promotion energy is obtained by multiplying 

the number of electrons transferred by the splitting energies between the s and p orbitals 

as represented by ( )αα
sp EE −  in Eq. 2.52.  

The BOP theory approximation using a recursive Green function has been 

performed  [63] to obtain the promotion energy as a function of measurable quantities. 

The final expression is given by 
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Where ( )ji εεδ −=  is the splitting energy, A is a fitting parameter, and σβ ij  is the 

σ bond energy between atoms i and j. 

It is clear from Eq. 2.52 that the promotion energy is function of the bond energy 

without the inclusion of the bond order.  The promotion energy is a property of an atom 

in covalent environment. In general, the promotion energy depends on the environment of 

the atom. For example, the s-p mixing increases with decreasing volume in Si, SiC and C 

[60]. Since this affects the promotion energy, this energy is generally expected to be 

dependent on the volume and the atomic environment [61].  The inclusion of the bond 

order should ensure a more complete and accurate definition, but such treatment will also 
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lead to a more complicated expression that is more expensive to evaluate in molecular 

dynamics simulations. 

The inclusion of promotion energy in analytical bond order potentials has been 

shown to help in providing a consistent description [65] of second-order properties such 

as the bulk modulus. An extensive study of the effects of different energy contributions in 

the TB [66] description of surface reconstruction of Si (110), Si (100) and Si (111) has 

shown that lowering of the surface binding energy upon surface reconstruction is due in 

part to reduction in the promotion energy. The tilting of the surface atoms that occurs 

when a silicon surface undergoes reconstruction is attributed to the strong tendency to 

lower surface energy by means of re-hybridization of the surface atoms. This re-

hybridization is best described by including the promotion energy of the system into the 

interatomic potential. In view of this importance, we have included the effect of 

promotion energy in the present potential. We investigated three different expressions, 

bearing in mind that promotion energy is a property of an atom in its environment.  

The first of these expressions defines promotion energy as a function of the 

coordination number of the atom in question.  This was motivated by the first principles 

Eqs. 2.48 and 2.51. We can see that a relationship exists between the promotion energy 

and effective bond-order of atom i with all its neighboring atoms or, indirectly, the 

coordination number. 

 Brenner [67] has derived the relationship between the cohesive energy and the 

bond order starting from the bond energy of an atom i in the second moment 

approximation. For a regular solid, this bond-order was shown previously to be 
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proportional to the inverse square root of the local coordination number by Abell [46]. 

 Using the specific definition of coordination number as presented by Fournier et al. 

[64], a definition of promotion energy consistent with Eq. 2.48 as the product of splitting 

energy and effective bond orders between atom i and its neighbors is: 

   ( )



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
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


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−=

i

i
prom
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V

1

1
1σ                     (2.54) 

where σ and d are parameters and z is the coordination number defined as [64]. 
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bij    and Sij retain their original definitions in Eqs. 2.6 and 2.47. 

 The second equation considered in this study is motivated by Eq. 2.52 and is given 

by 
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Where σ1 and σ2 are fitting parameters, and Sij, bij, and A
ijV  are functions defined by Eqs. 

2.47, 2.6 and 2.3 respectively. 

The idea is to include the bond-order and screening functions in the definition of 

promotion energy. However this equation is complicated and requires significant 

computational expense to perform molecular dynamics particularly in evaluating the 



   

 

 
                                                                                                                                        

44   
 

forces via the gradient of Eq. 2.56. We therefore simplify this expression further by 

eliminating dependence on the bond-order and the screening functions to reduce to 
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The above equation, Eq. 2.57 is now similar to Eq. 2.53 with the exception that we have 

redefined the fitting parameters and allow the splitting energy to be an adjustable 

parameter. We performed fitting of cluster promotion energies using all the three 

expressions, Eqs. 2.54, 2.56 and 2.57. The results show that there is little difference in the 

accuracy in going from one equation to another. We therefore use Eq. 2.57 for the 

remainder of this work.  

            There are problems associated with the implementations of Eqs. 2.54 and 2.56 

that make them less attractive compared to Eq. 2.57. Firstly, it was difficult to enforce the 

right boundary conditions (by ensuring that the promotion energy smoothly reduces to 

zero) for Eq. 2.54 because the promotion energy function cannot be smoothly reduced to 

zero using a cutoff function, primarily because the function represent the energy of an 

atom and not an atom pair having an explicit distant dependence. Secondly, the 

coordination number function Eq. 2.55 can become singular in some disordered 

configurations leading to infinite forces, which is problematic for performing molecular 

dynamics simulations. On the other hand, the complicated nature of Eq. 2.56 as 

mentioned earlier, make force computations significantly expensive in performing MD 

simulations. 
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2.5 The Case for a Long-Range Interaction 

      The current potential is completely described by Eqs. 2.1-2.8 and Eq. 2.57  

along with the parameters listed in Table. 2.1. The parameters were obtained by 

fitting described in section 2.6. 

Table 2.1. Parameters for the silicon bond order potential expressed in equations. 2.1-
2.8 and 2.57. 

 
b1  =  44.7104248 eV   α  =  6.62764953 Å-1    σ1  =  1.5532618 eV 
β   =  0.940243093 Å-1  Q  =  270.715816 Å     σ2  =  0.193761112 eV 
A   =  8250.13723  eV   λ   =  0.762678054 Å-1 
_____________________________________________________________________ 
 

The potential is made long-ranged by allowing silicon atoms up to and including the 

fifth-nearest neighbor shell in the diamond cubic phase to interact covalently. This is 

a marked difference from most short-ranged potentials that consider covalent 

interactions only between the first nearest neighbors. The long-range nature of the 

covalent interactions is in agreement with quantum mechanical descriptions of the 

bonding in silicon as shown Figure 2.6.  In the figure the dimer potential energy curve 

for the Tersoff [8] and SW [9] potentials are too short-ranged compared to the 

quantum mechanical MCRI results for silicon.  It is also essential to note that an 

accurate description of processes involving clusters, such as vapor deposition or ion 

implantation will require clusters interacting with the bulk surface at distances longer 

than the first-nearest neighbors. This will require long-range treatment of the covalent 

interactions which are essential for accurate description of these dynamical processes 

occurring in vapor deposition, crystal growth and etching. A short-ranged potential 
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will usually cut off these interactions too early as can be seen in Figure 2.6. For 

example, when atoms are ejected from the bulk surface during etching or when atoms 

or clusters of atoms approach the bulk surface from large distances during vapor 

depositions, they will have interactions that are long-ranged.  Similarly, in condensed 

phases such as liquids at high densities, oscillatory and destabilizing effect can occur 

when atoms in the shell of second nearest neighbors are drawn into the cut-off region. 

This effect has been shown to result in unphysical characteristics such as disordered 

structures having lower energies than the native diamond cubic phase [68]. 

 

Figure 2.6  Comparative plots of two-body potential energy curves for silicon. The 

multirefrence configuration interaction (MRCI) data points were taken from Ref. [73].  
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                Long-range interactions have been implemented for classical silicon potentials 

[20, 68-69]. However, the extended range alone does not necessarily guarantee a better 

potential. In the case of the potential of Pearson, Takai, Halicioglu and Tiller (PTHT) 

[69], the minimum energy configuration turns out to be the simple hexagonal structure 

instead of the traditional diamond cubic. It is not clear if this flaw can be corrected by 

better fitting.  The problem might be due to an inherent limitation of the functional form 

itself.   

               We introduce screening functions in the binding energy expression, a theoretical 

procedure that has proven effective for extending the range of interatomic potentials 

[24,37].  The question about how far the range of the potential needs to be extended has 

been addressed using different arguments. In the case of the MEAM potential [11] for 

silicon, the potential range was set at a point where the fit to the potential becomes 

optimum with respect to the cutoff distance. While for a silicon tight binding potential 

[70] the cutoff distance was moved to the point where the clathrate structure becomes 

higher in energy than the diamond structure. A more compelling argument about what 

constitutes a “good” cutoff distance was investigated using a fit to phonon frequencies 

[16-19]. An illustration of the effect of cut-off distance on the error in fitting the current 

potential can be visualized in Figures 2.7. A rigorous fit of the potential P1 (described in 

section 2.6) to the equation of state properties E0 (cohesive energy), B0 (bulk modulus) B’ 

(pressure derivative of bulk modulus), and V0 (equilibrium volume) to 11 different silicon 

bulk phases was performed at 6 different cutoff distances of 4.75 Å, 5.0 Å, 5.25 Å,  5.50 

Å, 5.75 Å and 5.95 Å. The mean absolute average error in equation of state properties 
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decreases with increasing cutoff distances and begins to saturate after 5.75 Å, which can 

be viewed as a specific parameterization of the HBOP. Note that the HBOP in general 

shows lower average error compare to the Tersoff potential for silicon. On the basis of 

the above study and in order to reproduce the correct phonon behavior, a cutoff distance 

of 5.95 Å is used for the current potential in all subsequent fits 

 
              
Figure 2.7 Plots of absolute average percent error in equations of state properties of 11 

silicon phases namely: diamond, hexagonal diamond, SC, FCC, BCC, BC8, R8, ST12, 

simple hexagonal, β-Sn and BCT5. Where E0, is the Cohesive energy, V0 is the 

equilibrium volume, B0 is bulk modulus, and B’= dB/dP as a function of potential cutoff 

distances. The Tersoff potential is indicated at rcut distance of 3.0Å. 
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2.6 Fitting Procedure 

 Four different screened potentials were studied, starting with the simplest form and 

then increasing the complexity by adding new functions and parameters. The starting 

potential, named P1, is written as 

( ) ( ) ( )[ ]∑∑
>

−=
i ij

ijAijijijRijcB rVbbSrVrfE 1                    (2.58) 

where all symbols retain their definitions as given by Eqs. 2.2-2.5 and Eqs. 2.7-2.8 except 

that the σ bond-order is given by 
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Thus this potential include screening only in the bond energy and not in the bond order, 

and does not include promotion energy. 

            The second potential named P2 is written as  

( ) ( ) ( )[ ] prom
i ij

ijAijijijRijcB VrVbbSrVrfE +−=∑∑
>

1                (2.60) 

This is exactly Eq. 2.58 with the addition of the promotion energy Vprom defined in Eq. 

2.57 with unscreened bond order Eq. 2.59 rather than Eq. 2.6.  

       The third potential, named P3, is defined by Eq. 2.58 with bij given by Eq. 2.6.  P3 

has screening introduced in the bond-order, but excludes the promotion energy term.  The 

final potential named, P4, is completely described by Eqs. 2.1-2.8, 2.57 and Table 2.1. 

This is the most complex of the four potentials and includes both a screened bond order 

as well as a contribution from the promotion energy. This systematic procedure of adding 
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terms and parameters to the equation enable us ascertains their influence on the accuracy 

and the behavior of the potential with respect to their addition or omission to the potential 

expression. 

             Starting with P1, the potentials were each fitted to reproduce the Murnaghan 

equation of state (EOS) parameters for 15 silicon phases and cluster binding energies for 

clusters Si3-Si8 shown in Appendix 1.1.  Additionally, Vprom in potentials P2 and P4 were 

fitted to cluster promotion energies [64].   The Murnaghan EOS [77] is given by 
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EVE                (2.61) 

Where Eb(V) is the cohesive energy as a function of volume, E0 is the equilibrium 

cohesive energy, V0 is the equilibrium volume, B0 is the bulk modulus and 'B   is the 

pressure derivative of the bulk modulus. 

 The fitting database consists of 15 different silicon phases at various strains ranging 

from 0.8 to 1.2, and the binding and promotion energies of the 17 silicon cluster 

structures shown in Appendix 1.1.  The choice of this fitting database is aimed at 

exploring the wide polymorphic arrangement of crystalline silicon bulk phases including 

high-coordinate phases, and the opposite extreme of low coordinate clusters.  The goal is 

that this will enable the potential to perform well in the intermediate structures like 

surfaces, amorphous, defects and liquids.  A common practice is to fit potentials to 

equilibrium properties such as lattice constants, cohesive energies, phonon frequencies 

and elastic constants of diamond cubic silicon. Sometimes other non-equilibrium 

properties are included to improve transferability, however, the use of a large fitting 
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database does not necessarily guarantee that the potential will be transferable to some 

other extreme conditions away from equilibrium not represented in the fitting database.  

 Another problem is that the potential expressions can have inherent physical 

limitations that are not easily remedied by adding more functions and parameters. Having 

a large number of parameters and functions can be helpful [14], but the fundamental 

flaws may still be apparent in configurations far from equilibrium. Large number of 

parameters might be unhelpful in explaining these deficiencies if the physical 

interpretations of these parameters are unrelated to the problem. 

  Silicon is one of the most challenging elements for modeling and simulations 

primarily because of its many diverse polymorphs with the ability to exist in covalent or 

metallic bonding at different pressures. Silicon clusters can also take properties between 

these two extremes, and silicon’s surface behaviors and defects are also complex. It is 

therefore pertinent to take all these systems into consideration when developing and 

performing a fit to a potential. An important procedure for probing the limits of any 

potential expression was demonstrated for the “glue” model potentials for aluminum [71]. 

The authors performed extensive tests for over 25 models on a large database from 

experiments and ab initio calculations. The strategy used in the study called for dividing 

the database into two parts, one for fitting the potentials and the others for the testing. A 

similar procedure has been adopted with success for aluminum and nickel potentials [72]. 

By following the change in the root mean square error in the properties between the 

fitting and testing stage, it was clear that the use of more parameters does not necessarily 

result in a better fit. However, by rigorous fitting to the database, it was possible to 
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ascertain the optimum number of parameters and even functional representations that 

provide an optimal fit to the available data. We employ a similar approach used in these 

studies [71-72] in development of the current potential. One of the crucial lessons from 

those studies is that a functional form with as few as four parameters was able to perform 

at the same level of accuracy as potentials with nine parameters. The performance of 

these two functional forms also happens to be the limit of the possible accuracy that can 

be obtained from the large database used. It is more important that the choice of the 

functional form used reflects the physical bonding characteristics of the system than it is 

to introduce elaborate numbers of non-physically motivated parameters. 

 The database used for EOS properties for the 15 silicon phases were obtained from 

references 74-76, 102-110 and 126 as displayed in Table 3.1 of Chapter 3. All binding 

and promotion energies for clusters were obtained from DFT work of   Fournier, Sinnott, 

and DePristo [64].  The fitting was carried out by minimizing an objective function using 

a global minimization algorithm referred to as the controlled random search method [116-

117, 133-136]. 

The objective function is defined as; 
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where i
kp the numerical values of the properties k in phase i as computed by HBOP and 

oi
kp ,  are the corresponding experimental/DFT values of those properties and ikω  are the 

weights used in fitting the model to the properties and M is the total number of properties 

used and L is the total number of silicon phases and clusters used for the fitting.
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This objective function is used to perform an optimization in a multidimensional 

parameter space. A preliminary selection of an initial starting point in parameter space 

was done by randomly generating a large (about 100,000) combination of numerical 

values of potential parameters (A, Q, α, β, b1, λ, σ1 and σ2). In order to determine what 

constitute a good range of parameter values, we examined five different interatomic 

potentials in the literature that share similar characteristics to our potential [8, 25, 32, 

131, 132]. In Table 2.2, the list of these potentials and the numerical values of their 

parameters are shown. It is pertinent to note that these potentials are each a sum of two 

exponential functions (Eq. 1.1 -1.3) with four major parameters A, α, b1 and β as 

described in Chapter 1. From Table 2.2, good ranges for these parameters ware 

determined based on typical values among all these potentials. These ranges serve as the 

initial domain that was used to generate random combinations of parameters A, α, b1 and 

β for the HBOP model. The initial domain for these parameters was set as follow:   

100 ≤ A ≤ 5000 eV,    2.0 ≤ α ≤ 7.0 Å-1,  10 ≤ b1 ≤ 1200.0 eV  and 1.0 ≤ β ≤ 3.0 Å-1 . 
 
 
Table 2.2 Parameters in silicon potentials having the form defined in Eqs. 1.1 -1.3  

Potential b1 (eV) β (Å-1) A (eV) α (Å-1) 

Tersoff a) 471.1800 1.7322 1830.8000 2.4792 

Conrad and 
Scheerschmidt b)   

75.0300 1.6600 1845.8640 2.6000 

Khor and Sharma c) 230.5726 1.3415 2794.2386 3.1327 

Dodson d) 155.0800 1.3969 1614.6 2.7793 

Ackland e) 16.6359 1.1448 208.4428 5.6736 

a) Ref. 8,  b) Ref. 25,  c) Ref. 32,  d) Ref 131,  e) Ref. 132  
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For the parameter Q, a good starting point was identified from the REBO potential, which 

uses an identical expression to that of HBOP. A value of about 0.3 Å was used as the 

final optimized value in REBO while experience during fitting of this potential (REBO) 

shows that Q can take values up to 10,000 Å. We therefore set 0.1 ≤ Q ≤ 100,000 Å. 

 The screening function implemented in the BOP [35] has the coefficient of the 

overlap and hopping integrals for silicon taking values ranging from 0.60 and 0.95 Å-1. 

The parameter λ is the screening coefficient in HBOP and it has the role of controlling 

the strength of the screening between two atoms from their neighbors. If λ >> 1 Å-1, then 

the screening curve decays quickly to zero at distances less than 1 Å,  resulting into a 

weak screening for most physically realistic configurations. On the other hand, values of 

λ << 1 Å-1 can result in a screening effect that is too strong. Therefore, λ values ranging 

from 0.1 to 5.0 Å-1 were chosen as an initial domain, to span a wide range of parameter 

values that is sufficient to capture the two extremes of weak and strong screening. 

 A careful look at the BOP [63] potential using promotion energy reveals that σ1 in 

HBOP corresponds to the splitting energy of silicon used for computing the promotion 

energy in the BOP theory. The splitting energy of silicon in BOP is 7.0 eV, but a DFT 

study [64] and TB method [62] have both computed values close to 4.0 eV for this 

energy. The splitting energy is derived from theoretical calculations in the BOP 

promotion energy, but for the sake of flexibility, the corresponding value of σ1 in HBOP 

is treated as an adjustable parameter. We compare σ2 to the parameter A in Eq. 50 of 

reference 63. Therefore, the following initial domain were chosen for σ1 and σ2 : 0.5 ≤ σ1 

≤15.0 eV and 0.5 ≤ σ2 ≤ 20.0 eV.  
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           Confining these parameters to the limits set above, 100,000 random parameter 

values were generated using a uniform distribution within the bounds for each parameter. 

In the next stage, these parameters were randomly combine to form a complete set {A, Q, 

α, β, b1, λ, σ1 , σ2} of 100,000 points in the 8-dimensional parameter space. Each set of 

parameters completely defined the HBOP potential (Eqs. 2.1- 2.8 and 2.57). The set of 

parameters along with experimental/DFT properties and their respective weights were fed 

into a MD simulation using Clemson University condor pool to compute the objective 

function in Eq. 2.62. For the weights, we have chosen the following values after several 

adjustments to obtain the best possible fit.  For diamond and hexagonal diamond phases, 

the following weights were used. 
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For the remaining 13 phases (β-Sn, BC8, R8, SHEX, FCC, BCC, SC, HCP, ST12, BCT5, 

Imma, Si34, and Si46), the following weights were assigned to the EOS properties; 
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For cluster binding energies, the weights assigned varied from 10-3 eV for the highest 

binding energy cluster Si3.1 to 2.5 x 10-3 eV for the lowest binding energy cluster Si8.1. 

An equal weight of 10-3 eV was assigned for all cluster promotion energies. 

              The Clemson University condor pool consists of hundreds of workstations with 

about 1500 processors running Windows, Solaris and Linux operating systems. After 

completing all the 100,000 objective function or chi-square (χ2) evaluation, the numerical            
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values are then sorted in increasing order of their χ2 values. At the end of the initial 

function evaluation, the parameter sets with lower χ2 values were found to have λ in the 

vicinity of 0.7 Å-1 to 0.9 Å-1. This sorting procedure helps to shrink the overall parameter 

domain for subsequent optimization. In the next stage, 160 sets of parameters with the 

lowest χ2 were used in subsequent global optimization in the CRS algorithm.  

             In general, the idea behind the CRS algorithm [133-136] is to start with a 

predetermined number of parameter sets N in an initial search domain D. All the trial 

points N must satisfy the upper and lower bounds on each variable n forming the domain 

D. In the current study, these n variables are the parameter set {A, Q, α, β, b1, λ, σ1, σ2}. 

The limits specified for these parameters earlier (100 ≤ A ≤ 5000 eV,    2.0 ≤ α ≤ 7.0 Å-1,  

10 ≤ b1 ≤ 1200.0 eV  and 1.0 ≤ β ≤ 3.0 Å-1 , 0.5 ≤ σ1 ≤15.0 eV and 0.5 ≤ σ2 ≤ 20.0 eV and 

0.1 ≤ λ ≤ 5.0 Å-1) form the domain D for which these parameters will be optimized. 

 The objective function (Eq. 2.62) is then evaluated at each of the N trial points 

(160 for this study) and the corresponding numerical values are stored as f(N) in an array 

A. The array A forms a set of objective function values and their corresponding parameter 

set that were used to determine the χ2. The values of f(N) are sorted so that the set with 

the lowest value is stored as point L with function value fL, while those with the highest 

function value are stored as point H with function value fH. The suggested number of trial 

points N can vary from 10(n + 1) to as high as 25n [133-134], depending on the domain 

size and nature of the problem in question. The larger the value of N used, the bigger is 

the size of computer memory required for storage purpose and the slower the convergent 
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of the optimization. For this study, N = 20n (20 * 8 parameters = 160). The iteration 

begins by randomly selecting n + 1 distinct points, R1, R2,……..Rn+1, from N to form a 

simplex of points in n-space. The set of parameters Rn+1 is arbitrarily taken as the pole or 

vertex of the simplex.  The image of the pole, P is computed as the next trial point for 

minimization of the objective function.  The trial point P is computed from Rn+1 and the 

centroid G of the remaining n points R1, R2,……..Rn as follow: 

12 +−×= nRGP                                                                                                 (2.63) 

where RP,  and 1+nR  are position vectors in n-space of the corresponding points. 

There are different variant of the CRS algorithm, differing in definition of the point P. 

The definition of P used for this fitting work can be found in references 116 and 117. 

The procedure is illustrated diagrammatically in Figure 2.8. The point P is checked to 

ensure that all the parameters n making up the point satisfy the constraints or boundary 

conditions set for the optimization. If any of the constraint is not satisfied, (that is, one of 

the parameters is outside the bound) then, point P is discarded and n +1 new distinct 

points are randomly selected from N and used to generate a new trial point P.  If those 

conditions are satisfied, the objective function (Eq. 2.62) is evaluated with the parameters 

defined by the point P as fp. Now,  fp is compared with fH, the highest function value in 

array A. If fp < fH then point H is replaced, in A by P. The point with the second highest 

function in the previous set now becomes point H, with the new highest function value in 

array A. However, if  fp > fH, then point P is discarded and then new trial points are 

chosen from  array A to generate a new point P and the procedure is repeated. 
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 P in D?  
No 

Yes 

Compute fp, the function value at P 

fp<fH? No 

Yes 

Replace fH (the current highest function value in 

array A) by fp and its respective coordinates 

Stop criterion satisfied? 
No 

 
Select n points R2, ….Rn+1 at random from S(n,M) excluding L, let R1 = L. Perform 
Simplex around the n+1 points using reflection through the centroid G to obtain a 

new trial point P = 2G - Rn+1 

Yes, stop and print results 

  Start 

Input {n=# of variables or parameters, 

N= # of trial points, S (n,N) = coordinates of 

each trial point in domain D} 

Evaluate the objective function (chi-square)  at each of the 

N points in D and store the results of each coordinate and 

function value in array A{f{N}, S(n,N)} 

Determine the stored points H with the greatest function value 

fH and L with the least function value fL 

Figure 2.8  Flow diagram description of the CRS algorithm. 
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          As the optimization proceeds, increasing number of points with lower function 

values are generated and replace points with higher function values in A. The 

optimization will get to a stage where all the points in A will cluster around minima with 

a function value lower than fL. Note that the function value fL changes as the optimization 

progresses. The procedure is terminated once a maximum number of iterations is 

achieved or when the difference between the highest function values fH and the lowest 

function value fL in array A falls below a define threshold.  

 In fitting the HBOP potential, the optimization sometimes reached a point where all 

the points in A are clustered around a boundary of one of the parameter variable n. When 

such scenario occurs, most of the new points P generated will falls outside the domain of 

the parameter n and a lot of wasteful computation occurs, thereby lowering the efficiency 

of the algorithm. It may be possible that a lower function value than fL exists outside this 

boundary where the optimization is trapped. Therefore, the algorithm must be monitored 

at run time to determine if such condition is encountered. A simple solution that was 

adopted in fitting the HBOP potential is to stop the optimization and expand the domain 

(by increasing the range for the affected parameter) of the particular parameter that is 

trapped and restarting the procedure with the stored array A that was present at the stop 

time. The optimization is then continued until the termination criteria are reached or 

another boundary “trap” is encountered. If a boundary “trap” is encountered, the 

expansion of the domain is repeated as described above and the optimization is continued 

until the final termination is achieved. The optimization procedure used for this fitting is 

by no means a ‘fire and forget’ type of computation because of the possibility of      
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boundary “trap” that may lower the efficiency of the algorithm or possibly result in the 

optimization missing the “true” global minima. Therefore, the progress of the 

optimization must be monitored for changes in parameter and function values so as to 

detect this boundary “trap” as it happens.  

          The CRS optimization was carried out on Clemson University Palmetto cluster 

with Intel core 2 quad core processors running at 2.33 GHz. Evaluating the objective 

function (Eq. 2.62) takes about 150 seconds of CPU (Central processing Units) time, or 

about 24 iterations per hour. The computational requirement is inefficient for a single 

CPU because of the number of iterations required for convergence. The current 

optimization requires more than 12,000 function evaluations for convergence. It was 

observed that using an initial randomly generated parameters of N = 160 sets, the 

optimization failed to converge after 20,000 function evaluations. This is the reason why 

Condor was used to evaluate a large pool of initial starting points. By so doing, quality 

starting points were extracted for subsequent CRS optimization and this help reduce the 

number of function evaluations needed for convergence.  To speed up the optimization, 

the function evaluation was reformulated through the use a parallel communication 

procedure (using OpenMP) which subdivides the function evaluation into 8 independent 

parts, with each part running on its own core within a node. The nodes consist of two 

Core 2 quad processors, where each processor has 4 cores. The final sum (Eq. 2.62) is 

then collated at the end of the run to give the χ2 value. This procedure reduces the 

average time to evaluate the function to about 28 seconds, a five-fold decrease in 

execution time. 
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         The choice of the CRS algorithm for this problem was made because of the 

complex nature of the objective function. The derivative of the objective function can be 

discontinuous in some regions of parameter space. This makes the use of gradient 

methods problematic for minimization. The method also has the advantage that no 

gradient evaluation is required. The algorithm is also simple to implement as gradient 

implementation for the objective function is highly non-trivial. However when gradients 

are available, it can be inefficient compare to gradient and Hessian methods, as it requires 

more function evaluations and convergence to the minima can be slow. The final 

optimized parameters for potential P1, P2 and P3 are given in Appendix 2.1 -2.3, while 

those for P4 are shown in Table 2.1. 
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CHAPTER THREE 

EQUATIONS OF STATE AND CLUSTER PROPERTIES 

3.1 Equations of state for silicon phases 

 An important consideration for the development of this model is to ensure that 

silicon has the appropriate temperature and pressure phase diagram. This property 

ensures that silicon has the correct energies and structures under different conditions of 

temperature and pressure. In order words, we desire a transferable potential that gives the 

correct phase transitions and accurate structures and energies for bulk, defects, clusters, 

liquid and surfaces.  

 Silicon exists in diverse number of phases at high pressure. This “polymorphic 

perversity” [6-7] makes it a challenge to develop an accurate and transferable interatomic 

potential capable predicting properties away from the native diamond cubic phase. To our 

knowledge, 13 phases of silicon have been observed experimentally. Most of these 

crystalline phases of silicon were discovered during high pressure and heat induced phase 

transitions [103, 105, 109-110].  

              The 15 structures of silicon (all structures in Table 3.1 except the Cmca phase) at 

various strains used as input to fit the current potential span a wide range of the bulk 

structures and densities. The results of the equation of state (EOS) parameters for 16 

phases (13 experimental and 3 hypothetical phases) of silicon computed using HBOP and 

compared with DFT/experimental values are presented in Table 3.1. The computed 

equilibrium energies and volume are in excellent agreement with DFT values. The 

absolute error in equilibrium cohesive energies and volume as computed using HBOP are 
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less than 5 % for most phases. The potential shows a good transferability between 

different silicon bulk environments. It is expected that intermediate arrangements within 

these structures will also be adequately described by our model. 

           The native diamond cubic phase (Si-I) of silicon is fourfold coordinated with each 

bond at a tetrahedral angle of about 109.47o of each other. One of the criteria for judging 

the validity of an interatomic potential for silicon is to determine if the lowest energy 

structure is the diamond cubic phase. Among all the ordered phases presented in Table 

3.1, the diamond cubic phase has the lowest cohesive energy. With the exception of the 

bulk modulus B0, the other three EOS properties predicted by HBOP for diamond cubic 

phase are in excellent agreement with experimental values [75-76,102]. All EOS 

properties with double digit errors are shown in bold faces in Table 3.1. We observe that 

most of the least accurate results come from B0 and B’. The prediction of these properties 

(B0 and B’) by various theoretical DFT methods are found to be inconsistent 

[74,104,106,119-121] because of the assumption of linearity of bulk modulus with 

pressure [i.e. B(P) = B0 + B’P] in the first-order Murnaghan EOS. This assumption 

sometimes breaks down at high pressures, (if P > B0). A second-order equation [based on 

B(P) = B0 + B’P + 1/2B’’ P2]  is required to obtain more consistent values for B0 and B’ 

[115]. Therefore, it is not clear how well the HBOP potential performs in terms of these 

properties, but the cohesive energies and volumes are well reproduced by our model. The 

EOS properties with especially large percent error of 3 digits, are found in the 

hypothetical phases of silicon (SC and BCC). A number of experimental works on phase 

transition of silicon at high pressures have been performed [103,105,109,110,124,125]. 
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Table 3.1. Equation of state properties for silicon crystalline phases computed using 

HBOP and compared alongside with DFT and experimental values.  The abbreviated 

phases are (FCC = face-centered cubic, BCC = body-centered cubic, SC = simple cubic, 

HCP = hexagonal close packed, SHEX = simple hexagonal, HEXD= hexagonal diamond. 

The equilibrium energies, E0 are in units of electron volts (eV), equilibrium volume, V0, 

in units of (Å3), the bulk modulus, B0, in units of Pascal (Pa) and B’ is dimensionless. 

Phases EOS 
Parameters 

DFT/Experimental HBOP Absolute 
% error 

Diamond E0 

V0 

B0 

B’ 

-4.6299 a) 

20.0240 b) 

0.6109 c) 

4.240 c) 

-4.6305 
20.3268 
0.7951 
4.2573 

0.01 
1.51 
30.15 
0.41 

β-Sn E0 

V0 

B0 

B’ 

-4.4077 
14.8859 
0.7265 
3.8898 

-4.4844 
15.2295 
0.7435 
4.8420 

1.73 
2.31 
2.35 
24.48 

BC8 E0 

V0 

B0 

B’ 

-4.5042 
18.2619 d) 

0.5890 e) 

5.5400 e) 

-4.4047 
18.2151 
0.5910 
6.0525 

2.21 
0.26 
0.34 
9.25 

R8 E0 

V0 

B0 

B’ 

-4.5057 
17.4949 
0.5478 
3.8980 

-4.3683 
17.7897 
0.6786 
5.6130 

3.05 
1.69 
23.88 
44.00 

SHEX E0 

V0 

B0 

B’ 

-4.3946 
14.6400 
0.7268 
3.9597 

-4.4825 
14.9292 
0.7130 
7.7785 

2.00 
1.98 
1.90 
96.44 

FCC E0 

V0 

B0 

B’ 

-4.1580 
14.3372 f) 

0.5118 f) 

4.2200 f) 

-4.3844 
15.0147 
0.5843 
3.6715 

5.44 
4.73 
14.17 
13.00 

HCP E0 

V0 

B0 

B’ 

-4.1855 
15.0180 f) 

0.4431 f) 

3.9100 f) 

-4.3825 
14.8031 
0.5407 
4.4598 

4.70 
1.43 
22.01 
14.06 
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Table 3.1 Continue: 

ST12 E0 

V0 

B0 

B’ 

-4.4945 
17.6500 e) 

0.5820 e) 

3.4700 e) 

-4.3498 
17.9877 
0.5650 
6.2963 

3.22 
1.91 
2.93 
81.45 

HEXD E0 

V0 

B0 

B’ 

-4.6140 
19.7575 
0.6110 
4.2400 

-4.5598 
20.1322 
0.7254 
4.6936 

1.18 
1.90 
18.72 
10.70 

Cmca E0 

V0 

B0 

B’ 

-4.2625 i) 

14.2404 i)  

0.6269 i) 
4.4427 i) 

-4.4142 
14.6419 
0.6491 
4.6363 

3.60 
2.82 
3.54 
4.36 

Imma E0 

V0 

B0 

B’ 

-4.4089 g) 

15.0250 g) 

0.5448 g) 

4.8900 g) 

-4.4932 
15.0412 
0.7609 
4.8822 

1.91 
0.11 
39.66 
0.16 

Si34 Clathrate E0 

V0 

B0 

B’ 

-4.5550 h) 

23.0910 h) 
0.5669 h) 
5.2000 h) 

-4.5597 
21.7914 
0.4732 
6.8398 

0.10 
5.63 
16.54 
31.53 

Si46 Clathrate E0 

V0 

B0 

B’ 

-4.5609 h) 
23.4281 h) 
0.5922 h) 
4.0000 h) 

-4.5456 
21.4219 
0.4789 
7.0005 

0.33 
8.56 
19.14 
75.01 

BCT5 E0 

V0 

B0 

B’ 

-4.3800 
16.7700 
0.6439 
3.8597 

-4.5158 
16.9109 
0.7437 
5.2353 

3.10 
0.84 
15.59 
35.64 

SC E0 

V0 

B0 

B’ 

-4.3437 
15.7653 
0.6999 
3.3715 

-4.4189 
15.9117 
0.4253 
7.0719 

1.73 
0.93 
39.24 
109.75 

BCC E0 

V0 

B0 

B’ 

-4.1790 
14.2427 
0.6849 
3.2545 

-4.3227 
14.5752 
0.3655 
6.7929 

3.44 
2.33 
46.64 
108.72 

a) Ref 76.       b) Ref. 75.      c) Ref. 102.     d) Ref 103.      e) Ref 104,123.      f) Ref. 105             
g) Refs. 106,110.            h) Ref 107.        i) Ref 108,109,126 
All data for DFT/Experimental EOS data are from reference 74 except where indicated. 
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Application of pressure to diamond cubic silicon in diamond anvil cell 

experiments results in phase transition to the β-Sn phase (Si-II) in the pressure range of 

10-12 GPa [110,127,129]. Theoretical studies using DFT methods [74,119,126] have 

confirmed that the β-Sn structure is indeed the first phase to appear, in agreement with 

experimental results. Further application of pressure up to 248 GPa 

[105,108,115,119,124] have resulted in phase transitions to other crystalline phases with 

a consensus on the transition order which can be represented as follow: 

Diamond (Si-I) � β-Sn (Si-II) � Imma (Si-XI) � SHEX (Si V) �  Cmca (Si-VI) 

�HCP (Si-VII) � FCC (Si-X) 

              The BC8 phase (Si-III) can be obtained by decompressing the β-Sn phase to 

ambient pressures at room temperatures [103,124]. The HEXD (Si IV) was found when 

heating BC8 structure between 200-600oC at ambient pressure [103,123]. When the β-Sn 

phase is decompressed to ambient pressure at 700oC, the ST-12 (Si-IX) is formed. The 

silicon clathrates (Si34 and Si46) are usually obtained as synthesized caged compounds 

[130]. Further studies on phase transition in silicon using HBOP will form the subject of 

future work.  

For comparison purposes, the computed energies and lattice parameters for six 

silicon phases are presented in Table 3.2 for the HBOP model along with those predicted 

by six other interatomic potentials in the literature. Three of these potentials, namely, the 

Tersoff (T3) [8], Stillinger-Webber (SW) [9], and Environmental-dependent interatomic 

potential (EDIP) [10] are widely used interatomic potentials for silicon in various 

applications. In computing the root mean square error, the experimental lattice parameter 
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[75]  and energy [76] of the cubic diamond phase along with DFT cohesive energies and 

lattice parameters for five other silicon phases (SC, BCC, FCC, β-Sn and BC8 structures) 

were taken as the correct standard in column 3 of Table 3.2. To ensure proper 

comparison, only the lattice parameters “a” were used for the non-cubic phases, β-Sn and 

BC8. This is to ensure consistency among all the phases considered.  The root mean 

square errors in lattice parameter and energies for the seven interatomic potentials are 

presented in Figure 3.1.   

 The Tersoff potential [8] and second generation REBO potential for silicon (2B-Si) 

[12]  both give root mean square values much less than 0.1 Å for the lattice parameters. 

This excellent agreement with experimental and DFT values can be attributed to the 

inclusion of these quantities in the fitting database for these potentials. The potential 

developed in this work gives a consistently lower root mean square error of 

approximately 0.1 (Å or eV) in both lattice constant and cohesive energies. It is important 

to mention that all of these properties were also used to fit the current potential.  The less 

accurate results come from the high coordination number phases (FCC and BCC) where 

our model predicted lower energies than those of DFT values. This shortcoming can be 

observed visually on the equation of state plots in Figure 3.2. A plausible explanation for 

this problem is that bond energies involving atom pairs in highly coordinated phases are 

not optimally screened despite the large numbers of nearest neighbors contributing to the 

screening. This ultimately results in an overall lower energy for the structure than 

expected.  It may be possible to remedy this problem by optimizing the screening 

coefficient λ with respect to other parameters in the potential. The EDIP model shows 
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Table 3.2: The cohesive energies and lattice parameters for silicon phases (SC = simple cubic, BCC = body center   

  cubic,  FCC = face center cubic, β-Sn = beta tin, HCP = hexagonal close packed). The energies E0 are in   

 units of electron volts  (eV) while the lattice parameters a0 are in Angstrom units Å. 

Structure Properties Exp/DFTa) HBOP T3b) SWc) EDIPd) MEAMe) 2B-Sif) BOP4g) 

Diamond 
Cubic 

A0 

E0 

5.429 h) 

-4.63 i) 
5.458 
-4.63 

5.432 
-4.63 

5.431 
-4.63 

5.429 
-4.65 

5.429 
-4.63 

5.429 
-4.63 

5.430 
-4.63 

SC A0 

E0 

2.515 
-4.34 

2.515 
-4.42 

2.544 
-4.31 

2.612 
-4.34 

2.503 
-4.10 

2.404 
-4.28 

2.545 
-4.13 

2.530 
-4.21 

BCC A0 

E0 

3.088 
-4.18 

3.160 
-4.32 

3.084 
-4.20 

3.245 
-4.33 

3.243 
-3.036 

3.187 
-4.11 

3.076 
-4.02 

3.010 
-4.03 

FCC a0 

E0 

3.855 j) 

-4.16 
4.069 
-4.38 

3.897 
-3.87 

4.147 
-4.21 

4.081 
-2.79 

4.363 
-3.93 

3.944 
-3.37 

3.881 
-4.11 

β-Sn a0 

E0 

4.822 
-4.41 

4.738 
-4.48 

4.905 
-4.30 

4.969 
-4.42 

4.760 
-3.96 

4.169 
-4.32 

4.819 
-4.21 

4.828 
-4.30 

BC8 a0 

E0 

6.640 k) 

-4.50 
6.637 
-4.41 

6.644 
-4.39 

6.591 
-4.43 

5.910 
-4.40 

6181 
-4.55 

6.657 
-4.31 

6.185 
-4.55 

RMS Error 
in E0 (eV) 

  0.099 0.04 0.155 0.319 0.391 0.04 0.196 

RMS Error 
in a0 (Å) 

  0.121 0.135 0.071 0.759 0.110 0.358 0.097 

a) Ref. 74.  b) Refs. 8,73 c) Refs. 9, 30, 73. d) Refs. 10, 12, 30. e) Ref. 11. f) Ref.  12. g) Refs. 12, 13. h) Ref 75. i) Ref. 76. 
j) Ref. 105. k) Ref. 103. 
Cohesive energy and lattice constant for diamond-cubic are from experiment (Exp), while data for other phases, SC, 
BCC, FCC, β-Sn and BC8 are from DFT results of reference 74 expect where indicated.
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unusually high root mean square deviations for both properties among the pack. The 

extent of this error in equilibrium structures and energies should be taken seriously when 

using the EDIP model for applications that may involve phase transitions and structural 

rearrangements.  The EDIP model however predicts good results for defects and elastic 

properties [30]. 

 

Figure 3.1: The root mean square (RMS) deviation from experiment/DFT for lattice 

parameters “a” and cohesive energies E0 among six silicon phases (diamond, SC, BCC, 

FCC, β-Sn and BC8 structures) for potentials indicated in the abscissa. HBOP (current 

model), T3 (Tersoff Potential), SW (Stillinger-Weber Potential), EDIP (Environmental 

dependent interatomic potential), MEAM (Modified embedded atom method), 2B-Si 

(REBO for silicon), BOP4 (Bond order potential for Silicon).  
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Figure 3.2:  Equations of state curves for silicon phases. The bottom panel represents the 

DFT results of Need and Mujica [74] with the cohesive energy of the diamond structure 

normalized to the experimental value. The top panel is the result of the HBOP model. 
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3.2 Clusters 

 Clusters of silicon are generated in etching processes or can be deposited during 

crystal growth. Thus accurate prediction of energetics and structures of small silicon 

clusters is of paramount importance in explaining some of the phenomena encountered in 

silicon nanoelectronic applications. Silicon clusters of Sin with n up to 200 have been 

studied extensively using experimental [78-83] and theoretical [64, 84-93] methods. 

These studies have provided a wealth of information about structures, energies, cluster 

rearrangements, polarizabilities, ion mobility, and ionization potentials of silicon clusters 

and the trends observed in these properties.  

 An important consideration that is of great interest in developing an interatomic 

potential is to reproduce different cluster structures with correct relative energies and to 

predict the correct global minimum structure among any given cluster of size n. 

Extensive global optimization studies [94-100] have been carried out to determine global 

minimum structures or to test the accuracy of several empirical potential models using 

clusters up to n ≤ 50. The lesson from these studies is that no current empirical potential 

is able to predict all the correct global geometries even for cluster of size n ≤ 10.  

  Experimental [78,101] investigations have only established global minimum 

structures for silicon clusters (Sin) with n ≤ 7 and there is disparity among the global 

minima for structures with n ≥ 8 obtained using theoretical quantum mechanical methods 

in the literature. The differences in the level of theory between these quantum mechanical 

methods such as the generalized valence bond method [86], Hatree-Fork calculations 

[85], density functional theory, [64 ] couple cluster theory [87] and quantum Monte Carlo 
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calculations [88] are primarily due to different treatment of electron correlation with 

direct effect on the final energy differences among these clusters. The energies obtained 

by these quantum mechanical methods are usually obtained as the differences between 

large numerical values computed using different definitions of zero point energies. 

Smaller clusters with n ≤ 6 with double and/or triple bonds, having the same number of 

atoms but different structural arrangements can sometimes exhibit very low energy 

differences in the order of 0.05 eV. The result is a flat potential energy surface in the 

vicinity of these structures. Such a scenario sometimes leads to wrong prediction of the 

global minimum structure.  

 The current potential is based on the fundamental principle that covalent bonding 

between two atoms is weakened in the presence of other neighboring atoms and their 

bond order is dependent on the local environment. This important physics is what is 

essential for differentiating between different environments, viz:  bulk surfaces, clusters, 

liquid and amorphous structures.  We focus on predicting the energy differences among 

small clusters of interest (n≤ 8) that constitute the major by-product of laser ablation, 

etching and crystal growth processes.  We therefore fit the potentials to energies of 17 

clusters of silicon (Sin, n≤ 8) and equations of state for 15 bulk phases. It may not be 

possible to obtain a complete one to one mapping of the quantum mechanical potential 

energy surface with a classical potential but the goal is to provide reasonably accurate 

ground state energies and energy differences between small clusters in comparison with 

quantum mechanical results. The cohesive energies of clusters of silicon Si3-Si10  clusters 

calculated using (HBOP) are presented and compared with DFT  
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Table 3.3 Cohesive energies (eV) for the most stable silicon clusters of Si3-Si10 from 

various interatomic potentials and DFT results [64]. The abbreviations shown are 

interpreted as (HBOP, current model), (T3, Tersoff potential [8]), (SW, Stillinger and 

Weber Potential [9] ), (B& A, Potential of Bouldin and Anderson [14]), (SWG, Stillinger, 

Weber and Gong potential [15,100]), (Li ,Johnston and Murrell potential [16-19,94]), 

(BH, Biswas and Herman potential [20]), (CH, Thermodynamic interatomic force field 

potential of Chelikowsky et al [21-23]). The root mean square error (RMS) is in units of 

eV. 

Cluster DFT HBOP T3 SW  B&A SWG LJM BH CH 

Si3 7.82 7.64 7.66 4.44 7.81 5.26 5.90 5.46 5.10 

Si4 12.36 11.92 13.01 8.65 13.36 8.68 10.69 9.12 10.40 

Si5 16.50 15.77 20.06 11.57 16.47 12.48 15.03 12.50 15.01 

Si6 20.72 19.62 26.07 15.15 21.33 16.64 19.50 16.20 20.70 

Si7 24.91 23.50 30.20 17.91 23.68 20.88 23.70 20.33 24.50 

Si8 28.01 27.14 35.04 22.96 27.75 25.03 28.76 25.32 29.20 

Si9 32.83 31.58 39.22 25.96 33.95 29.51 32.19 29.27 33.30 

Si10 37.68 36.33 43.36 29.94 37.94 33.96 37.43 33.39 37.50 

RMS  
error 

 1.00 4.90 5.72 0.73 3.59 1.26 3.74 1.38 

 

results [64] as well as those from seven interatomic potentials in the literature in Table 

3.3 and Figure 3.5. The structural geometries and energies of all the clusters were taken 

from reference 64 as we believe DFT calculations give ground state energy values 

consistent with those obtained from experiments on small silicon clusters without the 
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need for scaling usually associated with Hartree-Fork and Mφller-Plesset methods [14].  

The binding energies computed by our model agree favorably with DFT values as 

presented in Figure 3.3. The trend in energy within cluster structures with the same 

number of atoms also follows closely with their corresponding theoretical values.  

 

 

 

Figure 3.3:  Binding energies of silicon clusters Sin with 3≤ n ≤ 8 for the hybrid bond- 

order potential (♦) and those obtained from DFT method (•). Cluster identity corresponds 

to the labels in Appendix 1.1. 
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           At the moment, we are content that our potential is able to reproduce accurate 

binding energies for the clusters of interest. The scatter plot shown in Figure 3.4 also 

confirms a good correlation (> 0.97) between our predicted cluster energies and those of 

DFT values. An important comparison between the root mean square errors in cohesive 

energies of small silicon clusters (Si3-Si10) and the DFT values [64] from Table 3.2 

among eight interatomic potentials for silicon is presented in a bar chart shown in Figure 

3.5.   

 

Figure 3.4:  A scattered plot of silicon clusters (Sin , n≤ 8) binding energies for the HBOP 

(vertical axis) along with their corresponding DFT values (horizontal axis). The straight 

line shown in the figure is the y = x plot. A point falling on the line corresponds to a 

perfect agreement between DFT and HBOP binding energy for the cluster in question.  
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The current model shows a reasonable agreement with theory in comparison with the 

general trend. The Tersoff [8] potential (T3) and Stillinger-Weber Potential [9] which are 

known to give good results for the energies and lattice parameters for bulk structures, 

(Table 3.1) turn out to perform poorly in terms of cluster energies (Table 3.2). This is a 

sign of poor transferability of these potentials from bulk to cluster properties. 

 

 

 

Figure 3.5:  The root mean square (RMS) deviation (eV) from DFT cohesive energies of 

global minimum silicon clusters    Si3-Si10 among eight interatomic potentials described in 

Table 3.2 above.  
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           In applications such as ion implantation, etching and vapor deposition where 

clusters are either added or removed from the bulk surface, energies of isolated clusters 

of silicon atoms must be correctly predicted, otherwise the outcome of such “computer 

experiments” will be questionable if not completely false. 

 In performing molecular simulations where clusters are involved, a candidate 

potential then needs to predict the cluster energies with reasonable accuracy. Therefore, 

care must be taken to access the merit of using a potential where error in cluster energies 

may give a completely different outcome from the experiment values. 

  The potential of Bouldin and Anderson (B &A) [14] shows the lowest root mean 

square error in this comparison of cluster energies. The B & A potential was fitted using 

all these cluster structures as input into complicated equations having more than 30 

parameters, but the use of π-bonding expression within their formalism helps in 

predicting accurate energies for the lower number clusters Sin with  (n = 3-6) where 

others potentials are less impressive. It also important to point out that the LJM, HBOP 

and CH potentials  were also fitted to scaled Hartree-Fork [85] and DFT  [64] energies. 

The modified Stillinger-Weber potential or SWG [15,100], which is a refit of the original 

SW potential to include cluster energies in the fitting database was able to reduce the root 

mean square error from about 5.7 eV to approximately 3.6 eV, a substantial difference, 

but not convincing enough to make it accurate for cluster applications.  This shows that 

without any modifications the two and three body expressions used for these potentials 

(SW and SWG) are not suitable for a transferable interatomic potential for silicon. In a 

similar manner the potential P1 in this study failed to simultaneously predict bulk and 
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cluster energies and structures as demonstrated in section 2.6. This explains why the T3 

potential also failed to predict good cluster energies. The T3 and P1 potential presented in 

the previous chapter are analogous, except that P1 has screening incorporated in the bond 

energy equations. The success of the current model (HBOP) stems from the introduction 

of screening within the bond order expression, a feature that is absent in the Tersoff 

potential.  

 

3.3 Promotion Energy 

 The promotion energy as defined in section 1.1 can be interpreted as energetic 

penalty due to under-coordination or over-coordination in clusters and bulk systems. The 

inclusion of this contribution to the energy provides an essential means of simultaneously 

modeling these two regimes within a single potential model. The expression for the 

promotion energy described in Eq. 1.15 was used for modeling this behavior within the 

current potential. Promotion energies resulting from DFT [64] calculations were obtained 

by multiplying the excitation energy for s2p2 to sp3 with 2-nsi. Where 2 - nsi is the number 

of electron promoted from the s to p orbitals. The quantity nsi  known as the s orbital 

population of atom i, was obtained using Mulliken analysis. 

  The results displayed in Figure 3.6 show a reasonable agreement in promotion 

energy for this study with those of DFT results [64]. The accuracy of the DFT results 

cannot be ascertained in any way as the mathematical definition of the promotion energy 

used in the study was formulated with simplifying assumptions.  Furthermore, the use of 

Mulliken analysis for computing atomic charges also presents its own additional error in 
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the overall energy. However, the results are useful as a basis for establishing a trend 

among the clusters.  The current potential exhibits relatively flat promotion energy values 

for clusters of size 3 and 5 even though the structures of these same size clusters are 

different from one another. A possible reason for this shortcoming may be due to neglect 

of π-bonding existing in some of these small clusters in HBOP model. As the size of the 

cluster increases, for Sin with n ≥ 7, the predicted promotion energies are closer to their 

corresponding DFT values. 

 

Figure 3.6:   Promotion energy values for the silicon clusters in Appendix 1.1 

computed using the hybrid bond order potential along with their corresponding DFT [64] 

values. 
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A correlation coefficient of 0.86 between the DFT promotion energies and those obtained 

by our potential (Figure 3.7) is not perfect but shows a reasonable description of the 

promotion energy. Further improvement in this quantity will form part of our future 

work. 

 

 

Figure 3.7:  A comparative scatter plot of DFT promotion energies of clusters shown in 

Appendix 1.1 (vertical axis) along with their corresponding values predicted by the 

hybrid bond order potential (horizontal axis). The straight line shown in the figure is the y 

= x line. A point falling on the line corresponds to a perfect agreement between DFT and 

HBOP promotion energy for the cluster in question.  
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3.4. Average Coordination 

 The average coordination number of atoms in small silicon clusters helps in 

understanding the bonding behavior and serves as a test for the accuracy of an empirical 

potential [21-22]. Similar to promotion energy, the average coordination is a measure of 

covalent character with covalently bonded atoms having a coordination of about 4.0 in 

the bulk, while those displaying metallic character have values in excess of 4.0 [64].   

Atoms at surfaces can have coordination numbers less than 4.0 and this is true for most 

small silicon Sin clusters with n ≤ 6.  The aim of this work is not to duplicate the earlier 

study [64] of this property, but rather, to test the accuracy of the hybrid bond-order 

potential in predicting average coordination numbers in clusters.   

 Average coordination numbers for the clusters in study (Appendix 1.1) were 

computed using the bond order values and Eq. 1.16.  The computations were done for 

two different potentials having different cut off distances at 2.8 Å and 5.95 Å.  The 

potential with 2.8 Å was optimized by fitting the expression to equations of state 

properties, cluster energies and promotion energies in a similar manner as the final 

potential with a cut off distance of 5.95 Å.  The idea is to compare a potential with the 

same expression but different cut-off distances. It was shown earlier in chapter two and 

Figure 2.2 that the current implementation requires a cut off distance of more than 5.75 Å 

to have an optimum potential. The calculated average coordination numbers at  

2.8 Å   and 5.95 Å are presented in Figure 3.8. The results obtained for the 5.95 Å cut off 

potential reproduces the coordination numbers better. This is not surprising as the longer- 

ranged potential tends to capture most of the covalent interactions among the atoms in the 
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cluster. The covalent interactions actually decay quite slowly as the interatomic distance 

increases, a characteristic that is not fully described by potentials that include only effects 

from first neighbor shells.  The short range cut off in HBOP potential clearly does not 

give a good indication of the real coordination as can be seen in Figure 3.8. The 

coordination numbers at 2.8 Å are lower for most clusters in the group. 

 

Figure 3.8:  A comparison of DFT average coordination number obtained from reference 

64 with those calculated by the current potential when using a cut of distances of 2.80 Å 

and 5.95 Å for the potential energy expression. 
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 A scatter plot comparing average coordination numbers obtained with the DFT values 

(with a correlation R2 > 0.98) appears in Figure 3.9. It is interesting to note that the 

average coordination numbers were not used to fit the potential in this study and 

therefore, the excellent agreement between our values and those of DFT studies is an 

indication of the importance of using a long range cut off distance for a realistic 

interatomic potential. 

 

 

Figure 3.9:  A scatter plot of cluster average coordination numbers for the hybrid bond 

order potential (vertical axis) along with their corresponding DFT values (horizontal 

axis). The straight line shown in the figure is the y = x line. A point falling on the line 

corresponds to a perfect agreement between DFT and silicon potential average 

coordination for the cluster in question. 
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 A careful look at Figure 3.8 shows that clusters Si3.3 and Si4.5 have lower 

coordination numbers compared to the DFT values. These two clusters (Appendix 1.1) 

are linear chains. Atom number 2 in Si3.3 (Appendix 1.1) should completely screen both 

atoms numbers 1 and 3 from each other as can be seen from Eq. 2.3. This is expected to 

lead to zero sigma orbital interaction. The σ-bond order from the current potential that 

has atoms 1 and 3 completely screened from each other by atom 2 leading to an average 

coordination of (1 + 2 + 1)/3 = 1.33. However there would be some π-bond interactions 

from non-orthogonal overlaps of the 2pπ and 3pπ orbitals in silicon which would thus 

increase the average coordination number in any model, such as DFT, that allows these 

π-bonding interactions.  The lower values of coordination numbers obtained by the 

hybrid potential also stem from the fact that our coordination numbers were defined only 

by σ-bond order alone, while DFT study [64]  have π-bond interactions as is evident from 

their bond order values greater than unity in some individual bonds.  

A similar situation happens for cluster Si4.5 with an average coordination number of  

(1 +2 +2 +1)/4 = 1.5.  An inclusion of π-bond order in the definition of coordination 

number should be useful in minimizing the differences observed in the average 

coordination number and possibly lead to even better prediction of the promotion 

energies. 
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CHAPTER FOUR 

CONCLUDING REMARKS 

           A new hybrid bond-order potential (HBOP) has been developed for silicon. To our 

knowledge, this work is the first attempt to include promotion energy in an empirical 

potential. Additionally, screening of bond energy between atoms is implemented using 

approximations to first principle equations. All other interatomic potentials [24, 53-54] 

including screening effect have used ad-hoc functions and equations. We believe that our 

scheme allows for retracing back any error to approximations made to the first principle 

equations. Promotion energy is a quantum mechanical property of atoms in a covalently 

bonded system. Quantum mechanical estimation of promotion energy requires 

diagonalization of Hamiltonian matrix element [25], a too complex and computationally 

intensive procedure that is beyond the scope of classical potentials. Petiffor et al. [36] 

used the second-moment approximation to the local density of states in a minimal basis in 

tight binding (TB) theory to derive a simplified expression for promotion energy suitable 

for use in molecular dynamics simulation [33-34]. The promotion energy expression used 

in the current work was fitted using the DFT [64] promotion energies for small silicon 

clusters Si3-Si8.  The energies calculated with the HBOP (represented by potential P4 in 

section 2.6) agree well with those of DFT with a correlation coefficient of 0.86.  

           Cluster binding energies were computed for 17 different silicon structures of size 

Si3-Si10 using HBOP, and we obtained excellent agreement with DFT [64] values. A 

direct comparison between cluster energies from HBOP and those of DFT gives a 

correlation coefficient of 0.97 for the 17 structures tested.  Most of the bond-order 
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potentials give cluster energies that are in good agreement with the DFT values. 

Structures with the lowest energies for Si3-Si10 clusters were compared in terms of the 

root-mean-square (rms) deviation from the DFT binding energies, for HBOP and seven 

well known potentials for silicon in the literature.  The rms error obtained from bond-

order potentials, namely: HBOP, the Bolding and Anderson Potential (B & A) [14] and 

thermodynamic interatomic force field (TIFF) potential of Chelikowsky et al [23] are 

generally lower than those of cluster potentials (SW, SWG and BH). The exception 

comes from the Tersoff potential with a much higher rms error compared with other bond 

order potentials.  Similarly, the LJM potential has much lower rms error compared to 

other cluster potentials in the group. It is worth noting that cluster energies were not used 

in fitting the Tersoff potential used for this comparison. Nonetheless, attempts were made 

to perform a fitting of Tersoff potential using cluster energies with little improvement 

over the original potential [89,96].  This shortcoming of the Tersoff potential is similar to 

the failure of one of our potential named P1. The P1 potential failed to simultaneously 

reproduce cluster and bulk properties. At this junction, few observations can be deduced 

about why other bond-order potential types are successful in simultaneously predicting 

good bulk and cluster properties while the Tersoff potential fails in this regard. Firstly, 

starting from HBOP, we discovered that inclusion of promotion energy term in potential 

P1 (Eq. 2.58) to obtain potential P2 (Eq. 2.60) and fitting to bulk and cluster properties 

did not remedy this problem.  We observed that cluster energies are poorly reproduced in 

both potentials P1 and P2 (Appendix 2.5).  However, when the bond-order term in 

potential P1 is screened to give potential P3, upon re-fitting to cluster and bulk properties, 
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we immediately obtained a transferable potential with excellent cluster energies and bulk 

properties compared to P1 and P2 (Appendix 2.4-2.5). The primary reason for this 

improvement has more to do with our implementation than the functional form used.  In 

the HBOP implementation, the covalent interaction is made long-ranged such that this 

interaction decays slowly to zero at 5.95 Å. Therefore atoms that are within this cutoff 

region are allowed to interact covalently with each other and thus have non-zero bond-

order.  In computing the bond order for potentials P1 and P2, all atoms within the cutoff 

region are considered to have equal weight contribution to the bond-order, but differing 

only in the angular contribution. In general, the g(θjik) function in Eq. 2.8 was derived 

using the second moment approximation to density of states in BOP theory, and is 

therefore valid only for the first nearest neighbor shell of atoms. In essence, to obtain the 

bond-order of atoms i and j, then, all k atoms that are first nearest neighbors of atoms i 

and j are considered in computing the bond-order. However, potentials P1 and P2 utilized 

this function also for long distance neighbor atoms k of atoms i and j whose bond order is 

desired. The result is a lowering of the bond-order for closed packed structures leading to 

a non transferable potential. By screening the bond-order, we ensures that those k atom 

neighbors that are at larger distance from the ij  bond have lesser contribution to the bond 

order compared to k atoms that are in the first nearest neighbor shell. This explains why 

potential P3 with no promotion energy term still outperform potential P2 that includes 

promotion energy but lacks bond-order screening (Appendix 2.1-2.5). This finding is also 

a testament to the fact that careful choice of functional representation of an empirical 

potential is more important than using large number of parameters and performing 
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elaborate fitting to experimental database. In this scenario, potential P3 with only 7 

parameters outperform potential P2 (with 9 parameters and an additional function) when 

subject to the same fitting database (Appendix 2.2-2.5).  The Bolding and Anderson 

potential with an rms error of 0.72 eV is impressive considering that average DFT 

binding energy of all the 8 clusters is about 22.6 eV.  This excellent agreement can be 

attributed to the use of complicated σ and π bond-order (or interference functions as they 

call it) and the rigorous fitting of the potential to all the clusters tested here. The σ and π 

bond order were carefully formulated using large number of parameters and functions to 

account for physical and chemical bonding effects in silicon bulk and crystal phases.  The 

original TIFF potential [83] was found to be less than satisfactory for predicting binding 

energies for clusters of Sin for n ≤ 10. Chelikowsky, Glassford and Phillips [6] identified 

that some of these clusters have under-coordinated atoms with “dangling bonds” that 

result in open structures and makes it difficult for a simple angular function used in their 

potential to simultaneously reproduce the bulk and cluster energies in silicon. This is 

similar to the problem with the Tersoff potential where the use of simple angular function 

for first neighbor shell of atoms is unable to simultaneously predict good bulk and cluster 

properties. The TIFF potential was later modified by introducing an additional function 

called “dangling-bond vector” into the potential expression to discriminate between 

“covalent” structures (those with average coordination number less than or equal to four) 

and “metallic” structures (those with average coordination number greater than four) 

within the system [6]. The “dangling-bond vector” introduced is ad hoc but effective 
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because it identifies the physical bonding effect that determines the potential energy of 

the system for a given atomic structure. 

        The cluster potentials of SW [9], and the modified form of it referred to here as 

SWG [15,100], as well as the Biswas and Hamman (BH) potential [20], all are unable to 

predict good binding energies for small clusters. The SWG form was rigorously fitted to 

cluster energies, but it was only able to reduce the rms error to about 3.5 eV, an error that 

is still about 3.5 times the magnitude of HBOP value. The BH potential with an rms error 

of about 3.8 eV use similar two-body function to SW, but the potential is made 

environment-dependent through the use of coordination number. However, this effort was 

still not enough to overcome the error in cluster binding energies in silicon. The Li, 

Johnston and Murrell (LJM) potential [94] is similar to SW, SWG and BH potentials, 

however, the LJM potential gives good results for bulk and cluster properties with an rms 

error in cluster binding energies of about 1.3 eV.  The functional form of the LJM two 

and three-body potentials are different from other cluster potentials considered in this 

study. For example, the LJM two-body potential is represented as a Rydberg function 

while the three-body term uses a symmetry coordinates that are functions of the bond 

distances. The LJM potential was rigorously fitted using cluster energies of silicon SiN 

with N ≤ 50.  Despite the success of the LJM potential, it failed to reproduce some 

closed- packed structures reported from DFT studies [64]. These structures are capped 

trigonal bipyramid for Si6, pentagonal bypyramid for Si7, and tetracapped tetrahedron for 

Si8 clusters. 
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       As a test for the HBOP potential, the average coordination number was computed for 

all the 17 clusters (Appendix 1.1) and to our surprise we obtain an excellent agreement 

with DFT results. A correlation coefficient greater than 0.98 was obtained between our 

potential and DFT results for cluster energies, despite the fact that average coordination 

number was not used in the fitting database. By comparison, we discovered that average 

coordination values are poorer for an optimized potential with the same functional form 

but a short-range cutoff distance of 2.8 Å. This discrepancy may be due to screening 

length that is insufficient to adequately describe the coordination at 2.8 Å cutoff distance 

compared to 5.95 Å distance used in HBOP. 

               Equations of state were computed for 16 different silicon phases, namely; 

diamond, face-centered cubic (FCC), body-centered cubic (BCC), simple cubic (SC), 

hexagonal closed packed (HCP), hexagonal diamond, simple hexagonal, β-Sn, BC8, R8, 

ST12, Cmca, Imma, BCT5, and Si34 and Si46 clathrates. The binding energies and lattice 

parameters (or equilibrium volume) obtained for all the phases are in good agreement 

with experimental and DFT results. The rms errors in cohesive energies and lattice 

parameters in six of the 15 phases obtained for HBOP are better than those for most of 

the potentials compared. We found that the pressure derivative of bulk modulus have 

larger error compared to the cohesive energies and equilibrium volume. This property is 

second order derivative with respect to energy and even quantum mechanical DFT 

methods are not able to give consistent values when calculating the equations of state 

properties. 
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               In summary, a new bond-order potential has been developed based on hybrid of 

theoretically motivated functions and physically realistic empirical expressions. A 

screening function derived from approximations to first principle expressions is included 

to account for long range covalent interaction between atoms in silicon. Additionally, the 

potential also accounts for the promotion energy of atoms in the system, the first time 

such interaction is included in an empirical potential. The final potential is transferable 

between various bulk phases and clusters. We believe that intermediate structures, such 

as liquids and surfaces will be adequately described by the model. Overall, good results 

that compare favorably with experimental and DFT equations of states and cluster 

energies were obtained with the HBOP model.   

 

 

 

 

 

 

 

 

 

 

 

 



   

 

 
                                                                                                                                        

92

APPENDIX 

Appendix 1.1 
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Appendix 2.1   
 
 
Parameters for potential P1 
 
b1     =      26.2961767 eV      
β      =       0.873523073 Å-1 
A     =       4466.88719 eV      
α      =       6.00848751 Å-1    
Q     =       91.4655993 Å      
 λ     =       1.32226923 Å-1 
 
 
 
Equations of state properties for potential P1 
 
Phase                     EOS Properties 
 
              
                       E0  (eV)   V0  (Å

3)              B0  (Pa)                  B’    
Diamond    -4.141 5      18.3892        0.5664                   6.0972 
HEXD  -4.1540      19.0009             0.5507                   5.2052       
Si46        -4.1534   23.4710        0.3919                   4.3274 
Si34   -4.1483  23.8855        0.3906                   4.2372 
R8      -4.6637  17.6449        0.7478                   3.6673 
BC8       -4.5807  17.9841        0.6563                   4.2268 
ST12   -4.5922  18.0722             0.6835                   3.6332  
Imma  -4.9329  17.7857        0.1806                   4.7024 
ββββ-Sn   -4.9199  17.3627        0.2803                   3.6844 
SHEX  -4.9427  16.5329        0.5117                   1.9356 
BCT5  -4.6196  16.7020        0.5873                   4.4028 
SC   -4.9282  15.8514        0.6476                   3.5665  
Cmca  -5.3231  13.0074        1.6215                   2.5256 
HCP   -4.8503  13.7579        0.2993                   5.9185 
BCC   -4.8010  14.6914        0.1807                   5.9272 
FCC   -4.8896  13.6340        0.4001                   5.3231 
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Appendix 2.2  
 
 
Parameters for potential P2 
 
b1    = 48.5209607 eV 
β     = 1.00381802  Å-1 
A     = 4661.59945 eV 
α     = 6.2050596  Å-1 
Q     = 141.051925  Å 
λ      = 1.16950394  Å-1 
σ1    = 1.55362842 eV 
σ2    = 0.551940787 eV 
 
 
 
Equations of state properties for potential P2 
 
Phase                              EOS Properties 
 
               
                     E0 (eV)                 V0(Å

3)                B0  (Pa)                         B’   
Diamond   -3.5673      18.5424                    0.5739         6.3501 
HEXD -3.6002  19.2053               0.5695              5.334  
Si46       -3.7683  23.6284               0.4281              4.3712 
Si34  -3.7680  24.0329               0.4283              4.2775      
R8     -4.1207  17.8113               0.8217              3.6820 
BC8      -4.0375  18.1628                    0.7048              4.2873 
ST12  -4.0574  18.2730               0.7478              3.6343  
Imma -4.3999  19.6669               0.1326              4.6258 
ββββ-Sn  -4.3735  18.2725               0.2819              3.4918 
SHEX -4.3806  16.9989               0.5661              1.9133 
BCT5 -4.0466  16.7907               0.5803              5.5348 
SC  -4.3541  16.1038               0.6954              3.5733  
Cmca -4.2212  15.0567               0.3367              4.8373 
HCP  -4.2099  15.1364               0.2140                       5.5344 
BCC  -4.1969  17.3801               0.0968              5.3056 
FCC  -4.2438  14.5747               0.3317              5.1235 
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Appendix 2.3 
 
 
Parameters for potential P3 
 
b1    = 28.6357093 eV  
β     = 0.86111338 Å-1  
A     = 28371.5588 eV 
α     = 7.16998122 Å-1  
Q     = 195.514969 Å 
λ      = 0.761229862 Å-1 
 
 
 
Equations of state properties for potential P3 
 
Phase                  EOS Properties 
 
            
                     E0 (eV)             V0 (Å

3)              B0 (Pa)                 B’    
Diamond  -4.5712     20.2955               0.6858       4.5536    
HEXD -4.5145     20.1161              0.6274       4.9947 
Si46       -4.4759     21.6151              0.4267       6.9594 
Si34  -4.4964     21.4069              0.4497       7.8892       
R8     -4.3850     17.8571              0.5818       5.7695 
BC8      -4.4121     18.2620              0.5211       6.1237 
ST12  -4.3689     18.0628              0.4953       6.3475  
Imma -4.5024     15.0312              0.6082       5.0750 
ββββ-Sn  -4.5006     15.1871              0.6405       4.8945 
SHEX -4.4957     15.0014              0.5886       7.1861 
BCT5 -4.5023     16.9085              0.6202       5.4475 
SC  -4.4427     15.8448              0.3760       6.9991  
Cmca -4.4478     14.7962              0.4463       4.9842 
HCP  -4.4261     14.7590              0.4490       4.3243 
BCC  -4.3806     14.4880              0.3225       6.5794 
FCC  -4.4258     14.9792              0.4740       3.6053 
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Appendix 2.4 
 
 
 

 
 
Plots of absolute average percent error in equations of state properties (E0, V0, B0 and B’) 
for potentials P1, P2, P3 and P4. 
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Appendix 2.5 
 
 
Cluster cohesive energies for Potentials P1 – P4 

 
 

 

 

 

 

 

 

 

 

 

Cluster DFT Cohesive  
Energy (eV) 

P1 Energy 
(eV) 

 

P2 Energy 
(eV) 

 

P3 Energy 
(eV) 

P4 Energy 
(eV) 

Si3.1 -7.8200 -8.0834 -7.7326 -8.0653 -7.6409 
Si3.2 -7.7500 -7.4123 -6.9502 -7.5324 -7.0187 
Si3.3 -7.2600 -5.5616 -4.6929 -7.1760 -6.5754 
Si3.4 -6.4700 -6.1624 -5.4370 -7.0993 -6.4920 
Si4.1 -12.3600 -11.6873 -11.1172 -12.0440 -11.8235 
Si4.2 -11.6900 -11.7487 -11.2507 -12.1338 -11.9173 
Si4.3 -11.6400 -9.5187 -8.1760 -9.3707 -8.7654 
Si4.4 -10.9300 -11.6946 -11.5264 -11.8301 -11.6294 
Si4.5 -9.9000 -7.5578 -6.2937 -10.4116 -9.8440 
Si5.1 -16.5000 -16.6728 -15.9229 -15.7608 -15.4728 
Si5.2 -15.4700 -14.9915 -14.0438 -15.8916 -15.7722 
Si5.3 -15.1800 -16.8365 -16.0732 -15.8936 -15.6278 
Si6.1 -20.7200 -21.4287 -20.4639 -19.5310 -19.1420 
Si6.2 -20.6900 -21.3653 -19.3692 -19.0964 -19.0491 
Si6.3 -19.9900 -21.7211 -19.8692 -19.6523 -19.6172 
Si7.1 -24.9100 -25.6799 -23.9703 -23.8421 -23.5015 
Si8.1 -28.0100 -28.6900 -26.0533 -27.4729 -27.1414 



   

 

 
                                                                                                                                        

100

BIBLIOGRAPHY 

[1] Hwaiyu, G., editor.  Semiconductor manufacturing handbook, McGraw Hill  
Handbook.  New York, 2005. 
 

[2] Thompson, T. B., editor. Chemical industry of the future: Technology roadmap 
for computational chemistry, University of Maryland, March 16-17, 1998. 

 
[3] Allen, M. P. and Tildesley, D. J. Computer Simulation of Liquids, Oxford     

University Press, New York, 1989. 
 
[4] Smit, B. and Frenkel D. Understanding Molecular Simulation, Academic Press 

London, 2001. 
 
[5] Car, R. and Parrinello, M., Unified approach for molecular dynamics and density-

functional theory, Phys. Rev. Lett., 55:2471-2474 (1985). 
 
[6] Tersoff, J., New empirical model for the structural properties of silicon.,  Phys. 

Rev. Lett., 56:632-635 (1986). 
 
[7] Tersoff, J., New empirical approach for the structure and energy of covalent 

systems., Phys. Rev. B., 38:9902-9905 (1988). 
 
[8] Tersoff, J., Empirical interatomic potential for silicon with improved elastic 

properties., Phys. Rev. B., 37:6991-7000 (1988). 
 
[9] Stillinger, F. H. and Weber, T. A., Computer Simulation of local order in 

condensed phase silicon, Phys.  Rev. B., 31:5262-5271 (1985). 
 
[10] Bazant, M. Z.,  Kaxiras, E., and Justo, J. F., Environmental-dependent interatomic 

potential for bulk silicon, Phys. Rev. B., 56:8542-8552 (1997). 
 
[11] Lenosky, T. J.,  Sadigh, B.,  Alonso, E.,  Bulatov, V. V.,  Diaz de la Rubia, T.,  

Kim, J.,  Voter, A. F.,  and  Kres, J. D., Highly optimized empirical potential 
model for silicon, Modelling Simul. Mater. Sci. Eng., 8:825-841 (2000). 

 
[12] Schall, J. D.,  Gao, G., and Harrison, J. A., Elastic constants of silicon materials 

calculated as a function of temperature using a parameterization of the second- 
generation reactive empirical bond-order potential, Phys. Rev. B., 77:115209 
(2008). 

 
[13] Gillespie, B. A.,  Zhow, X. W.,  Murdick, D. A.,  Wadley, H. N. G.,  Drautz, R,  

and  Pettifor, D. G.,  Bond-order potential for silicon. Phys. Rev. B., 75:155207 
(2007). 



   

 

 
                                                                                                                                        

101

[14] Bolding, B. C. and Anderson, H. C., Interatomic potential for silicon clusters, 
crystals, and surfaces, Phys. Rev. B., 41:10568-10584 (1990). 

 
[15] Gong, X. G., Empirical-potential studies on the structural properties of small 

silicon clusters, Phys. Rev. B., 47:2329-2332 (1993). 
 
[16] Murrell, J. N. and Mottram, R.E., Potential Energy functions for atomic solids, 

Mol. Phys. 69:571-585 (1990). 
 
[17] Murrell, J. N. and Rodriguez-Ruiz, J. A., Potential Energy functions for atomic 

solids II Potential functions for diamond-like structures, Mol. Phys. 71:823-834 
(1990). 

 
[18] Al-Derzi, A. R.,  Johnston, R. L.,  Murrell, J. N. and Rodriguez-Ruiz, J. A.,  

Potential Energy functions for atomic solids III. Fitting phonon frequencies and 
elastic constants of diamond structures, Mol. Phys. 73:265-282 (1991). 

 
[19] Eggen, B. R.,  Johnston, R. L.,  Murrell, J. N., Li, S.,  and Murrell, J. N., Potential 

Energy functions for atomic solids IV. Reproducing the properties of more than 
one solid phase ., Mol. Phys. 76:619-633 (1992). 

 
[20] Biswas, R. and Hamann, R., Interatomic potentials for silicon structural energies, 

Phys. Rev. Lett., 55:2001-2004 (1985). 
 
[21] Chelikowsky, J. R.,  Phillips, J. C.,  Kamal, M., and Strauss, M., Surface and 

thermodynamics interatomic force fields for silicon clusters and bulk phases, 
Phys. Rev. Lett., 62: 292-295  (1989). 

 
[22] Chelikowsky, J. R. and  Phillips, J. C., Surface and thermodynamics interatomic 

force fields for silicon clusters and bulk phases, Phys. Rev. B., 41: 5735-5745  
(1990).  

 
[23] Chelikowsky, J. R.,  Glassford, K. M., and Phillips, J. C.,  Interatomic force fields 

for silicon microclusters, Phys. Rev. B., 44: 1538-1545  (1991). 
 
[24] Cai, J., New simple analytical many-body potential for covalent materials, Phys. 

Stat. Sol. (b), 212:9-18 (1999). 
 
[25] Conrad, D. and  Scheerschmidt, K., Empirical bond-order potential for 

semiconductors, Phys. Rev. B., 58: 4538-4542  (1998). 
 
[26] Ackland, G. J., Interpretation of cluster structures in terms of covalent bonding, 

Phys. Rev. B., 44: 3900-3908  (1991). 



   

 

 
                                                                                                                                        

102

[27] Erhart, P. and Albe, K., Analytical potential for atomistic simulations of silicon, 
carbon and silicon carbide, Phys. Rev. B., 71: 035211 (2005). 

 
[28] Mistriotis, A. D.,  Flytzanis, N., and  Farantos, S. C., Potential model for silicon 

clusters,  Phys. Rev. B., 39: 1212-1218  (1989). 
 
[29] Calsson, A. E.,  Fedders, A. P., and Myles, C. W., Generalized embedded-atom 

format for semiconductors. Phys. Rev. B., 41: 1247-1250 (1990). 
 
[30] Justo, J. F., Bazant, M. Z., Kaxiras, E., Bulatov, V. V., and Yip, S., Interatomic 

potential for silicon defects and disordered phases, Phys. Rev. B., 58: 2539-2550 
(1998). 

 
[31] Mistriotis, A. D.,  Froudakis, G. E.,  Vendras, P., and Flytzanis, N., Model 

potential  for silicon clusters and surfaces,  Phys. Rev. B., 47: 10648-10653 
(1993). 

 
[32] Khor, K. E. and Das Sarma, S., Proposed universal interatomic potential for 

elemental tetrahedrally bonded semiconductors, Phys. Rev. B., 38: 3318-3322  
(1988). 

 
[33] Pettifor, D. G. and Oleinik, I. I., Analytic bond-order potentials beyond Tersoff-

Brenner. I. Theory, Phys. Rev. B., 59: 8487-8499 (1999). 
 
[34] Oleinik, I. I. and Pettifor, D. G., Analytic bond-order potentials beyond Tersoff-

Brenner. II. Application to the hydrocarbons, Phys. Rev. B., 59: 8500-8507 
(1999). 

[35] Nguyen-Mahn, D.,  Pettifor, D. G., and  Vitek, V., Analytic environmental-
dependent tight-binding bond integrals : Application to MoSi2, Phys. Rev. Lett., 
85:4136-4139 (2000). 

 
[36] Horsfield, A. P.,  Bratkovsky, M. F.,  Fearn, M.,  Pettifor, D. G,. and Aoki, M, 

Bond-order potentials: Theory and implementation, Phys. Rev. B., 53: 12694-
12712 (1996). 

 
[37] Nguyen-Mahn, D.,  Pettifor, D. G.,  Cockayne, D. J. H.,  Mrovec, M., Znam, S., 

and Vitek, V, Environmental dependent bond-order potentials: New developments 
and applications, Bull. Mater. Sci., 26:43-51 (2003). 

 
[38] Brenner, W. D.,  Empirical potential for hydrocarbons for use in simulating the 

chemical vapor deposition of diamond films, Phys. Rev. B., 42: 9458-9471 
(1990). 

 



   

 

 
                                                                                                                                        

103

[39]  Brenner, W. D.,  Shenderova, O. A.,  Harrison, J. A.,  Stuart, S. J.,  Ni, B.,  and 
Sinnott, S. B., A second-generation reactive empirical bond order (REBO) 
potential energy expression for hydrocarbons, J. Phys. Condens. Matter, 14:783-
802 (2002). 

 
[40] Stuart, S. J., Tutein, A. B., and Harrison, J. A., A reactive potential for 

hydrocarbons with intermolecular interactions, J. Chem. Phys., 112:6472-6486 
(2000). 

 
[41] Che, J., Cagin, T., and William, A. G III., Generalized extended empirical bond-

order dependent force fields including nonbond interactions, Theo. Chem. Acct, 
102:346-354 (1999). 

 
[42] Humbird, D. and Graves, D. B., Improved interatomic potentials of silicon-

fluorine and silicon-chlorine, J. Chem. Phys., 120:2405-2412 (2004). 
 
[43] Dyson, A. J. and Smith, P. V., Extension of the Brenner empirical interatomic 

potential to C-Si-H systems, Surf. Sci., 355:140-150 (1996). 
 
[44] Murty, R. M. V. and Atwater, H. A., Empirical interatomic potential for Si-H 

interactions, Phys. Rev. B., 51: 4889-4893 (1995). 
 
[45] Tersoff, J., Modelling solid-state chemistry: interatomic potentials for 

multicomponent systems, Phys. Rev. B., 39:5566-5568 (1989). 
 
[46] Abell, G.  C., Empirical chemical pseudopotential theory of molecular and 

metallic bonding, Phys. Rev. B., 31:6184-6196 (1985). 
 
[47] Tang, M. S.,  Wang, C. Z.,  Chan, C. T.,  and Ho, K.M., Environmental-dependent 

tight-binding potential model, Phys. Rev. B., 53:979-982 (1996). 
 
[48] Kwon, I., Biswas, R., Wang, C. Z., Ho, K. M., and Soukoulis, C. M., Transferable 

tight-binding models for silicon, Phys. Rev. B., 49:7242-7250 (1994). 
 
[49] Börnsen, N.,  Meyer, B.,  Grotheer, O.,  and  Fähnle, M., Ecov – a new tool for the 

analysis of electronic structure data in a chemical language, J. Phys. Condens. 
Mater. 11:L287-L293 (1999). 

 
[50] Sutton, A.P., Finnis, M. W., Pettifor, D. G., and  Ohta, Y.,  The tight-binding 

bond model, J. Phys. C. Solid State Phys., 21:35-66 (1988). 
 
[51] Laref, A., Bouhafs, B., Certier, M., Bouarissa, N., and Aourag, H., Transferable 

non-orthogonal tight-binding model for silicon, Phys. Stat. Sol. (b) 208:413-426 
(1998). 



   

 

 
                                                                                                                                        

104

 
[52] Stuart, S. J., Knippenberg, M. T.,  Kum, O. and  Predrag, S. K., Simulation of 

amorphous carbon with a bond-order potential, Phys. Scr. T. 124:58-64 (2006). 
 
[53] Baskes, M. I., Determination of embedded atom method parameters for nickel, 

Mater. Chem. Phys. 50:152-158 (1997). 
 
[54] Lee, G.,  Wang, C. Z.,  Lu, Z. Y., and  Ho, K. M., Ad-dimer diffusion between 

trough and dimmer row on Si (100), Phys. Rev. Lett., 81:5872-5875 (1998). 
 
[55] Baskes, M. I., Application of the embedded-atom method to covalent materials: A 

semiempirical potential for silicon, Phys. Rev. Lett., 59:2666-2669 (1987). 
 
[56] Marks, N. A.,  Cooper, N. C.,  McKenzie, D. R.,  McCulloch, D. G.,  Bath, P., and 

Russo, S. P., Comparison of density-functional, tight-binding, and empirical 
methods for the simulation of amorphous carbon, Phys. Rev. B., 65: 075411 
(2002). 

 
[57] Porta, M. and Castán, T., Development of a tight-binding potential for bcc Zr: 

Application to the study of vibrational properties, Phys. Rev. B., 63:134104 
(2001). 

 
[58] Daw, M. S. and Baskes, M. I., Embedded-atom method: Derivation and 

application to impurities, surfaces and other defects in metal, Phys. Rev. B., 
29:6443-6453 (1984). 

 
[59] Li, Y., Siegel, D. J., Adams, J. B., and Liu, X., Embedded-atom-method tantalum 

potential developed by force-matching method, Phys. Rev. B., 67:125101 (2003). 
 
[60] Kohyama, M.,  Kose, S.,  Kinoshita, M., and Yamamoto, R., The self-consistent 

tight-binding method: application to silicon and silicon carbide, J. Phys.: 
Condens. Mater 2:7791-7808 (1990). 

 
[61] Paxton, A. T.,  Sutton, A. P., and Nex, C. M. M., Structural stability of silicon in 

tight-binding models, J. Phys. C. Solid State Phys., 20:L263-L269 (1987). 
 
[62] Adrian, P. S., Electronic structure of materials, oxford science publications, New 

York, 1993. 
 
[63] Pettifor, D. G., Finnis, M. W.,  Nguyen-Mahn, D.,  Murdick, D. A.,  Zhou, X. W., 

and Wadley, H. N. G., Analytical bond-order potentials for multicomponent 
systems, Mat. Sci. Eng. A365:2-13 (2004). 

 



   

 

 
                                                                                                                                        

105

[64] Fournier, R., Sinnott, S. B., and DePristo, A. E.,  Density functional study of the 
bonding in small silicon clusters, J. Chem. Phys., 97:4149-4161 (1992). 

 
[65] Kreuch, G. and Hafner, J., Quantum many-body potentials in a tight-binding-bond 

approximation: Application to the phase stability of carbon and silicon, Phys. Rev. 
B., 55: 13503-13520 (1997). 

 
[66] Wilson, J. H.,  Todd, J. D., and Sutton, A. P., Modelling of silicon surfaces: a 

comparative study, J. Phys.: Condens. Mater 2:10258:10288 (1990). 
 
[67] Brenner, D. W., The art and science of analytic potential, Phys. Stat. Sol. (b) 

217:23-40 (2000). 
 
[68] Thijsse, B . J., Silicon potential under (ion) attack: towards a new MEAM model, 

Nucl. Instr. Meth. Phys. Res. B 228:198-211 (2005). 
 
[69] Rearson, E.,  Takai, T.,  Halicioglu, T., and Tiller, W. A., Computer modeling of 

Si and SiC surfaces and surface processes relevant to crystal growth from the 
vapor, J. Cryst. Growth, 70:33-40 (1984). 

 
[70] Lenosky, T. J.,  Kres, J. D.,  Kwon, I.,  and Voter, A. F., Highly optimized tight-

binding model for silicon, Phys. Rev. B., 55: 1528-1544 (1997). 
 
[71] Robertson, I. J.,  Heine, V., and Payne, M. C., Cohesion in aluminum systems: A 

first principles assessment of ‘glue” schemes, Phys. Rev. Lett., 70:1944-1947 
(1993). 

 
[72] Mishin, Y.,  Farkas, D.,  Mehl, M. J., and Papaconstantopoulos, D. A., 

Interatomic potential for monoatomic metals from experimental data and ab initio 
calculations, Phys. Rev. B., 59: 3393-3407 (1999). 

 
[73] Balamane, H., Halicioglu, T., and Tiller, W. A., Comparative study of silicon 

empirical interatomic potentials, Phys. Rev. B., 46: 2250-2279 (1992). 
 
[74] Needs, R. J. and Mujica, A., First-principles pseudopotential study of the 

structural phases of silicon, Phys. Rev. B., 51: 9652-9660 (1995). 
 
[75] Okada, Y. and Tokumaru, Y.,  Precise determination of lattice parameters and 

thermal expansion coefficient of silicon between 300  and 1500 K,  J. Appl.. 
Phys., 56:314-320 (1984). 

 
[76] Farid, B., and Godby, R. W., Cohesive energies of crystals, Phys. Rev. B., 43: 

14248-14250 (1991). 
 



   

 

 
                                                                                                                                        

106

[77] Tyuterev, V. G., and Vast, N., Murnaghan’s equation of state for the electronic 
ground state energy,  Comp. Mater. Sci., 38, 350-353 (2006). 

 
[78] Honea, E. C.,  Ogura, A.,  Murray, C. A.,  Raghavachari, K.,  Sprenger, M. F., and 

Brown, W. L., Raman spectra of size selected silicon clusters and comparison 
with calculated structures, Nature, 366, 42 (1993). 

 
[79] Zhang, Q. L., Liu, Y.,  Curl, R. F.,  Tittel, F. K., and Smalley, R. E., 

Photodissociation of semiconductor positive cluster ions, J. Chem. Phys., 
88,1670-1677 (1988). 

 
[80] Schäfer, R.,  Schlecht, S.,  Woenckhaus, J., and Becker, J.A., Polarizabilities of 

isolated semiconductor clusters, Phys. Rev. Lett., 76:471-474 (1996). 
 
[81] Bai, J.,  Cui, L.,  Wang, J.,  Yoo, S.,  LI, X.,  Jellinek, J., Koehler, C.,  

Frauenheim, T.,  Wang, L., and Xeng, X. C., Structural evolution of anionic 
silicon clusters SiN ( 20 ≤ N ≤ 45) , J. Phys. Chem. A., 118:908-912 (2006). 

 
[82] Jarrold, M. F. and Constant, V. A., Silicon cluster ions: evidence for a structural 

transition. Phys. Rev. Lett., 67:2994-2997 (1991). 
 
[83] Fuke, K.,  Tsukamoto, K.,  Misaizu, F., and Sanekata, M., Near threshold 

photoionization of silicon clusters in the 248-146 nm region: Ionization potentials 
for Sin,  J. Chem. Phys., 99:7807-7812 (1993). 

 
[84] Raghavachari, K., Theoretical study of small silicon clusters: Cyclic ground state 

structure of Si3, J. Chem. Phys., 83:3520-3525 (1985). 
 
[85] Raghavachari, K., Theoretical study of small silicon clusters: Equilibrium 

geometries and electronic structures of Sin (n = 2-7, 10), J. Chem. Phys., 84:5672-
5686 (1986). 

 
[86] Patterson, C. H. and Messmer, R. P., Bonding and structures in silicon clusters: A 

valence-bond interpretation, Phys. Rev. B., 42: 7530-7555 (1990). 
 
[87] Zhu, X. and Zeng, X. C., Structures and stabilities of small silicon clusters: Ab 

initio molecular orbital calculations of Si7-Si11, J. Chem. Phys., 118:3558-3570 
(2003). 

 
[88] Grossman, J. C. and Mitáš, L., Quantum Monte Carlo determination of electronic 

and structural properties of Sin clusters (n ≤ 20), Phys. Rev. Lett., 74:1323-1326 
(1995). 

 



   

 

 
                                                                                                                                        

107

[89] Mahtout, S. and Belkhir, M. A., Structure and relative stability of Sin ACTA 
PHYSICA POLONICA A, 109, 685, (2006). 

 
[90] Belkhir, M. A.,  Mahtout, S.,  Belabbas , I., and Samah, M., Structure and 

electronic property of medium-sized silicon clusters, Physica E, 31:86-92 (2006). 
 
[91] Zhu, X. L.,  Zeng, X. C.,  Lei, Y. A., and Pan, B., Structures and stabilities of 

small silicon clusters II: Ab initio molecular orbital calculations of Si2-Si20, J. 
Chem. Phys., 120:8985-8995 (2004). 

 
[92] Yoo, S.,  Shao, N.,  Koehler, C.,  Fraunhaum, T., and Zeng, X. C., Structures and 

stabilities of small silicon clusters. V: Low-lying endohedral fullerenelike clusters 
Si31-Si40, and Si45, J. Chem. Phys., 124:164311-(2006). 

 
[93] Yoo, S. and Zeng, X. C., Structures and stabilities of small silicon clusters. IV: 

Motif-based low-lying clusters Si21-Si30, J. Chem. Phys., 124:054304 (2006). 
 
[94] Wales, D. J. and Waterworth, M. C., Structures and rearrangements of model 

silicon clusters, J. Chem. Soc. Faraday Trans., 88:3409-3417 (1992). 
 
[95] Hartke, B., Global geometry optimization of clusters guided by N-dependent 

model potentials, Chem. Phys. Lett., 258:144-148 (1996). 
 
[96] Ali, M. M., Storey, C., and Torn, A., Application of stochastic global optimization 

algorithms to practical problems, J. Optz. Theor. Appl., 95:545-563 (1997). 
 
[97] Tekin, A. and Hartke, B., Global geometry optimization of small silicon clusters 

with empirical potentials and at the DFT level, Phys. Chem. Chem. Phys., 6:503-
509 (2004). 

 
[98] Iwamatsu, M., Global geometry optimization of silicon clusters using the space-

fixed genetic algorithm, J. Chem. Phys., 112:10976-10983 (2000). 
 
[99] Hartke, B., Global geometry optimization of small silicon clusters at the level of 

density functional theory, Theor. Chem. Acc., 99:241-247 (1998). 
 
[100]  Yoo, S. and Zeng, X.,  Global geometry optimization of silicon clusters described 

by three empirical potentials, J. Chem. Phys., 119:1442-1450 (2003). 
 
[101] Arnold, C. C. and Neumark, D. M., Study of Si4 and −

4Si  using threshold 
photodetachment (ZEKE) spectroscopy, J. Chem. Phys., 99:3353-3362 (1993). 

 
[102] Mc Skimin, H. J., J. Appl. Phys., 24:988 (1953). 
 



   

 

 
                                                                                                                                        

108

[103] Wentorf, R. H. and Kasper, J. S., Two new forms of silicon, Science, 139:338-339 
(1963). 

 
[104] Crain, J.,  Clark, S. J.,  Ackland, G. J.,   Payne, M. C.,  Milman, V.,  Hatton, P. D., 

and Reid, B. J.,  Theoretical study of high-density phases of covalent 
semiconductors. I. Ab initio treatment, Phys. Rev. B., 49:5329-5340 (1994). 

 
[105] Ducklos, S. J., Vohra, Y. K., and Ruoff, A. L., Experimental study of the crystal 

stability and equation of state of Si to 248 GPa, Phys. Rev. B., 41:12021-12028 
(1990). 

 
[106] Gaál-Nagy, K.,  Pavone, P ., and Strauch, D.,  Ab inito study of β-tin� Imma� 

sh phase transitions in silicon and germanium, Phys. Rev. B., 69:134112 (2004). 
 
[107] Adams, G. B. and O’Keeffe, M., Wide-band-gap Si in open fourfold-coordinated 

clathrate structures, Phys. Rev. B., 49:8048-8053 (1994). 
 
[108] Christensen, N. E., Novikov, D. L. and Methfessel, M., The intermediate high- 

pressure phase of silicon, Sol. State Comm., 110:615 (1999). 
 
[109] Hanfland, M.,  Schwarz, U.,  Syassen, K., and Takemura, K., Crystal structure of 

high-pressure phase Silicon VI, Phys. Rev. Lett., 82:1197-1200 (1999). 
 
[110] McMahon, M. I. and Nelmes, R. J., New high-pressure phase of silicon, Phys. 

Rev. B., 47: 8337-8340 (1993). 
 
[111] Liu, A. Y.,  Chang, K. J., and Cohen, M. L., Theory of electronic, vibrational, and 

superconducting properties of fcc silicon, Phys. Rev. B., 37: 6344-6348 (1988). 
 
[112] Wittig, J., Z. Phys. 195, 215 (1966). 
 
[113] Chang, K. J.,  Dacorogna, M. M.,  Cohen, M. L.,  Mignot, J.M.,  Chouteau, G., 

and Martinez, G., Superconductivity in high-pressure metallic phases of Si, Phys. 
Rev. Lett., 54:2375-2378 (1985). 

 
[114] Dacorogna, M. M.,  Chang, K. J.,  and  Cohen, M. L., Pressure increase in 

electron-phonon interaction in superconducting hexagonal silicon, Phys. Rev. B., 
32:1853-1855 (1985). 

 
[115] Biswas, R.,  Martin, R. M.,  Needs, R. J., and Nielsen, O. H., Stability and 

electronic properties of complex structures of silicon and carbon under pressure: 
Density functional calculations, Phys. Rev. B., 35:9559-9568 (1987). 

 



   

 

 
                                                                                                                                        

109

 [116] Papageorgiou, D. G.,  Demetropoulos, I. N., and Lagaris, I. E., Merlin-3.0. A 
multidimensional optimization environment, Comp. Phys. Comm., 109:227-249 
(1998). 

 
[117] Papageorgiou, D. G.,  Demetropoulos, I. N., and Lagaris, I. E., The merlin control 

language for strategic optimization, Comp. Phys. Comm., 109:250-275 (1998). 
 
[118] Bernstein, N.,  Mehl, M. J.,  Papaconstantopolous, D. A., Papanicolaou, N. I.,  

Bazant, M. A.,  and Kaxiras, E., Energetic vibrational, and electronic properties of 
silicon using nonorthogonal tight-binding model, Phys. Rev. B., 62:4477-4487 
(2000). 

 
[119] Zandiehnadem, F., and Ching, W. Y., Total energy, lattice dynamics and 

structural phase transitions in silicon by the orthogonalized linear  combination of 
atomic orbitals  method, Phys. Rev. B., 41:12162-12179 (1990). 

 
[120] Needs, R. J. and Martin, R. M., Transition from β-tin to simple hexagonal silicon 

under pressure, Phys. Rev. B., 30:5390-5392 (1984). 
 
[121]  Neethiulagaranjan, A. and Vijayakumar, V., Equation of state primitive-

hexagonal silicon and the effect of pressure on electronic properties of three high-
pressure phases of silicon, Phys. Rev. B., 47:487-489 (1993). 

 
[122] Yin, M. T. and Cohen, M. L., Theory of static structural properties, crystal 

stability , and phase transformation: Application to Si and Ge, Phys. Rev. B., 
26:5668-5687 (1982). 

 
[123] Zhao, Y.,  Buehler, F.,  Sites, J. R., and Spain, I. L., New metastable phases of 

silicon, Solid State Comm., 59:679-682 (1986). 
 
[124] Hu, J. Z. and Spain, I. L., Phases of silicon at high pressure, Solid State Comm., 

51:263-266 (1984). 
 
[125] Duclos, S. J.,  Vohra, Y. K., and Ruoff, A. L., hcp-to-fcc transition in silicon at 78 

GPa and studies to 100 GPa, Phys. Rev. Lett., 58:775-777 (1987). 
 
[126] Mujica, A., Radescu, S., MuÑoz, A., and Needs, R. J., Comparative study of 

novel structures in silicon and Germanium, Phys. Stat. Sol. (b) 223:379-384 
(2001). 

 
[127] Bundy, F.P., Phase diagrams of silicon and germanium to 200 kbar, 1000oC., J. 

Chem. Phys., 41:3809-3814 (1964). 
 



   

 

 
                                                                                                                                        

110

[128] Welber, B.,  Kim, C. K., Cardona M., and Rodriguez, S., Dependence of the 
indirect energy gap of silicon on hydrostatic pressure, Solid State Comm., 17: 
1021-1024 (1975). 

 
[129] Gupta, M. C. and Ruoff, A. L., Static compression of silicon in the [100] and in 

the [111] directions, J. Appl. Phys., 51:1072-1075 (1980). 
 
[130] San Miguel, A. ,  Melinon, P., Blase, X.,  Tournous,  F.,  Connetable, D.,  Reny, 

E., Yamanaka, S., Itie, J. P., Cros, C., and Pouchard, M.,  A new class of low 
compressibility materials: clathrates of silicon and related materials, High 
Pressure Research, 22:539-544 (2002). 

 
[131] Dodson, B. W., Development of a many-body Tersoff-type potential for silicon, 

Phys. Rev. B., 35:2795-2798 (1987). 
 
[132] Ackland, G., Semiempirical model of covalent bonding in silicon, Phys. Rev. B., 

40:10351-10355 (1989). 
 
[133] Price, W. L., A controlled random search procedure for global optimization, The 

Computer Journal, 29:367-370 (1976). 
 
[134] Price, W. L., Global optimization by controlled random search, J. Optz. Theor. 

Appl., 40:333-347 (1983). 
 
[135] Price, W. L., Global optimization algorithms for a CAD workstation, J. Optz. 

Theor. Appl., 55:133-146 (1987). 
 
[136] Ali, M. M., Törn,  Viitanen, S., A numerical comparison of some controlled 

random search algorithms, J. Global Optimization, 11:377-385 (1997). 
 
 


	Clemson University
	TigerPrints
	12-2008

	Hybrid Bond-Order Potential for Silicon
	Suleiman Oloriegbe
	Recommended Citation


	Microsoft Word - $ASQsupp_64B353FC-C633-11DD-8DCD-844B3012225A.doc

