12,884 research outputs found

    Numerical aerodynamic simulation facility

    Get PDF
    Critical to the advancement of computational aerodynamics capability is the ability to simulate flows about three-dimensional configurations that contain both compressible and viscous effects, including turbulence and flow separation at high Reynolds numbers. Analyses were conducted of two solution techniques for solving the Reynolds averaged Navier-Stokes equations describing the mean motion of a turbulent flow with certain terms involving the transport of turbulent momentum and energy modeled by auxiliary equations. The first solution technique is an implicit approximate factorization finite-difference scheme applied to three-dimensional flows that avoids the restrictive stability conditions when small grid spacing is used. The approximate factorization reduces the solution process to a sequence of three one-dimensional problems with easily inverted matrices. The second technique is a hybrid explicit/implicit finite-difference scheme which is also factored and applied to three-dimensional flows. Both methods are applicable to problems with highly distorted grids and a variety of boundary conditions and turbulence models

    A Scalable Correlator Architecture Based on Modular FPGA Hardware, Reuseable Gateware, and Data Packetization

    Full text link
    A new generation of radio telescopes is achieving unprecedented levels of sensitivity and resolution, as well as increased agility and field-of-view, by employing high-performance digital signal processing hardware to phase and correlate large numbers of antennas. The computational demands of these imaging systems scale in proportion to BMN^2, where B is the signal bandwidth, M is the number of independent beams, and N is the number of antennas. The specifications of many new arrays lead to demands in excess of tens of PetaOps per second. To meet this challenge, we have developed a general purpose correlator architecture using standard 10-Gbit Ethernet switches to pass data between flexible hardware modules containing Field Programmable Gate Array (FPGA) chips. These chips are programmed using open-source signal processing libraries we have developed to be flexible, scalable, and chip-independent. This work reduces the time and cost of implementing a wide range of signal processing systems, with correlators foremost among them,and facilitates upgrading to new generations of processing technology. We present several correlator deployments, including a 16-antenna, 200-MHz bandwidth, 4-bit, full Stokes parameter application deployed on the Precision Array for Probing the Epoch of Reionization.Comment: Accepted to Publications of the Astronomy Society of the Pacific. 31 pages. v2: corrected typo, v3: corrected Fig. 1

    Rotorcraft digital advanced avionics system (RODAAS) functional description

    Get PDF
    A functional design of a rotorcraft digital advanced avionics system (RODAAS) to transfer the technology developed for general aviation in the Demonstration Advanced Avionics System (DAAS) program to rotorcraft operation was undertaken. The objective was to develop an integrated avionics system design that enhances rotorcraft single pilot IFR operations without increasing the required pilot training/experience by exploiting advanced technology in computers, busing, displays and integrated systems design. A key element of the avionics system is the functionally distributed architecture that has the potential for high reliability with low weight, power and cost. A functional description of the RODAAS hardware and software functions is presented

    MODIS Information, Data, and Control System (MIDACS) system specifications and conceptual design

    Get PDF
    The MODIS Information, Data, and Control System (MIDACS) Specifications and Conceptual Design Document discusses system level requirements, the overall operating environment in which requirements must be met, and a breakdown of MIDACS into component subsystems, which include the Instrument Support Terminal, the Instrument Control Center, the Team Member Computing Facility, the Central Data Handling Facility, and the Data Archive and Distribution System. The specifications include sizing estimates for the processing and storage capacities of each data system element, as well as traffic analyses of data flows between the elements internally, and also externally across the data system interfaces. The specifications for the data system, as well as for the individual planning and scheduling, control and monitoring, data acquisition and processing, calibration and validation, and data archive and distribution components, do not yet fully specify the data system in the complete manner needed to achieve the scientific objectives of the MODIS instruments and science teams. The teams have not yet been formed; however, it was possible to develop the specifications and conceptual design based on the present concept of EosDIS, the Level-1 and Level-2 Functional Requirements Documents, the Operations Concept, and through interviews and meetings with key members of the scientific community

    An OpenSHMEM Implementation for the Adapteva Epiphany Coprocessor

    Full text link
    This paper reports the implementation and performance evaluation of the OpenSHMEM 1.3 specification for the Adapteva Epiphany architecture within the Parallella single-board computer. The Epiphany architecture exhibits massive many-core scalability with a physically compact 2D array of RISC CPU cores and a fast network-on-chip (NoC). While fully capable of MPMD execution, the physical topology and memory-mapped capabilities of the core and network translate well to Partitioned Global Address Space (PGAS) programming models and SPMD execution with SHMEM.Comment: 14 pages, 9 figures, OpenSHMEM 2016: Third workshop on OpenSHMEM and Related Technologie

    PROGRAPE-1: A Programmable, Multi-Purpose Computer for Many-Body Simulations

    Get PDF
    We have developed PROGRAPE-1 (PROgrammable GRAPE-1), a programmable multi-purpose computer for many-body simulations. The main difference between PROGRAPE-1 and "traditional" GRAPE systems is that the former uses FPGA (Field Programmable Gate Array) chips as the processing elements, while the latter rely on the hardwired pipeline processor specialized to gravitational interactions. Since the logic implemented in FPGA chips can be reconfigured, we can use PROGRAPE-1 to calculate not only gravitational interactions but also other forms of interactions such as van der Waals force, hydrodynamical interactions in SPH calculation and so on. PROGRAPE-1 comprises two Altera EPF10K100 FPGA chips, each of which contains nominally 100,000 gates. To evaluate the programmability and performance of PROGRAPE-1, we implemented a pipeline for gravitational interaction similar to that of GRAPE-3. One pipeline fitted into a single FPGA chip, which operated at 16 MHz clock. Thus, for gravitational interaction, PROGRAPE-1 provided the speed of 0.96 Gflops-equivalent. PROGRAPE will prove to be useful for wide-range of particle-based simulations in which the calculation cost of interactions other than gravity is high, such as the evaluation of SPH interactions.Comment: 20 pages with 9 figures; submitted to PAS
    corecore