88,180 research outputs found

    The parallel approximability of a subclass of quadratic programming

    Get PDF
    In this paper we deal with the parallel approximability of a special class of Quadratic Programming (QP), called Smooth Positive Quadratic Programming. This subclass of QP is obtained by imposing restrictions on the coefficients of the QP instance. The Smoothness condition restricts the magnitudes of the coefficients while the positiveness requires that all the coefficients be non-negative. Interestingly, even with these restrictions several combinatorial problems can be modeled by Smooth QP. We show NC Approximation Schemes for the instances of Smooth Positive QP. This is done by reducing the instance of QP to an instance of Positive Linear Programming, finding in NC an approximate fractional solution to the obtained program, and then rounding the fractional solution to an integer approximate solution for the original problem. Then we show how to extend the result for positive instances of bounded degree to Smooth Integer Programming problems. Finally, we formulate several important combinatorial problems as Positive Quadratic Programs (or Positive Integer Programs) in packing/covering form and show that the techniques presented can be used to obtain NC Approximation Schemes for "dense" instances of such problems.Peer ReviewedPostprint (published version

    A Parallelizable Acceleration Framework for Packing Linear Programs

    Get PDF
    This paper presents an acceleration framework for packing linear programming problems where the amount of data available is limited, i.e., where the number of constraints m is small compared to the variable dimension n. The framework can be used as a black box to speed up linear programming solvers dramatically, by two orders of magnitude in our experiments. We present worst-case guarantees on the quality of the solution and the speedup provided by the algorithm, showing that the framework provides an approximately optimal solution while running the original solver on a much smaller problem. The framework can be used to accelerate exact solvers, approximate solvers, and parallel/distributed solvers. Further, it can be used for both linear programs and integer linear programs

    Using Optimization to Obtain a Width-Independent, Parallel, Simpler, and Faster Positive SDP Solver

    Full text link
    We study the design of polylogarithmic depth algorithms for approximately solving packing and covering semidefinite programs (or positive SDPs for short). This is a natural SDP generalization of the well-studied positive LP problem. Although positive LPs can be solved in polylogarithmic depth while using only O~(log2n/ε2)\tilde{O}(\log^{2} n/\varepsilon^2) parallelizable iterations, the best known positive SDP solvers due to Jain and Yao require O(log14n/ε13)O(\log^{14} n /\varepsilon^{13}) parallelizable iterations. Several alternative solvers have been proposed to reduce the exponents in the number of iterations. However, the correctness of the convergence analyses in these works has been called into question, as they both rely on algebraic monotonicity properties that do not generalize to matrix algebra. In this paper, we propose a very simple algorithm based on the optimization framework proposed for LP solvers. Our algorithm only needs O~(log2n/ε2)\tilde{O}(\log^2 n / \varepsilon^2) iterations, matching that of the best LP solver. To surmount the obstacles encountered by previous approaches, our analysis requires a new matrix inequality that extends Lieb-Thirring's inequality, and a sign-consistent, randomized variant of the gradient truncation technique proposed in

    Nearly Linear-Work Algorithms for Mixed Packing/Covering and Facility-Location Linear Programs

    Full text link
    We describe the first nearly linear-time approximation algorithms for explicitly given mixed packing/covering linear programs, and for (non-metric) fractional facility location. We also describe the first parallel algorithms requiring only near-linear total work and finishing in polylog time. The algorithms compute (1+ϵ)(1+\epsilon)-approximate solutions in time (and work) O(N/ϵ2)O^*(N/\epsilon^2), where NN is the number of non-zeros in the constraint matrix. For facility location, NN is the number of eligible client/facility pairs

    The Network Improvement Problem for Equilibrium Routing

    Full text link
    In routing games, agents pick their routes through a network to minimize their own delay. A primary concern for the network designer in routing games is the average agent delay at equilibrium. A number of methods to control this average delay have received substantial attention, including network tolls, Stackelberg routing, and edge removal. A related approach with arguably greater practical relevance is that of making investments in improvements to the edges of the network, so that, for a given investment budget, the average delay at equilibrium in the improved network is minimized. This problem has received considerable attention in the literature on transportation research and a number of different algorithms have been studied. To our knowledge, none of this work gives guarantees on the output quality of any polynomial-time algorithm. We study a model for this problem introduced in transportation research literature, and present both hardness results and algorithms that obtain nearly optimal performance guarantees. - We first show that a simple algorithm obtains good approximation guarantees for the problem. Despite its simplicity, we show that for affine delays the approximation ratio of 4/3 obtained by the algorithm cannot be improved. - To obtain better results, we then consider restricted topologies. For graphs consisting of parallel paths with affine delay functions we give an optimal algorithm. However, for graphs that consist of a series of parallel links, we show the problem is weakly NP-hard. - Finally, we consider the problem in series-parallel graphs, and give an FPTAS for this case. Our work thus formalizes the intuition held by transportation researchers that the network improvement problem is hard, and presents topology-dependent algorithms that have provably tight approximation guarantees.Comment: 27 pages (including abstract), 3 figure
    corecore