1,793 research outputs found

    Still Wrong Use of Pairings in Cryptography

    Get PDF
    Several pairing-based cryptographic protocols are recently proposed with a wide variety of new novel applications including the ones in emerging technologies like cloud computing, internet of things (IoT), e-health systems and wearable technologies. There have been however a wide range of incorrect use of these primitives. The paper of Galbraith, Paterson, and Smart (2006) pointed out most of the issues related to the incorrect use of pairing-based cryptography. However, we noticed that some recently proposed applications still do not use these primitives correctly. This leads to unrealizable, insecure or too inefficient designs of pairing-based protocols. We observed that one reason is not being aware of the recent advancements on solving the discrete logarithm problems in some groups. The main purpose of this article is to give an understandable, informative, and the most up-to-date criteria for the correct use of pairing-based cryptography. We thereby deliberately avoid most of the technical details and rather give special emphasis on the importance of the correct use of bilinear maps by realizing secure cryptographic protocols. We list a collection of some recent papers having wrong security assumptions or realizability/efficiency issues. Finally, we give a compact and an up-to-date recipe of the correct use of pairings.Comment: 25 page

    Anonymous Single-Sign-On for n designated services with traceability

    Get PDF
    Anonymous Single-Sign-On authentication schemes have been proposed to allow users to access a service protected by a verifier without revealing their identity which has become more important due to the introduction of strong privacy regulations. In this paper we describe a new approach whereby anonymous authentication to different verifiers is achieved via authorisation tags and pseudonyms. The particular innovation of our scheme is authentication can only occur between a user and its designated verifier for a service, and the verification cannot be performed by any other verifier. The benefit of this authentication approach is that it prevents information leakage of a user's service access information, even if the verifiers for these services collude which each other. Our scheme also supports a trusted third party who is authorised to de-anonymise the user and reveal her whole services access information if required. Furthermore, our scheme is lightweight because it does not rely on attribute or policy-based signature schemes to enable access to multiple services. The scheme's security model is given together with a security proof, an implementation and a performance evaluation.Comment: 3

    Building Secure and Anonymous Communication Channel: Formal Model and its Prototype Implementation

    Full text link
    Various techniques need to be combined to realize anonymously authenticated communication. Cryptographic tools enable anonymous user authentication while anonymous communication protocols hide users' IP addresses from service providers. One simple approach for realizing anonymously authenticated communication is their simple combination, but this gives rise to another issue; how to build a secure channel. The current public key infrastructure cannot be used since the user's public key identifies the user. To cope with this issue, we propose a protocol that uses identity-based encryption for packet encryption without sacrificing anonymity, and group signature for anonymous user authentication. Communications in the protocol take place through proxy entities that conceal users' IP addresses from service providers. The underlying group signature is customized to meet our objective and improve its efficiency. We also introduce a proof-of-concept implementation to demonstrate the protocol's feasibility. We compare its performance to SSL communication and demonstrate its practicality, and conclude that the protocol realizes secure, anonymous, and authenticated communication between users and service providers with practical performance.Comment: This is a preprint version of our paper presented in SAC'14, March 24-28, 2014, Gyeongju, Korea. ACMSAC 201

    I2PA : An Efficient ABC for IoT

    Get PDF
    Internet of Things (IoT) is very attractive because of its promises. However, it brings many challenges, mainly issues about privacy preserving and lightweight cryptography. Many schemes have been designed so far but none of them simultaneously takes into account these aspects. In this paper, we propose an efficient ABC scheme for IoT devices. We use ECC without pairing, blind signing and zero knowledge proof. Our scheme supports block signing, selective disclosure and randomization. It provides data minimization and transactions' unlinkability. Our construction is efficient since smaller key size can be used and computing time can be reduced. As a result, it is a suitable solution for IoT devices characterized by three major constraints namely low energy power, small storage capacity and low computing power

    Shake well before use: Authentication based on Accelerometer Data

    Get PDF
    Small, mobile devices without user interfaces, such as Bluetooth headsets, often need to communicate securely over wireless networks. Active attacks can only be prevented by authenticating wireless communication, which is problematic when devices do not have any a priori information about each other. We introduce a new method for device-to-device authentication by shaking devices together. This paper describes two protocols for combining cryptographic authentication techniques with known methods of accelerometer data analysis to the effect of generating authenticated, secret keys. The protocols differ in their design, one being more conservative from a security point of view, while the other allows more dynamic interactions. Three experiments are used to optimize and validate our proposed authentication method

    A Light-Weight Group Signature Scheme for Wireless Networks Based-on BBS Short Group Signature

    Get PDF
    In the natural context of wireless network environment, the communications between wireless nodes are more easily observed for the goal of the network traffic analysis. Thus, to enable a secure and anonymous communication system from thwarting of such analysis attacks would be strongly desirable. In this paper, we propose a secure and anonymous communication system using pairing-based group signatures. The achievement of secure and anonymous communication is performed by allowing all valid member wireless nodes of a particular privilege group to authenticate each other without revealing their own identitie

    Introducing Accountability to Anonymity Networks

    Full text link
    Many anonymous communication (AC) networks rely on routing traffic through proxy nodes to obfuscate the originator of the traffic. Without an accountability mechanism, exit proxy nodes risk sanctions by law enforcement if users commit illegal actions through the AC network. We present BackRef, a generic mechanism for AC networks that provides practical repudiation for the proxy nodes by tracing back the selected outbound traffic to the predecessor node (but not in the forward direction) through a cryptographically verifiable chain. It also provides an option for full (or partial) traceability back to the entry node or even to the corresponding user when all intermediate nodes are cooperating. Moreover, to maintain a good balance between anonymity and accountability, the protocol incorporates whitelist directories at exit proxy nodes. BackRef offers improved deployability over the related work, and introduces a novel concept of pseudonymous signatures that may be of independent interest. We exemplify the utility of BackRef by integrating it into the onion routing (OR) protocol, and examine its deployability by considering several system-level aspects. We also present the security definitions for the BackRef system (namely, anonymity, backward traceability, no forward traceability, and no false accusation) and conduct a formal security analysis of the OR protocol with BackRef using ProVerif, an automated cryptographic protocol verifier, establishing the aforementioned security properties against a strong adversarial model

    On the efficiency of revocation in RSA-based anonymous systems

    Get PDF
    © 2016 IEEEThe problem of revocation in anonymous authentication systems is subtle and has motivated a lot of work. One of the preferable solutions consists in maintaining either a whitelist L-W of non-revoked users or a blacklist L-B of revoked users, and then requiring users to additionally prove, when authenticating themselves, that they are in L-W (membership proof) or that they are not in L-B (non-membership proof). Of course, these additional proofs must not break the anonymity properties of the system, so they must be zero-knowledge proofs, revealing nothing about the identity of the users. In this paper, we focus on the RSA-based setting, and we consider the case of non-membership proofs to blacklists L = L-B. The existing solutions for this setting rely on the use of universal dynamic accumulators; the underlying zero-knowledge proofs are bit complicated, and thus their efficiency; although being independent from the size of the blacklist L, seems to be improvable. Peng and Bao already tried to propose simpler and more efficient zero-knowledge proofs for this setting, but we prove in this paper that their protocol is not secure. We fix the problem by designing a new protocol, and formally proving its security properties. We then compare the efficiency of the new zero-knowledge non-membership protocol with that of the protocol, when they are integrated with anonymous authentication systems based on RSA (notably, the IBM product Idemix for anonymous credentials). We discuss for which values of the size k of the blacklist L, one protocol is preferable to the other one, and we propose different ways to combine and implement the two protocols.Postprint (author's final draft
    • 

    corecore