1,146 research outputs found

    Nonlinear cellular instabilities of planar premixed flames: numerical simulations of the Reactive Navier-Stokes equations

    Get PDF
    Two-dimensional compressible Reactive Navier-Stokes numerical simulations of intrinsic planar, premixed flame instabilities are performed. The initial growth of a sinusoidally perturbed planar flame is first compared with the predictions of a recent exact linear stability analysis, and it is shown the analysis provides a necessary but not sufficient test problem for validating numerical schemes intended for flame simulations. The long-time nonlinear evolution up to the final nonlinear stationary cellular flame is then examined for numerical domains of increasing width. It is shown that for routinely computationally affordable domain widths, the evolution and final state is, in general, entirely dependent on the width of the domain and choice of numerical boundary conditions. It is also shown that the linear analysis has no relevance to the final nonlinear cell size. When both hydrodynamic and thermal-diffusive effects are important, the evolution consists of a number of symmetry breaking cell splitting and re-merging processes which results in a stationary state of a single very asymmetric cell in the domain, a flame shape which is not predicted by weakly nonlinear evolution equations. Resolution studies are performed and it is found that lower numerical resolutions, typical of those used in previous works, do not give even the qualitatively correct solution in wide domains. We also show that the long-time evolution, including whether or not a stationary state is ever achieved, depends on the choice of the numerical boundary conditions at the inflow and outflow boundaries, and on the numerical domain length and flame Mach number for the types of boundary conditions used in some previous works

    Biscale Chaos in Propagating Fronts

    Full text link
    The propagating chemical fronts found in cubic autocatalytic reaction-diffusion processes are studied. Simulations of the reaction-diffusion equation near to and far from the onset of the front instability are performed and the structure and dynamics of chemical fronts are studied. Qualitatively different front dynamics are observed in these two regimes. Close to onset the front dynamics can be characterized by a single length scale and described by the Kuramoto-Sivashinsky equation. Far from onset the front dynamics exhibits two characteristic lengths and cannot be modeled by this amplitude equation. An amplitude equation is proposed for this biscale chaos. The reduction of the cubic autocatalysis reaction-diffusion equation to the Kuramoto-Sivashinsky equation is explicitly carried out. The critical diffusion ratio delta, where the planar front loses its stability to transverse perturbations, is determined and found to be delta=2.300.Comment: Typeset using RevTeX, fig.1 and fig.4 are not available, mpeg simulations are at http://www.chem.utoronto.ca/staff/REK/Videos/front/front.htm

    Solving periodic semilinear stiff PDEs in 1D, 2D and 3D with exponential integrators

    Get PDF
    Dozens of exponential integration formulas have been proposed for the high-accuracy solution of stiff PDEs such as the Allen-Cahn, Korteweg-de Vries and Ginzburg-Landau equations. We report the results of extensive comparisons in MATLAB and Chebfun of such formulas in 1D, 2D and 3D, focusing on fourth and higher order methods, and periodic semilinear stiff PDEs with constant coefficients. Our conclusion is that it is hard to do much better than one of the simplest of these formulas, the ETDRK4 scheme of Cox and Matthews

    Accurately model the Kuramoto--Sivashinsky dynamics with holistic discretisation

    Get PDF
    We analyse the nonlinear Kuramoto--Sivashinsky equation to develop accurate discretisations modeling its dynamics on coarse grids. The analysis is based upon centre manifold theory so we are assured that the discretisation accurately models the dynamics and may be constructed systematically. The theory is applied after dividing the physical domain into small elements by introducing isolating internal boundaries which are later removed. Comprehensive numerical solutions and simulations show that the holistic discretisations excellently reproduce the steady states and the dynamics of the Kuramoto--Sivashinsky equation. The Kuramoto--Sivashinsky equation is used as an example to show how holistic discretisation may be successfully applied to fourth order, nonlinear, spatio-temporal dynamical systems. This novel centre manifold approach is holistic in the sense that it treats the dynamical equations as a whole, not just as the sum of separate terms.Comment: Without figures. See http://www.sci.usq.edu.au/staff/aroberts/ksdoc.pdf to download a version with the figure
    corecore