1,279 research outputs found

    A numerical procedure for recovering true scattering coefficients from measurements with wide-beam antennas

    Get PDF
    A numerical procedure for estimating the true scattering coefficient, sigma(sup 0), from measurements made using wide-beam antennas. The use of wide-beam antennas results in an inaccurate estimate of sigma(sup 0) if the narrow-beam approximation is used in the retrieval process for sigma(sup 0). To reduce this error, a correction procedure was proposed that estimates the error resulting from the narrow-beam approximation and uses the error to obtain a more accurate estimate of sigma(sup 0). An exponential model was assumed to take into account the variation of sigma(sup 0) with incidence angles, and the model parameters are estimated from measured data. Based on the model and knowledge of the antenna pattern, the procedure calculates the error due to the narrow-beam approximation. The procedure is shown to provide a significant improvement in estimation of sigma(sup 0) obtained with wide-beam antennas. The proposed procedure is also shown insensitive to the assumed sigma(sup 0) model

    A non-Hilbertian inversion technique for the diagnosis of faulty elements in antenna arrays

    Get PDF
    Nowadays, antenna arrays are important tools adopted in a great number of applications including radar, mobile and satellite communication systems, and electromagnetic imaging. Moreover, in these applications, arrays with a high number of elements are ever more requested, which results in a growing possibility of damages in the array. The identification of defective components in array of antennas is really significant due to their applicative use: indeed, faulty detected elements can be fixed, thus avoiding to replace the whole antenna. In this work, a diagnostic technique for planar antenna arrays is presented. This approach enables recovering the eventually defective elements of the antenna under test using far-field data. To this end, an inversion approach established outside the standard context of Hilbertian spaces is used to address an inverse-source problem. A numerical validation concerning simple array antennas has been carried out to study the performances of the approach versus some antenna parameters, e.g., the size of the array

    Analysis and Measurement of Horn Antennas for CMB Experiments

    Get PDF
    In this thesis the author's work on the computational modelling and the experimental measurement of millimetre and sub-millimetre wave horn antennas for Cosmic Microwave Background (CMB) experiments is presented. This computational work particularly concerns the analysis of the multimode channels of the High Frequency Instrument (HFI) of the European Space Agency (ESA) Planck satellite using mode matching techniques to model their farfield beam patterns. To undertake this analysis the existing in-house software was upgraded to address issues associated with the stability of the simulations and to introduce additional functionality through the application of Single Value Decomposition in order to recover the true hybrid eigenfields for complex corrugated waveguide and horn structures. The farfield beam patterns of the two highest frequency channels of HFI (857 GHz and 545 GHz) were computed at a large number of spot frequencies across their operational bands in order to extract the broadband beams. The attributes of the multimode nature of these channels are discussed including the number of propagating modes as a function of frequency. A detailed analysis of the possible effects of manufacturing tolerances of the long corrugated triple horn structures on the farfield beam patterns of the 857 GHz horn antennas is described in the context of the higher than expected sidelobe levels detected in some of the 857 GHz channels during flight. Additionally the pre-flight measurements of the flight horns and qualification horn are analysed in detail which verifies the multimode nature of the horns. This computational work is complemented by a novel approach to the measurement of millimetre-wave antennas using digital holographic techniques particularly with the location of their phase centres in mind. The measurement at 100 GHz of a horn antenna specially designed for future CMB polarisation experiments is presented. Finally some additional applications of millimetre-wave holography are discussed

    Microwave Measurement of the Wind Vector over Sea by Airborne Radars

    Get PDF

    Aeronautical Engineering: A special bibliography with indexes, supplement 51

    Get PDF
    This bibliography lists 206 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in November 1974

    Full-wave Nonlinear Inverse Scattering for Acoustic and Electromagnetic Breast Imaging.

    Full text link
    Acoustic and electromagnetic full-wave nonlinear inverse scattering techniques are explored in both theory and experiment with the ultimate aim of noninvasively mapping the material properties of the breast. There is evidence that benign and malignant breast tissue have different acoustic and electrical properties and imaging these properties directly could provide higher quality images with better diagnostic certainty. In this dissertation, acoustic and electromagnetic inverse scattering algorithms are first developed and validated in simulation. The forward solvers and optimization cost functions are modified from traditional forms in order to handle the large or lossy imaging scenes present in ultrasonic and microwave breast imaging. An antenna model is then presented, modified, and experimentally validated for microwave S-parameter measurements. Using the antenna model, a new electromagnetic volume integral equation is derived in order to link the material properties of the inverse scattering algorithms to microwave S-parameters measurements allowing direct comparison of model predictions and measurements in the imaging algorithms. This volume integral equation is validated with several experiments and used as the basis of a free-space inverse scattering experiment, where images of the dielectric properties of plastic objects are formed without the use of calibration targets. These efforts are used as the foundation of a solution and formulation for the numerical characterization of a microwave near-field cavity-based breast imaging system. The system is constructed and imaging results of simple targets are given. Finally, the same techniques are used to explore a new self-characterization method for commercial ultrasound probes. The method is used to calibrate an ultrasound inverse scattering experiment and imaging results of simple targets are presented. This work has demonstrated the feasibility of quantitative microwave inverse scattering by way of a self-consistent characterization formalism, and has made headway in the same area for ultrasound.Ph.D.Applied PhysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91585/1/mshaynes_1.pd

    The recovery of microwave scattering parameters from scatterometric measurements with special application to the sea

    Get PDF
    As part of an effort to demonstrate the value of the microwave scatterometer as a remote sea wind sensor, the interaction between an arbitrarily polarized scatterometer antenna and a noncoherent distributive target was derived and applied to develop a measuring technique to recover all the scattering parameters. The results are helpful for specifying antenna polarization properties for accurate retrieval of the parameters not only for the sea but also for other distributive scenes
    • …
    corecore