3,219 research outputs found

    A Bound on Mixing Efficiency for the Advection-Diffusion Equation

    Full text link
    An upper bound on the mixing efficiency is derived for a passive scalar under the influence of advection and diffusion with a body source. For a given stirring velocity field, the mixing efficiency is measured in terms of an equivalent diffusivity, which is the molecular diffusivity that would be required to achieve the same level of fluctuations in the scalar concentration in the absence of stirring, for the same source distribution. The bound on the equivalent diffusivity depends only on the functional "shape" of both the source and the advecting field. Direct numerical simulations performed for a simple advecting flow to test the bounds are reported.Comment: 10 pages, 2 figures, JFM format (included

    Stirring up trouble: Multi-scale mixing measures for steady scalar sources

    Full text link
    The mixing efficiency of a flow advecting a passive scalar sustained by steady sources and sinks is naturally defined in terms of the suppression of bulk scalar variance in the presence of stirring, relative to the variance in the absence of stirring. These variances can be weighted at various spatial scales, leading to a family of multi-scale mixing measures and efficiencies. We derive a priori estimates on these efficiencies from the advection--diffusion partial differential equation, focusing on a broad class of statistically homogeneous and isotropic incompressible flows. The analysis produces bounds on the mixing efficiencies in terms of the Peclet number, a measure the strength of the stirring relative to molecular diffusion. We show by example that the estimates are sharp for particular source, sink and flow combinations. In general the high-Peclet number behavior of the bounds (scaling exponents as well as prefactors) depends on the structure and smoothness properties of, and length scales in, the scalar source and sink distribution. The fundamental model of the stirring of a monochromatic source/sink combination by the random sine flow is investigated in detail via direct numerical simulation and analysis. The large-scale mixing efficiency follows the upper bound scaling (within a logarithm) at high Peclet number but the intermediate and small-scale efficiencies are qualitatively less than optimal. The Peclet number scaling exponents of the efficiencies observed in the simulations are deduced theoretically from the asymptotic solution of an internal layer problem arising in a quasi-static model.Comment: 37 pages, 7 figures. Latex with RevTeX4. Corrigendum to published version added as appendix

    Optimal feeding is optimal swimming for all P\'eclet numbers

    Full text link
    Cells swimming in viscous fluids create flow fields which influence the transport of relevant nutrients, and therefore their feeding rate. We propose a modeling approach to the problem of optimal feeding at zero Reynolds number. We consider a simplified spherical swimmer deforming its shape tangentially in a steady fashion (so-called squirmer). Assuming that the nutrient is a passive scalar obeying an advection-diffusion equation, the optimal use of flow fields by the swimmer for feeding is determined by maximizing the diffusive flux at the organism surface for a fixed rate of energy dissipation in the fluid. The results are obtained through the use of an adjoint-based numerical optimization implemented by a Legendre polynomial spectral method. We show that, to within a negligible amount, the optimal feeding mechanism consists in putting all the energy expended by surface distortion into swimming - so-called treadmill motion - which is also the solution maximizing the swimming efficiency. Surprisingly, although the rate of feeding depends strongly on the value of the P\'eclet number, the optimal feeding stroke is shown to be essentially independent of it, which is confirmed by asymptotic analysis. Within the context of steady actuation, optimal feeding is therefore found to be equivalent to optimal swimming for all P\'eclet numbers.Comment: 14 pages, 6 figures, to appear in Physics of Fluid

    Mathematical modeling of the dissolution process of silicon into germanium melt

    Get PDF
    Numerical simulations were carried out to study the thermosolutal and flow structures observed in the dissolution experiments of silicon into a germanium melt. The dissolution experiments utilized a material configuration similar to that used in the Liquid Phase Diffusion (LPD) and Melt-Replenishment Czochralski (Cz) crystal growth systems. In the present model, the computational domain was assumed axisymmetric. Governing equations of the liquid phase (Si-Ge mixture), namely the equations of conservation of mass, momentum balance, energy balance, and solute (species) transport balance were solved using the Stabilized Finite Element Methods (ST-GLS for fluid flow, SUPG for heat and solute transport). Measured concentration profiles and dissolution height from the samples processed with and without the application of magnetic field show that the amount of silicon transported into the melt is slightly higher in the samples processed under magnetic field, and there is a difference in dissolution interface shape indicating a change in the flow structure during the dissolution process. The present mathematical model predicts this difference in the flow structure. In the absence of magnetic field, a flat stable interface is observed. In the presence of an applied field, however, the dissolution interface remains flat in the center but curves back into the source material near the edge of the wall. This indicates a far higher dissolution rate at the edge of the silicon source.We gratefully acknowledge the financial support provided by the Canadian Space Agency (CSA), Canada Research Chairs (CRC) Program, and the Natural Sciences and Engineering Research Council (NSERC) of Canada.Publisher's Versio

    Solute transport within porous biofilms: diffusion or dispersion?

    Get PDF
    Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behaviour by controllling nutrient supply, evacuation of waste products and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilmscale. We show that solute transport may be described via two coupled partial differential equations for the averaged concentrations, or telegrapher’s equations. These models are particularly relevant for chemical species, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterised by a second-order tensor whose components depend on: (1) the topology of the channels’ network; (2) the solute’s diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion-dominated, this analysis shows that dispersion effects may significantly contribute to transport
    corecore