21 research outputs found

    Deformation of a flexible fiber in a viscous flow past an obstacle

    Get PDF
    We study the deformation and transport of elastic fibers in a viscous Hele-Shaw flow with curved streamlines. The variations of the global velocity and orientation of the fiber follow closely those of the local flow velocity. The ratios of the curvatures of the fibers by the corresponding curvatures of the streamlines reflect a balance between elastic and viscous forces: this ratio is shown experimentally to be determined by a dimensionless {\it Sperm number} SpSp combining the characteristic parameters of the flow (transverse velocity gradient, viscosity, fiber diameter/cell gap ratio) and those of the fiber (diameter, effective length, Young's modulus). For short fibers, the effective length is that of the fiber; for long ones, it is equal to the transverse characteristic length of the flow. For S_p≲250S\_p \lesssim 250, the ratio of the curvatures increases linearly with SpSp; For S_p≳250S\_p \gtrsim 250, the fiber reaches the same curvature as the streamlines

    A novel approach to rigid spheroid models in viscous flows using operator splitting methods

    Full text link
    Calculating cost-effective solutions to particle dynamics in viscous flows is an important problem in many areas of industry and nature. We implement a second-order symmetric splitting method on the governing equations for a rigid spheroidal particle model with torques, drag and gravity. The method splits the operators into a vector field that is conservative and one that takes into account the forces of the fluid. Error analysis and numerical tests are performed on perturbed and stiff particle-fluid systems. For the perturbed case, the splitting method greatly improves the solution accuracy, when compared to a conventional multi-step method, and the global error behaves as O(εh2)\mathcal{O}(\varepsilon h^2) for roughly equal computational cost. For stiff systems, we show that the splitting method retains stability in regimes where conventional methods blow up. In addition, we show through numerical experiments that the global order is reduced from O(h2/ε)\mathcal{O}(h^2/\varepsilon) in the non-stiff regime to O(h)\mathcal{O}(h) in the stiff regime.Comment: 24 pages, 6 figures (13 if you count sub figs), all figures are in colou

    Large-scale simulation of steady and time-dependent active suspensions with the force-coupling method

    Full text link
    We present a new development of the force-coupling method (FCM) to address the accurate simulation of a large number of interacting micro-swimmers. Our approach is based on the squirmer model, which we adapt to the FCM framework, resulting in a method that is suitable for simulating semi-dilute squirmer suspensions. Other effects, such as steric interactions, are considered with our model. We test our method by comparing the velocity field around a single squirmer and the pairwise interactions between two squirmers with exact solutions to the Stokes equations and results given by other numerical methods. We also illustrate our method's ability to describe spheroidal swimmer shapes and biologically-relevant time-dependent swimming gaits. We detail the numerical algorithm used to compute the hydrodynamic coupling between a large collection (104−10510^4-10 ^5) of micro-swimmers. Using this methodology, we investigate the emergence of polar order in a suspension of squirmers and show that for large domains, both the steady-state polar order parameter and the growth rate of instability are independent of system size. These results demonstrate the effectiveness of our approach to achieve near continuum-level results, allowing for better comparison with experimental measurements while complementing and informing continuum models.Comment: 37 pages, 21 figure

    Fast and spectrally accurate summation of 2-periodic Stokes potentials

    Full text link
    We derive a Ewald decomposition for the Stokeslet in planar periodicity and a novel PME-type O(N log N) method for the fast evaluation of the resulting sums. The decomposition is the natural 2P counterpart to the classical 3P decomposition by Hasimoto, and is given in an explicit form not found in the literature. Truncation error estimates are provided to aid in selecting parameters. The fast, PME-type, method appears to be the first fast method for computing Stokeslet Ewald sums in planar periodicity, and has three attractive properties: it is spectrally accurate; it uses the minimal amount of memory that a gridded Ewald method can use; and provides clarity regarding numerical errors and how to choose parameters. Analytical and numerical results are give to support this. We explore the practicalities of the proposed method, and survey the computational issues involved in applying it to 2-periodic boundary integral Stokes problems

    Aerodynamics of long fibres settling in air at 10<Re<100

    Get PDF
    The aerodynamics of long aspect ratio nylon fibrous particles has been investigated experimentally whilst settling in air under super dilute conditions without any influence of secondary flows and at fibre Reynolds numbers of 10–100 based on fibre length. Measurement of the orientations and velocities of fibrous particles is undertaken by two-dimensional Particle Tracking Velocimetry (PTV), based on the two end-points. A statistical evaluation of fibres' mean vertical and horizontal components of settling velocities, angular velocity, orientation, number density is presented and used to assess particle aerodynamics.Guo Q. Qi, Graham J. Nathan, Richard M. Kels

    Large-scale simulation of steady and time-dependent active suspensions with the force-coupling method

    Get PDF
    We present a new development of the force-coupling method (FCM) to address the accurate simulation of a large number of interacting micro-swimmers. Our approach is based on the squirmer model, which we adapt to the FCM framework, resulting in a method that is suitable for simulating semi-dilute squirmer suspensions. Other effects, such as steric interactions, are considered with our model. We test our method by comparing the velocity field around a single squirmer and the pairwise interactions between two squirmers with exact solutions to the Stokes equations and results given by other numerical methods. We also illustrate our method’s ability to describe spheroidal swimmer shapes and biologically-relevant time-dependent swimming gaits. We detail the numerical algorithm used to compute the hydrodynamic coupling between a large collection (10^4–10^5) of micro-swimmers. Using this methodology, we investigate the emergence of polar order in a suspension of squirmers and show that for large domains, both the steady-state polar order parameter and the growth rate of instability are independent of system size. These results demonstrate the effectiveness of our approach to achieve near continuum-level results, allowing for better comparison with experimental measurements while complementing and informing continuum models

    Methods for suspensions of passive and active filaments

    Full text link
    Flexible filaments and fibres are essential components of important complex fluids that appear in many biological and industrial settings. Direct simulations of these systems that capture the motion and deformation of many immersed filaments in suspension remain a formidable computational challenge due to the complex, coupled fluid--structure interactions of all filaments, the numerical stiffness associated with filament bending, and the various constraints that must be maintained as the filaments deform. In this paper, we address these challenges by describing filament kinematics using quaternions to resolve both bending and twisting, applying implicit time-integration to alleviate numerical stiffness, and using quasi-Newton methods to obtain solutions to the resulting system of nonlinear equations. In particular, we employ geometric time integration to ensure that the quaternions remain unit as the filaments move. We also show that our framework can be used with a variety of models and methods, including matrix-free fast methods, that resolve low Reynolds number hydrodynamic interactions. We provide a series of tests and example simulations to demonstrate the performance and possible applications of our method. Finally, we provide a link to a MATLAB/Octave implementation of our framework that can be used to learn more about our approach and as a tool for filament simulation
    corecore