7 research outputs found

    On the Motion of Spikes: Turbulent-Like Neuronal Activity in the Human Basal Ganglia

    Get PDF
    Neuronal signals are usually characterized in terms of their discharge rate, a description inadequate to account for the complex temporal organization of spike trains. Complex temporal properties, which are characteristic of neuronal systems, can only be described with the appropriate, complex mathematical tools. Here, I apply high order structure functions to the analysis of neuronal signals recorded from parkinsonian patients during functional neurosurgery, recovering multifractal properties. To achieve an accurate model of such multifractality is critical for understanding the basal ganglia, since other non-linear properties, such as entropy, depend on the fractal properties of complex systems. I propose a new approach to the study of neuronal signals: to study spiking activity in terms of the velocity of spikes, defining it as the inverse function of the instantaneous frequency. I introduce a neural field model that includes a non-linear gradient field, representing neuronal excitability, and a diffusive term to consider the physical properties of the electric field. Multifractality is present in the model for a range of diffusion coefficients, and multifractal temporal properties are mirrored into space. The model reproduces the behavior of human basal ganglia neurons and shows that it is like that of turbulent fluids. The results obtained from the model predict that passive electric properties of neuronal activity, including ephaptic coupling, are far more relevant to the human brain than what is usually considered: passive electric properties determine the temporal and spatial organization of neuronal activity in the neural tissue

    Numerical solution of turbulence problems by solving Burgers' equation

    Full text link
    In this work we generate the numerical solutions of Burgers' equation by applying the Crank-Nicholson method and different schemes for solving nonlinear systems, instead of using Hopf-Cole transformation to reduce Burgers' equation into the linear heat equation. The method is analyzed on two test problems in order to check its efficiency on different kinds of initial conditions. Numerical solutions as well as exact solutions for different values of viscosity are calculated, concluding that the numerical results are very close to the exact solution.Cordero Barbero, A.; Franqués García, AM.; Torregrosa Sánchez, JR. (2015). Numerical solution of turbulence problems by solving Burgers' equation. Algorithms. 8(2):224-233. doi:10.3390/a8020224S22423382Lowrie, R. B. (2004). A comparison of implicit time integration methods for nonlinear relaxation and diffusion. Journal of Computational Physics, 196(2), 566-590. doi:10.1016/j.jcp.2003.11.016An, H.-B., Mo, Z.-Y., Xu, X.-W., & Liu, X. (2009). On choosing a nonlinear initial iterate for solving the 2-D 3-T heat conduction equations. Journal of Computational Physics, 228(9), 3268-3287. doi:10.1016/j.jcp.2009.01.024Bruns, D. D., & Bailey, J. E. (1977). Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chemical Engineering Science, 32(3), 257-264. doi:10.1016/0009-2509(77)80203-0Willert, J., Park, H., & Knoll, D. A. (2014). A comparison of acceleration methods for solving the neutron transport k -eigenvalue problem. Journal of Computational Physics, 274, 681-694. doi:10.1016/j.jcp.2014.06.044Andreu, C., Cambil, N., Cordero, A., & Torregrosa, J. R. (2013). Preliminary Orbit Determination of Artificial Satellites: A Vectorial Sixth-Order Approach. Abstract and Applied Analysis, 2013, 1-10. doi:10.1155/2013/960582Kadalbajoo, M. K., & Awasthi, A. (2006). A numerical method based on Crank-Nicolson scheme for Burgers’ equation. Applied Mathematics and Computation, 182(2), 1430-1442. doi:10.1016/j.amc.2006.05.030Hassanien, I. A., Salama, A. A., & Hosham, H. A. (2005). Fourth-order finite difference method for solving Burgers’ equation. Applied Mathematics and Computation, 170(2), 781-800. doi:10.1016/j.amc.2004.12.052Wani, S. S., & Thakar, S. H. (2013). Crank-Nicolson Type Method for Burgers Equation. International Journal of Applied Physics and Mathematics, 324-328. doi:10.7763/ijapm.2013.v3.230Arroyo, V., Cordero, A., & Torregrosa, J. R. (2011). Approximation of artificial satellites’ preliminary orbits: The efficiency challenge. Mathematical and Computer Modelling, 54(7-8), 1802-1807. doi:10.1016/j.mcm.2010.11.063Mittal, R. C., & Singhal, P. (1993). Numerical solution of Burger’s equation. Communications in Numerical Methods in Engineering, 9(5), 397-406. doi:10.1002/cnm.164009050

    A high-order compact finite difference scheme and precise integration method based on modified Hopf-Cole transformation for numerical simulation of n-dimensional Burgers' system

    Full text link
    This paper introduces a modification of n-dimensional Hopf-Cole transformation to the n-dimensional Burgers' system. We obtain the n-dimensional heat conduction equation through the modification of the Hopf-Cole transformation. Then the high-order exponential time differencing precise integration method (PIM) based on fourth-order Taylor approximation in combination with a spatially global sixth-order compact finite difference (CFD) scheme is presented to solve the equation with high accuracy. Moreover, coupling with the Strang splitting method, the scheme is extended to multi-dimensional (two,three-dimensional) Burgers' system, which also possesses high computational efficiency and accuracy. Several numerical examples verify the performance and capability of the proposed scheme. Numerical results show that the proposed method appreciably improves the computational accuracy compared with the existing numerical method. In addition, the two-dimensional and three-dimensional examples demonstrate excellent adaptability, and the numerical simulation results also have very high accuracy in medium Reynolds numbers

    Wavelet Methods for the Solutions of Partial and Fractional Differential Equations Arising in Physical Problems

    Get PDF
    The subject of fractional calculus has gained considerable popularity and importance during the past three decades or so, mainly due to its demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering. It deals with derivatives and integrals of arbitrary orders. The fractional derivative has been occurring in many physical problems, such as frequency-dependent damping behavior of materials, motion of a large thin plate in a Newtonian fluid, creep and relaxation functions for viscoelastic materials, the PI D controller for the control of dynamical systems etc. Phenomena in electromagnetics, acoustics, viscoelasticity, electrochemistry, control theory, neutron point kinetic model, anomalous diffusion, Brownian motion, signal and image processing, fluid dynamics and material science are well described by differential equations of fractional order. Generally, nonlinear partial differential equations of fractional order are difficult to solve. So for the last few decades, a great deal of attention has been directed towards the solution (both exact and numerical) of these problems. The aim of this dissertation is to present an extensive study of different wavelet methods for obtaining numerical solutions of mathematical problems occurring in disciplines of science and engineering. This present work also provides a comprehensive foundation of different wavelet methods comprising Haar wavelet method, Legendre wavelet method, Legendre multi-wavelet methods, Chebyshev wavelet method, Hermite wavelet method and Petrov-Galerkin method. The intension is to examine the accuracy of various wavelet methods and their efficiency for solving nonlinear fractional differential equations. With the widespread applications of wavelet methods for solving difficult problems in diverse fields of science and engineering such as wave propagation, data compression, image processing, pattern recognition, computer graphics and in medical technology, these methods have been implemented to develop accurate and fast algorithms for solving integral, differential and integro-differential equations, especially those whose solutions are highly localized in position and scale. The main feature of wavelets is its ability to convert the given differential and integral equations to a system of linear or nonlinear algebraic equations, which can be solved by numerical methods. Therefore, our main focus in the present work is to analyze the application of wavelet based transform methods for solving the problem of fractional order partial differential equations. The introductory concept of wavelet, wavelet transform and multi-resolution analysis (MRA) have been discussed in the preliminary chapter. The basic idea of various analytical and numerical methods viz. Variational Iteration Method (VIM), Homotopy Perturbation Method (HPM), Homotopy Analysis Method (HAM), First Integral Method (FIM), Optimal Homotopy Asymptotic Method (OHAM), Haar Wavelet Method, Legendre Wavelet Method, Chebyshev Wavelet Method and Hermite Wavelet Method have been presented in chapter 1. In chapter 2, we have considered both analytical and numerical approach for solving some particular nonlinear partial differential equations like Burgers’ equation, modified Burgers’ equation, Huxley equation, Burgers-Huxley equation and modified KdV equation, which have a wide variety of applications in physical models. Variational Iteration Method and Haar wavelet Method are applied to obtain the analytical and numerical approximate solution of Huxley and Burgers-Huxley equations. Comparisons between analytical solution and numerical solution have been cited in tables and also graphically. The Haar wavelet method has also been applied to solve Burgers’, modified Burgers’, and modified KdV equations numerically. The results thus obtained are compared with exact solutions as well as solutions available in open literature. Error of collocation method has been presented in this chapter. Methods like Homotopy Perturbation Method (HPM) and Optimal Homotopy Asymptotic Method (OHAM) are very powerful and efficient techniques for solving nonlinear PDEs. Using these methods, many functional equations such as ordinary, partial differential equations and integral equations have been solved. We have implemented HPM and OHAM in chapter 3, in order to obtain the analytical approximate solutions of system of nonlinear partial differential equation viz. the Boussinesq-Burgers’ equations. Also, the Haar wavelet method has been applied to obtain the numerical solution of BoussinesqBurgers’ equations. Also, the convergence of HPM and OHAM has been discussed in this chapter. The mathematical modeling and simulation of systems and processes, based on the description of their properties in terms of fractional derivatives, naturally leads to differential equations of fractional order and the necessity to solve such equations. The mathematical preliminaries of fractional calculus, definitions and theorems have been presented in chapter 4. Next, in this chapter, the Haar wavelet method has been analyzed for solving fractional differential equations. The time-fractional Burgers-Fisher, generalized Fisher type equations, nonlinear time- and space-fractional Fokker-Planck equations have been solved by using two-dimensional Haar wavelet method. The obtained results are compared with the Optimal Homotopy Asymptotic Method (OHAM), the exact solutions and the results available in open literature. Comparison of obtained results with OHAM, Adomian Decomposition Method (ADM), VIM and Operational Tau Method (OTM) has been demonstrated in order to justify the accuracy and efficiency of the proposed schemes. The convergence of two-dimensional Haar wavelet technique has been provided at the end of this chapter. In chapter 5, the fractional differential equations such as KdV-Burger-Kuramoto (KBK) equation, seventh order KdV (sKdV) equation and Kaup-Kupershmidt (KK) equation have been solved by using two-dimensional Legendre wavelet and Legendre multi-wavelet methods. The main focus of this chapter is the application of two-dimensional Legendre wavelet technique for solving nonlinear fractional differential equations like timefractional KBK equation, time-fractional sKdV equation in order to demonstrate the efficiency and accuracy of the proposed wavelet method. Similarly in chapter 6, twodimensional Chebyshev wavelet method has been implemented to obtain the numerical solutions of the time-fractional Sawada-Kotera equation, fractional order Camassa-Holm equation and Riesz space-fractional sine-Gordon equations. The convergence analysis has been done for these wavelet methods. In chapter 7, the solitary wave solution of fractional modified Fornberg-Whitham equation has been attained by using first integral method and also the approximate solutions obtained by optimal homotopy asymptotic method (OHAM) are compared with the exact solutions acquired by first integral method. Also, the Hermite wavelet method has been implemented to obtain approximate solutions of fractional modified Fornberg-Whitham equation. The Hermite wavelet method is implemented to system of nonlinear fractional differential equations viz. the fractional Jaulent-Miodek equations. Convergence of this wavelet methods has been discussed in this chapter. Chapter 8 emphasizes on the application of Petrov-Galerkin method for solving the fractional differential equations such as the fractional KdV-Burgers’ (KdVB) equation and the fractional Sharma-TassoOlver equation with a view to exhibit the capabilities of this method in handling nonlinear equation. The main objective of this chapter is to establish the efficiency and accuracy of Petrov-Galerkin method in solving fractional differential equtaions numerically by implementing a linear hat function as the trial function and a quintic B-spline function as the test function. Various wavelet methods have been successfully employed to numerous partial and fractional differential equations in order to demonstrate the validity and accuracy of these procedures. Analyzing the numerical results, it can be concluded that the wavelet methods provide worthy numerical solutions for both classical and fractional order partial differential equations. Finally, it is worthwhile to mention that the proposed wavelet methods are promising and powerful methods for solving fractional differential equations in mathematical physics. This work also aimed at, to make this subject popular and acceptable to engineering and science community to appreciate the universe of wonderful mathematics, which is in between classical integer order differentiation and integration, which till now is not much acknowledged, and is hidden from scientists and engineers. Therefore, our goal is to encourage the reader to appreciate the beauty as well as the usefulness of these numerical wavelet based techniques in the study of nonlinear physical system
    corecore