2,007 research outputs found

    Statistics of non-linear stochastic dynamical systems under L\'evy noises by a convolution quadrature approach

    Full text link
    This paper describes a novel numerical approach to find the statistics of the non-stationary response of scalar non-linear systems excited by L\'evy white noises. The proposed numerical procedure relies on the introduction of an integral transform of Wiener-Hopf type into the equation governing the characteristic function. Once this equation is rewritten as partial integro-differential equation, it is then solved by applying the method of convolution quadrature originally proposed by Lubich, here extended to deal with this particular integral transform. The proposed approach is relevant for two reasons: 1) Statistics of systems with several different drift terms can be handled in an efficient way, independently from the kind of white noise; 2) The particular form of Wiener-Hopf integral transform and its numerical evaluation, both introduced in this study, are generalizations of fractional integro-differential operators of potential type and Gr\"unwald-Letnikov fractional derivatives, respectively.Comment: 20 pages, 5 figure

    Molecular theory of anomalous diffusion

    Full text link
    We present a Master Equation formulation based on a Markovian random walk model that exhibits sub-diffusion, classical diffusion and super-diffusion as a function of a single parameter. The non-classical diffusive behavior is generated by allowing for interactions between a population of walkers. At the macroscopic level, this gives rise to a nonlinear Fokker-Planck equation. The diffusive behavior is reflected not only in the mean-squared displacement (∌tÎł\sim t^{\gamma} with 0<γ≀1.50 <\gamma \leq 1.5) but also in the existence of self-similar scaling solutions of the Fokker-Planck equation. We give a physical interpretation of sub- and super-diffusion in terms of the attractive and repulsive interactions between the diffusing particles and we discuss analytically the limiting values of the exponent Îł\gamma. Simulations based on the Master Equation are shown to be in agreement with the analytical solutions of the nonlinear Fokker-Planck equation in all three diffusion regimes.Comment: Published text with additional comment

    Fractional Fokker-Planck dynamics: Numerical algorithm and simulations

    Get PDF
    Anomalous transport in a tilted periodic potential is investigated numerically within the framework of the fractional Fokker-Planck dynamics via the underlying CTRW. An efficient numerical algorithm is developed which is applicable for an arbitrary potential. This algorithm is then applied to investigate the fractional current and the corresponding nonlinear mobility in different washboard potentials. Normal and fractional diffusion are compared through their time evolution of the probability density in state space. Moreover, we discuss the stationary probability density of the fractional current values.Comment: 10 pages, 9 figure

    Levy Anomalous Diffusion and Fractional Fokker--Planck Equation

    Full text link
    We demonstrate that the Fokker-Planck equation can be generalized into a 'Fractional Fokker-Planck' equation, i.e. an equation which includes fractional space differentiations, in order to encompass the wide class of anomalous diffusions due to a Levy stable stochastic forcing. A precise determination of this equation is obtained by substituting a Levy stable source to the classical gaussian one in the Langevin equation. This yields not only the anomalous diffusion coefficient, but a non trivial fractional operator which corresponds to the possible asymmetry of the Levy stable source. Both of them cannot be obtained by scaling arguments. The (mono-) scaling behaviors of the Fractional Fokker-Planck equation and of its solutions are analysed and a generalization of the Einstein relation for the anomalous diffusion coefficient is obtained. This generalization yields a straightforward physical interpretation of the parameters of Levy stable distributions. Furthermore, with the help of important examples, we show the applicability of the Fractional Fokker-Planck equation in physics.Comment: 22 pages; To Appear in Physica

    Non-Linear Langevin and Fractional Fokker-Planck Equations for Anomalous Diffusion by Levy Stable Processes

    Get PDF
    The~numerical solutions to a non-linear Fractional Fokker--Planck (FFP) equation are studied estimating the generalized diffusion coefficients. The~aim is to model anomalous diffusion using an FFP description with fractional velocity derivatives and Langevin dynamics where L\'{e}vy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space. Distribution functions are found using numerical means for varying degrees of fractionality of the stable L\'{e}vy distribution as solutions to the FFP equation. The~statistical properties of the distribution functions are assessed by a generalized normalized expectation measure and entropy and modified transport coefficient. The~transport coefficient significantly increases with decreasing fractality which is corroborated by analysis of experimental data.Comment: 20 pages 7 figure
    • 

    corecore