1,297 research outputs found

    AReS and MaRS - Adversarial and MMD-Minimizing Regression for SDEs

    Full text link
    Stochastic differential equations are an important modeling class in many disciplines. Consequently, there exist many methods relying on various discretization and numerical integration schemes. In this paper, we propose a novel, probabilistic model for estimating the drift and diffusion given noisy observations of the underlying stochastic system. Using state-of-the-art adversarial and moment matching inference techniques, we avoid the discretization schemes of classical approaches. This leads to significant improvements in parameter accuracy and robustness given random initial guesses. On four established benchmark systems, we compare the performance of our algorithms to state-of-the-art solutions based on extended Kalman filtering and Gaussian processes.Comment: Published at the Thirty-sixth International Conference on Machine Learning (ICML 2019

    Data-Driven Diagnostics of Mechanism and Source of Sustained Oscillations

    Full text link
    Sustained oscillations observed in power systems can damage equipment, degrade the power quality and increase the risks of cascading blackouts. There are several mechanisms that can give rise to oscillations, each requiring different countermeasure to suppress or eliminate the oscillation. This work develops mathematical framework for analysis of sustained oscillations and identifies statistical signatures of each mechanism, based on which a novel oscillation diagnosis method is developed via real-time processing of phasor measurement units (PMUs) data. Case studies show that the proposed method can accurately identify the exact mechanism for sustained oscillation, and meanwhile provide insightful information to locate the oscillation sources.Comment: The paper has been accepted by IEEE Transactions on Power System

    Description of stochastic and chaotic series using visibility graphs

    Full text link
    Nonlinear time series analysis is an active field of research that studies the structure of complex signals in order to derive information of the process that generated those series, for understanding, modeling and forecasting purposes. In the last years, some methods mapping time series to network representations have been proposed. The purpose is to investigate on the properties of the series through graph theoretical tools recently developed in the core of the celebrated complex network theory. Among some other methods, the so-called visibility algorithm has received much attention, since it has been shown that series correlations are captured by the algorithm and translated in the associated graph, opening the possibility of building fruitful connections between time series analysis, nonlinear dynamics, and graph theory. Here we use the horizontal visibility algorithm to characterize and distinguish between correlated stochastic, uncorrelated and chaotic processes. We show that in every case the series maps into a graph with exponential degree distribution P (k) ~ exp(-{\lambda}k), where the value of {\lambda} characterizes the specific process. The frontier between chaotic and correlated stochastic processes, {\lambda} = ln(3/2), can be calculated exactly, and some other analytical developments confirm the results provided by extensive numerical simulations and (short) experimental time series
    corecore