415 research outputs found

    A Mechatronic Perspective on Robotic Arms and End-Effectors

    Get PDF

    Cost-Effective Prosthetic Hand for Amputees: Challenges and Practical Implementation

    Get PDF
    According to statistics, approximately 160,000 people in Malaysia, out of the current population of 32 million, need prosthetic or orthotic equipment. For individuals who have experienced upper extremity amputations, significant challenges are posed by the loss of functionality and the desire for a cosmetically appealing solution. To address this issue, a cost-effective prosthetic hand was proposed and developed. An overview of existing prosthetic hands is also offered, with an emphasis on cost-effectiveness, challenges, strengths, and weaknesses. The developed prosthetic hand incorporates a practical and underactuated finger mechanism. It is equipped with controllers based on EMG sensors to ensure that optimal responses are achieved during the grasping and releasing of objects. A suitable motor was carefully chosen to facilitate effective grasping and ungrasping activities. The proposed design was realized using SolidWorks and a 3D Printer. The capabilities of the prosthetic hand were demonstrated through a series of tests involving various objects, including pliers, a screwdriver, and a phone. The results indicate that objects of different sizes and shapes can be effectively grasped and ungrasped by the prosthetic hand. The unique bending angles in each finger result from the way tendons are connected via flexible cords and fishing lines to the servo motor. This design allows for a dynamic response based on the user's muscle flex and strength. The affordability of this cost-effective prosthetic hand demonstrates its potential as a practical and viable solution for amputees aiming to restore their grasping functionalities

    Cost-Effective Prosthetic Hand for Amputees: Challenges and Practical Implementation

    Get PDF
    According to statistics, approximately 160,000 people in Malaysia, out of the current population of 32 million, need prosthetic or orthotic equipment. For individuals who have experienced upper extremity amputations, significant challenges are posed by the loss of functionality and the desire for a cosmetically appealing solution. To address this issue, a cost-effective prosthetic hand was proposed and developed. An overview of existing prosthetic hands is also offered, with an emphasis on cost-effectiveness, challenges, strengths, and weaknesses. The developed prosthetic hand incorporates a practical and underactuated finger mechanism. It is equipped with controllers based on EMG sensors to ensure that optimal responses are achieved during the grasping and releasing of objects. A suitable motor was carefully chosen to facilitate effective grasping and ungrasping activities. The proposed design was realized using SolidWorks and a 3D Printer. The capabilities of the prosthetic hand were demonstrated through a series of tests involving various objects, including pliers, a screwdriver, and a phone. The results indicate that objects of different sizes and shapes can be effectively grasped and ungrasped by the prosthetic hand. The unique bending angles in each finger result from the way tendons are connected via flexible cords and fishing lines to the servo motor. This design allows for a dynamic response based on the user's muscle flex and strength. The affordability of this cost-effective prosthetic hand demonstrates its potential as a practical and viable solution for amputees aiming to restore their grasping functionalities

    Advanced Bionic Attachment Equipment Inspired by the Attachment Performance of Aquatic Organisms: A Review

    Get PDF
    In nature, aquatic organisms have evolved various attachment systems, and their attachment ability has become a specific and mysterious survival skill for them. Therefore, it is significant to study and use their unique attachment surfaces and outstanding attachment characteristics for reference and develop new attachment equipment with excellent performance. Based on this, in this review, the unique non-smooth surface morphologies of their suction cups are classified and the key roles of these special surface morphologies in the attachment process are introduced in detail. The recent research on the attachment capacity of aquatic suction cups and other related attachment studies are described. Emphatically, the research progress of advanced bionic attachment equipment and technology in recent years, including attachment robots, flexible grasping manipulators, suction cup accessories, micro-suction cup patches, etc., is summarized. Finally, the existing problems and challenges in the field of biomimetic attachment are analyzed, and the focus and direction of biomimetic attachment research in the future are pointed out

    Actuators and sensors for application in agricultural robots: A review

    Get PDF
    In recent years, with the rapid development of science and technology, agricultural robots have gradually begun to replace humans, to complete various agricultural operations, changing traditional agricultural production methods. Not only is the labor input reduced, but also the production efficiency can be improved, which invariably contributes to the development of smart agriculture. This paper reviews the core technologies used for agricultural robots in non-structural environments. In addition, we review the technological progress of drive systems, control strategies, end-effectors, robotic arms, environmental perception, and other related systems. This research shows that in a non-structured agricultural environment, using cameras and light detection and ranging (LiDAR), as well as ultrasonic and satellite navigation equipment, and by integrating sensing, transmission, control, and operation, different types of actuators can be innovatively designed and developed to drive the advance of agricultural robots, to meet the delicate and complex requirements of agricultural products as operational objects, such that better productivity and standardization of agriculture can be achieved. In summary, agricultural production is developing toward a data-driven, standardized, and unmanned approach, with smart agriculture supported by actuator-driven-based agricultural robots. This paper concludes with a summary of the main existing technologies and challenges in the development of actuators for applications in agricultural robots, and the outlook regarding the primary development directions of agricultural robots in the near future

    A Thermoplastic Elastomer Belt Based Robotic Gripper

    Full text link
    Novel robotic grippers have captured increasing interests recently because of their abilities to adapt to varieties of circumstances and their powerful functionalities. Differing from traditional gripper with mechanical components-made fingers, novel robotic grippers are typically made of novel structures and materials, using a novel manufacturing process. In this paper, a novel robotic gripper with external frame and internal thermoplastic elastomer belt-made net is proposed. The gripper grasps objects using the friction between the net and objects. It has the ability of adaptive gripping through flexible contact surface. Stress simulation has been used to explore the regularity between the normal stress on the net and the deformation of the net. Experiments are conducted on a variety of objects to measure the force needed to reliably grip and hold the object. Test results show that the gripper can successfully grip objects with varying shape, dimensions, and textures. It is promising that the gripper can be used for grasping fragile objects in the industry or out in the field, and also grasping the marine organisms without hurting them

    Data-driven learning for robot physical intelligence

    Get PDF
    The physical intelligence, which emphasizes physical capabilities such as dexterous manipulation and dynamic mobility, is essential for robots to physically coexist with humans. Much research on robot physical intelligence has achieved success on hyper robot motor capabilities, but mostly through heavily case-specific engineering. Meanwhile, in terms of robot acquiring skills in a ubiquitous manner, robot learning from human demonstration (LfD) has achieved great progress, but still has limitations handling dynamic skills and compound actions. In this dissertation, a composite learning scheme which goes beyond LfD and integrates robot learning from human definition, demonstration, and evaluation is proposed. This method tackles advanced motor skills that require dynamic time-critical maneuver, complex contact control, and handling partly soft partly rigid objects. Besides, the power of crowdsourcing is brought to tackle case-specific engineering problem in the robot physical intelligence. Crowdsourcing has demonstrated great potential in recent development of artificial intelligence. Constant learning from a large group of human mentors breaks the limit of learning from one or a few mentors in individual cases, and has achieved success in image recognition, translation, and many other cyber applications. A robot learning scheme that allows a robot to synthesize new physical skills using knowledge acquired from crowdsourced human mentors is proposed. The work is expected to provide a long-term and big-scale measure to produce advanced robot physical intelligence
    corecore