89 research outputs found

    Interference mitigation in cognitive femtocell networks

    Get PDF
    “A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of Philosophy”.Femtocells have been introduced as a solution to poor indoor coverage in cellular communication which has hugely attracted network operators and stakeholders. However, femtocells are designed to co-exist alongside macrocells providing improved spatial frequency reuse and higher spectrum efficiency to name a few. Therefore, when deployed in the two-tier architecture with macrocells, it is necessary to mitigate the inherent co-tier and cross-tier interference. The integration of cognitive radio (CR) in femtocells introduces the ability of femtocells to dynamically adapt to varying network conditions through learning and reasoning. This research work focuses on the exploitation of cognitive radio in femtocells to mitigate the mutual interference caused in the two-tier architecture. The research work presents original contributions in mitigating interference in femtocells by introducing practical approaches which comprises a power control scheme where femtocells adaptively controls its transmit power levels to reduce the interference it causes in a network. This is especially useful since femtocells are user deployed as this seeks to mitigate interference based on their blind placement in an indoor environment. Hybrid interference mitigation schemes which combine power control and resource/scheduling are also implemented. In a joint threshold power based admittance and contention free resource allocation scheme, the mutual interference between a Femtocell Access Point (FAP) and close-by User Equipments (UE) is mitigated based on admittance. Also, a hybrid scheme where FAPs opportunistically use Resource Blocks (RB) of Macrocell User Equipments (MUE) based on its traffic load use is also employed. Simulation analysis present improvements when these schemes are applied with emphasis in Long Term Evolution (LTE) networks especially in terms of Signal to Interference plus Noise Ratio (SINR)

    Dense Small Cell Networks for Next Generation Wireless Systems

    Get PDF

    Device-to-Device Communication and Multihop Transmission for Future Cellular Networks

    Get PDF
    The next generation wireless networks i.e. 5G aim to provide multi-Gbps data traffic, in order to satisfy the increasing demand for high-definition video, among other high data rate services, as well as the exponential growth in mobile subscribers. To achieve this dramatic increase in data rates, current research is focused on improving the capacity of current 4G network standards, based on Long Term Evolution (LTE), before radical changes are exploited which could include acquiring additional/new spectrum. The LTE network has a reuse factor of one; hence neighbouring cells/sectors use the same spectrum, therefore making the cell edge users vulnerable to inter-cell interference. In addition, wireless transmission is commonly hindered by fading and pathloss. In this direction, this thesis focuses on improving the performance of cell edge users in LTE and LTE-Advanced (LTE-A) networks by initially implementing a new Coordinated Multi-Point (CoMP) algorithm to mitigate cell edge user interference. Subsequently Device-to-Device (D2D) communication is investigated as the enabling technology for maximising Resource Block (RB) utilisation in current 4G and emerging 5G networks. It is demonstrated that the application, as an extension to the above, of novel power control algorithms, to reduce the required D2D TX power, and multihop transmission for relaying D2D traffic, can further enhance network performance. To be able to develop the aforementioned technologies and evaluate the performance of new algorithms in emerging network scenarios, a beyond-the-state-of-the-art LTE system-level simulator (SLS) was implemented. The new simulator includes Multiple-Input Multiple-Output (MIMO) antenna functionalities, comprehensive channel models (such as Wireless World initiative New Radio II i.e. WINNER II) and adaptive modulation and coding schemes to accurately emulate the LTE and LTE-A network standards. Additionally, a novel interference modelling scheme using the ‘wrap around’ technique was proposed and implemented that maintained the topology of flat surfaced maps, allowing for use with cell planning tools while obtaining accurate and timely results in the SLS compared to the few existing platforms. For the proposed CoMP algorithm, the adaptive beamforming technique was employed to reduce interference on the cell edge UEs by applying Coordinated Scheduling (CoSH) between cooperating cells. Simulation results show up to 2-fold improvement in terms of throughput, and also shows SINR gain for the cell edge UEs in the cooperating cells. Furthermore, D2D communication underlaying the LTE network (and future generation of wireless networks) was investigated. The technology exploits the proximity of users in a network to achieve higher data rates with maximum RB utilisation (as the technology reuses the cellular RB simultaneously), while taking some load off the Evolved Node B (eNB) i.e. by direct communication between User Equipment (UE). Simulation results show that the proximity and transmission power of D2D transmission yields high performance gains for a D2D receiver, which was demonstrated to be better than that of cellular UEs with better channel conditions or in close proximity to the eNB in the network. The impact of interference from the simultaneous transmission however impedes the achievable data rates of cellular UEs in the network, especially at the cell edge. Thus, a power control algorithm was proposed to mitigate the impact of interference in the hybrid network (network consisting of both cellular and D2D UEs). It was implemented by setting a minimum SINR threshold so that the cellular UEs achieve a minimum performance, and equally a maximum SINR threshold to establish fairness for the D2D transmission as well. Simulation results show an increase in the cell edge throughput and notable improvement in the overall SINR distribution of UEs in the hybrid network. Additionally, multihop transmission for D2D UEs was investigated in the hybrid network: traditionally, the scheme is implemented to relay cellular traffic in a homogenous network. Contrary to most current studies where D2D UEs are employed to relay cellular traffic, the use of idle nodes to relay D2D traffic was implemented uniquely in this thesis. Simulation results show improvement in D2D receiver throughput with multihop transmission, which was significantly better than that of the same UEs performance with equivalent distance between the D2D pair when using single hop transmission

    Spectral and Energy Efficient Communication Systems and Networks

    Get PDF
    In this thesis, design and analysis of energy- and spectral-efficient communication and cellular systems in micro wave and millimeter wave bands are considered using the following system performance metrics: i) Energy efficiency; ii) Spectral efficiency; iii) Spatial spectral efficiency; iv) Spatial energy efficiency, and v) Bit error rate. Statistical channel distributions, Nakagami-m and Generalized-K, and path loss models, Line of Sight (LOS) and Non-Line of Sight (NLOS), are used to represent the propagation environment in these systems. Adaptive M-QAM and M-CPFSK communication systems are proposed to enhance their efficiency metrics as a function of Signal-to-Noise Ratio (SNR) over the channel. It is observed that in the adaptive M-QAM system energy efficiency can be improved by 0.214 bits/J whereas its spectral efficiency can be enhanced by 40%, for wide range of SNR compared to that of conventional M-QAM system. In case of adaptive M-CPFSK system, spectral and energy efficiencies can be increased by 33% and 76%, respectively. A framework for design and analysis of a cellular system, with omni and sectorized antenna systems at Base Station (BS), using its efficiency metrics and coverage probability is presented assuming wireless channel is Nakagami-m fading coupled with path loss and co-channel interference. It is noted that sectorized antenna system at BS enhances energy and spectral efficiencies by nearly 109% and 1.5 bits/s/Hz, respectively, compared to conventional omni antenna system. A Multi-User MIMO cellular system is then investigated and closed-form expressions for its uplink efficiency metrics are derived for fading and shadowing wireless channel environment. It is observed that increasing number of antennas in MIMO system at BS can significantly improve efficiency metrics of cellular system. Finally, a framework for design and analysis of dense mmWave cellular system, in 28 and 73 GHz bands, is presented for efficient utilization of spectrum and power of the system. The efficiency metrics of the system are evaluated for LOS and NLOS links. It is observed that while 28 GHz band is expedient for indoor cellular systems, the 73 GHz band is appropriate for outdoor systems

    System capacity enhancement for 5G network and beyond

    Get PDF
    A thesis submitted to the University of Bedfordshire, in fulfilment of the requirements for the degree of Doctor of PhilosophyThe demand for wireless digital data is dramatically increasing year over year. Wireless communication systems like Laptops, Smart phones, Tablets, Smart watch, Virtual Reality devices and so on are becoming an important part of people’s daily life. The number of mobile devices is increasing at a very fast speed as well as the requirements for mobile devices such as super high-resolution image/video, fast download speed, very short latency and high reliability, which raise challenges to the existing wireless communication networks. Unlike the previous four generation communication networks, the fifth-generation (5G) wireless communication network includes many technologies such as millimetre-wave communication, massive multiple-input multiple-output (MIMO), visual light communication (VLC), heterogeneous network (HetNet) and so forth. Although 5G has not been standardised yet, these above technologies have been studied in both academia and industry and the goal of the research is to enhance and improve the system capacity for 5G networks and beyond by studying some key problems and providing some effective solutions existing in the above technologies from system implementation and hardware impairments’ perspective. The key problems studied in this thesis include interference cancellation in HetNet, impairments calibration for massive MIMO, channel state estimation for VLC, and low latency parallel Turbo decoding technique. Firstly, inter-cell interference in HetNet is studied and a cell specific reference signal (CRS) interference cancellation method is proposed to mitigate the performance degrade in enhanced inter-cell interference coordination (eICIC). This method takes carrier frequency offset (CFO) and timing offset (TO) of the user’s received signal into account. By reconstructing the interfering signal and cancelling it afterwards, the capacity of HetNet is enhanced. Secondly, for massive MIMO systems, the radio frequency (RF) impairments of the hardware will degrade the beamforming performance. When operated in time duplex division (TDD) mode, a massive MIMO system relies on the reciprocity of the channel which can be broken by the transmitter and receiver RF impairments. Impairments calibration has been studied and a closed-loop reciprocity calibration method is proposed in this thesis. A test device (TD) is introduced in this calibration method that can estimate the transmitters’ impairments over-the-air and feed the results back to the base station via the Internet. The uplink pilots sent by the TD can assist the BS receivers’ impairment estimation. With both the uplink and downlink impairments estimates, the reciprocity calibration coefficients can be obtained. By computer simulation and lab experiment, the performance of the proposed method is evaluated. Channel coding is an essential part of a wireless communication system which helps fight with noise and get correct information delivery. Turbo codes is one of the most reliable codes that has been used in many standards such as WiMAX and LTE. However, the decoding process of turbo codes is time-consuming and the decoding latency should be improved to meet the requirement of the future network. A reverse interleave address generator is proposed that can reduce the decoding time and a low latency parallel turbo decoder has been implemented on a FPGA platform. The simulation and experiment results prove the effectiveness of the address generator and show that there is a trade-off between latency and throughput with a limited hardware resource. Apart from the above contributions, this thesis also investigated multi-user precoding for MIMO VLC systems. As a green and secure technology, VLC is achieving more and more attention and could become a part of 5G network especially for indoor communication. For indoor scenario, the MIMO VLC channel could be easily ill-conditioned. Hence, it is important to study the impact of the channel state to the precoding performance. A channel state estimation method is proposed based on the signal to interference noise ratio (SINR) of the users’ received signal. Simulation results show that it can enhance the capacity of the indoor MIMO VLC system
    • 

    corecore