4 research outputs found

    Integration of breast cancer gene signatures based on graph centrality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Various gene-expression signatures for breast cancer are available for the prediction of clinical outcome. However due to small overlap between different signatures, it is challenging to integrate existing disjoint signatures to provide a unified insight on the association between gene expression and clinical outcome.</p> <p>Results</p> <p>In this paper, we propose a method to integrate different breast cancer gene signatures by using graph centrality in a context-constrained protein interaction network (PIN). The context-constrained PIN for breast cancer is built by integrating complete PIN and various gene signatures reported in literatures. Then, we use graph centralities to quantify the importance of genes to breast cancer. Finally, we get reliable gene signatures that are consisted by the genes with high graph centrality. The genes which are well-known breast cancer genes, such as TP53 and BRCA1, are ranked extremely high in our results. Compared with previous results by functional enrichment analysis, graph centralities, especially the eigenvector centrality and subgraph centrality, based gene signatures are more tightly related to breast cancer. We validate these signatures on genome-wide microarray dataset and found strong association between the expression of these signature genes and pathologic parameters.</p> <p>Conclusions</p> <p>In summary, graph centralities provide a novel way to connect different cancer signatures and to understand the mechanism of relationship between gene expression and clinical outcome of breast cancer. Moreover, this method is not only can be used on breast cancer, but also can be used on other gene expression related diseases and drug studies.</p

    A Predictive 7-Gene Assay and Prognostic Protein Biomarkers for Non-small Cell Lung Cancer

    Get PDF
    This study aims to develop a multi-gene assay predictive of the clinical benefits of chemotherapy in non- small cell lung cancer (NSCLC) patients, and substantiate their protein expression as potential therapeutic tar- gets. Patients and methods: The mRNA expression of 160 genes identified from microarray was analyzed in qRT-PCR assays of independent 337 snap-frozen NSCLC tumors to develop a predictive signature. A clinical trial JBR.10 was included in the validation. Hazard ratio was used to select genes, and decision-trees were used to construct the predictive model. Protein expression was quantified with AQUA in 500 FFPE NSCLC samples. Results: A 7-gene signature was identified from training cohort (n = 83) with accurate patient stratification (P = 0.0043) and was validated in independent patient cohorts (n = 248, P b 0.0001) in Kaplan-Meier analyses. In the predicted benefit group, there was a significantly better disease-specific survival in patients receiving adjuvant chemotherapy in both training (P = 0.035) and validation (P = 0.0049) sets. In the predicted non-benefit group, there was no survival benefit in patients receiving chemotherapy in either set. The protein expression of ZNF71 quantified with AQUA scores produced robust patient stratification in separate training (P = 0.021) and validation (P = 0.047) NSCLC cohorts. The protein expression of CD27 quantified with ELISA had a strong correlation with its mRNA expression in NSCLC tumors (Spearman coefficient = 0.494, P b 0.0088). Multiple sig- nature genes had concordant DNA copy number variation, mRNA and protein expression in NSCLC progression. Conclusions: This study presents a predictive multi-gene assay and prognostic protein biomarkers clinically appli- cable for improving NSCLC treatment, with important implications in lung cancer chemotherapy and immunotherapy

    Test on Existence of Histology Subtype-Specific Prognostic Signatures Among Early Stage Lung Adenocarcinoma and Squamous Cell Carcinoma Patients Using a Cox-Model Based Filter

    Get PDF
    BACKGROUND: Non-small cell lung cancer (NSCLC) is the predominant histological type of lung cancer, accounting for up to 85% of cases. Disease stage is commonly used to determine adjuvant treatment eligibility of NSCLC patients, however, it is an imprecise predictor of the prognosis of an individual patient. Currently, many researchers resort to microarray technology for identifying relevant genetic prognostic markers, with particular attention on trimming or extending a Cox regression model. Adenocarcinoma (AC) and squamous cell carcinoma (SCC) are two major histology subtypes of NSCLC. It has been demonstrated that fundamental differences exist in their underlying mechanisms, which motivated us to postulate the existence of specific genes related to the prognosis of each histology subtype. RESULTS: In this article, we propose a simple filter feature selection algorithm with a Cox regression model as the base. Applying this method to real-world microarray data identifies a histology-specific prognostic gene signature. Furthermore, the resulting 32-gene (32/12 for AC/SCC) prognostic signature for early-stage AC and SCC samples has superior predictive ability relative to two relevant prognostic signatures, and has comparable performance with signatures obtained by applying two state-of-the art algorithms separately to AC and SCC samples. CONCLUSIONS: Our proposal is conceptually simple, and straightforward to implement. Furthermore, it can be easily adapted and applied to a range of other research settings. REVIEWERS: This article was reviewed by Leonid Hanin (nominated by Dr. Lev Klebanov), Limsoon Wong and Jun Yu

    Computational Hybrid Systems for Identifying Prognostic Gene Markers of Lung Cancer

    Get PDF
    Lung cancer is the most fatal cancer around the world. Current lung cancer prognosis and treatment is based on tumor stage population statistics and could not reliably assess the risk for developing recurrence in individual patients. Biomarkers enable treatment options to be tailored to individual patients based on their tumor molecular characteristics. To date, there is no clinically applied molecular prognostic model for lung cancer. Statistics and feature selection methods identify gene candidates by ranking the association between gene expression and disease outcome, but do not account for the interactions among genes. Computational network methods could model interactions, but have not been used for gene selection due to computational inefficiency. Moreover, the curse of dimensionality in human genome data imposes more computational challenges to these methods.;We proposed two hybrid systems for the identification of prognostic gene signatures for lung cancer using gene expressions measured with DNA microarray. The first hybrid system combined t-tests, Statistical Analysis of Microarray (SAM), and Relief feature selections in multiple gene filtering layers. This combinatorial system identified a 12-gene signature with better prognostic performance than published signatures in treatment selection for stage I and II patients (log-rank P\u3c0.04, Kaplan-Meier analyses). The 12-gene signature is a more significant prognostic factor (hazard ratio=4.19, 95% CI: [2.08, 8.46], P\u3c0.00006) than other clinical covariates. The signature genes were found to be involved in tumorigenesis in functional pathway analyses.;The second proposed system employed a novel computational network model, i.e., implication networks based on prediction logic. This network-based system utilizes gene coexpression networks and concurrent coregulation with signaling pathways for biomarker identification. The first application of the system modeled disease-mediated genome-wide coexpression networks. The entire genomic space were extensively explored and 21 gene signatures were discovered with better prognostic performance than all published signatures in stage I patients not receiving chemotherapy (hazard ratio\u3e1, CPE\u3e0.5, P \u3c 0.05). These signatures could potentially be used for selecting patients for adjuvant chemotherapy. The second application of the system modeled the smoking-mediated coexpression networks and identified a smoking-associated 7-gene signature. The 7-gene signature generated significant prognostication specific to smoking lung cancer patients (log-rank P\u3c0.05, Kaplan-Meier analyses), with implications in diagnostic screening of lung cancer risk in smokers (overall accuracy=74%, P\u3c0.006). The coexpression patterns derived from the implication networks in both applications were successfully validated with molecular interactions reported in the literature (FDR\u3c0.1).;Our studies demonstrated that hybrid systems with multiple gene selection layers outperform traditional methods. Moreover, implication networks could efficiently model genome-scale disease-mediated coexpression networks and crosstalk with signaling pathways, leading to the identification of clinically important gene signatures
    corecore