3,240 research outputs found

    Intelligent Financial Fraud Detection Practices: An Investigation

    Full text link
    Financial fraud is an issue with far reaching consequences in the finance industry, government, corporate sectors, and for ordinary consumers. Increasing dependence on new technologies such as cloud and mobile computing in recent years has compounded the problem. Traditional methods of detection involve extensive use of auditing, where a trained individual manually observes reports or transactions in an attempt to discover fraudulent behaviour. This method is not only time consuming, expensive and inaccurate, but in the age of big data it is also impractical. Not surprisingly, financial institutions have turned to automated processes using statistical and computational methods. This paper presents a comprehensive investigation on financial fraud detection practices using such data mining methods, with a particular focus on computational intelligence-based techniques. Classification of the practices based on key aspects such as detection algorithm used, fraud type investigated, and success rate have been covered. Issues and challenges associated with the current practices and potential future direction of research have also been identified.Comment: Proceedings of the 10th International Conference on Security and Privacy in Communication Networks (SecureComm 2014

    An Empirical Study of AML Approach for Credit Card Fraud Detection—Financial Transactions

    Get PDF
    Credit card fraud is one of the flip sides of the digital world, where transactions are made without the knowledge of the genuine user. Based on the study of various papers published between 1994 and 2018 on credit card fraud, the following objectives are achieved: the various types of credit card frauds has identified and to detect automatically these frauds, an adaptive machine learning techniques (AMLTs) has studied and also their pros and cons has summarized. The various dataset are used in the literature has studied and categorized into the real and synthesized datasets.The performance matrices and evaluation criteria have summarized which has used to evaluate the fraud detection system.This study has also covered the deep analysis and comparison of the performance (i.e sensitivity, specificity, and accuracy) of existing machine learning techniques in the credit card fraud detection area.The findings of this study clearly show that supervised learning, card-not-present fraud, skimming fraud, and website cloning method has been used more frequently.This Study helps to new researchers by discussing the limitation of existing fraud detection techniques and providing helpful directions of research in the credit card fraud detection field

    Credit Card Fraud Detection Using Asexual Reproduction Optimization

    Full text link
    As the number of credit card users has increased, detecting fraud in this domain has become a vital issue. Previous literature has applied various supervised and unsupervised machine learning methods to find an effective fraud detection system. However, some of these methods require an enormous amount of time to achieve reasonable accuracy. In this paper, an Asexual Reproduction Optimization (ARO) approach was employed, which is a supervised method to detect credit card fraud. ARO refers to a kind of production in which one parent produces some offspring. By applying this method and sampling just from the majority class, the effectiveness of the classification is increased. A comparison to Artificial Immune Systems (AIS), which is one of the best methods implemented on current datasets, has shown that the proposed method is able to remarkably reduce the required training time and at the same time increase the recall that is important in fraud detection problems. The obtained results show that ARO achieves the best cost in a short time, and consequently, it can be considered a real-time fraud detection system

    Machine Learning Techniques for Credit Card Fraud Detection

    Get PDF
    The term “fraud”, it always concerned about credit card fraud in our minds. And after the significant increase in the transactions of credit card, the fraud of credit card increased extremely in last years. So the fraud detection should include surveillance of the spending attitude for the person/customer to the determination, avoidance, and detection of unwanted behavior. Because the credit card is the most payment predominant way for the online and regular purchasing, the credit card fraud raises highly. The Fraud detection is not only concerned with capturing of the fraudulent practices, but also, discover it as fast as they can, because the fraud costs millions of dollar business loss and it is rising over time, and that affects greatly the worldwide economy. . In this paper we introduce 14 different techniques of how data mining techniques can be successfully combined to obtain a high fraud coverage with a high or low false rate, the Advantage and The Disadvantages of every technique, and The Data Sets used in the researches by researcher

    Systemic acquired critique of credit card deception exposure through machine learning

    Get PDF
    Artigo publicado em revista científica internacionalA wide range of recent studies are focusing on current issues of financial fraud, especially concerning cybercrimes. The reason behind this is even with improved security, a great amount of money loss occurs every year due to credit card fraud. In recent days, ATM fraud has decreased, while credit card fraud has increased. This study examines articles from five foremost databases. The literature review is designed using extraction by database, keywords, year, articles, authors, and performance measures based on data used in previous research, future research directions and purpose of the article. This study identifies the crucial gaps which ultimately allow research opportunities in this fraud detection process by utilizing knowledge from the machine learning domain. Our findings prove that this research area has become most dominant in the last ten years. We accessed both supervised and unsupervised machine learning techniques to detect cybercrime and management techniques which provide evidence for the effectiveness of machine learning techniques to control cybercrime in the credit card industry. Results indicated that there is room for further research to obtain better results than existing ones on the basis of both quantitative and qualitative research analysis.info:eu-repo/semantics/publishedVersio

    Unsupervised Intrusion Detection with Cross-Domain Artificial Intelligence Methods

    Get PDF
    Cybercrime is a major concern for corporations, business owners, governments and citizens, and it continues to grow in spite of increasing investments in security and fraud prevention. The main challenges in this research field are: being able to detect unknown attacks, and reducing the false positive ratio. The aim of this research work was to target both problems by leveraging four artificial intelligence techniques. The first technique is a novel unsupervised learning method based on skip-gram modeling. It was designed, developed and tested against a public dataset with popular intrusion patterns. A high accuracy and a low false positive rate were achieved without prior knowledge of attack patterns. The second technique is a novel unsupervised learning method based on topic modeling. It was applied to three related domains (network attacks, payments fraud, IoT malware traffic). A high accuracy was achieved in the three scenarios, even though the malicious activity significantly differs from one domain to the other. The third technique is a novel unsupervised learning method based on deep autoencoders, with feature selection performed by a supervised method, random forest. Obtained results showed that this technique can outperform other similar techniques. The fourth technique is based on an MLP neural network, and is applied to alert reduction in fraud prevention. This method automates manual reviews previously done by human experts, without significantly impacting accuracy

    A semantic rule based digital fraud detection

    Get PDF
    Digital fraud has immensely affected ordinary consumers and the finance industry. Our dependence on internet banking has made digital fraud a substantial problem. Financial institutions across the globe are trying to improve their digital fraud detection and deterrence capabilities. Fraud detection is a reactive process, and it usually incurs a cost to save the system from an ongoing malicious activity. Fraud deterrence is the capability of a system to withstand any fraudulent attempts. Fraud deterrence is a challenging task and researchers across the globe are proposing new solutions to improve deterrence capabilities. In this work, we focus on the very important problem of fraud deterrence. Our proposed work uses an Intimation Rule Based (IRB) alert generation algorithm. These IRB alerts are classified based on severity levels. Our proposed solution uses a richer domain knowledge base and rule-based reasoning. In this work, we propose an ontology-based financial fraud detection and deterrence model

    Evaluation of deep neural networks for reduction of credit card fraud alerts

    Get PDF
    Fraud detection systems support advanced detection techniques based on complex rules, statistical modelling and machine learning. However, alerts triggered by these systems still require expert judgement to either confirm a fraud case or discard a false positive. Reducing the number of false positives that fraud analysts investigate, by automating their detection with computer-assisted techniques, can lead to significant cost efficiencies. Alert reduction has been achieved with different techniques in related fields like intrusion detection. Furthermore, deep learning has been used to accomplish this task in other fields. In our paper, a set of deep neural networks have been tested to measure their ability to detect false positives, by processing alerts triggered by a fraud detection system. The performance achieved by each neural network setting is presented and discussed. The optimal setting allowed to capture 91.79% of total fraud cases with 35.16% less alerts. Obtained alert reduction rate would entail a significant reduction in cost of human labor, because alerts classified as false positives by the neural network wouldn't require human inspection

    A Comprehensive Survey of Data Mining-based Fraud Detection Research

    Full text link
    This survey paper categorises, compares, and summarises from almost all published technical and review articles in automated fraud detection within the last 10 years. It defines the professional fraudster, formalises the main types and subtypes of known fraud, and presents the nature of data evidence collected within affected industries. Within the business context of mining the data to achieve higher cost savings, this research presents methods and techniques together with their problems. Compared to all related reviews on fraud detection, this survey covers much more technical articles and is the only one, to the best of our knowledge, which proposes alternative data and solutions from related domains.Comment: 14 page
    corecore