562 research outputs found

    Extracellular DNA contributes to cholesterol crystal embolism-induced clot formation, acute kidney injury, and tissue infarction

    Get PDF
    Atherosklerose ist weltweit eine der Hauptursachen fĂŒr MorbiditĂ€t und MortalitĂ€t. Bei fortgeschrittener Atherosklerose ist die Cholesterinkristallembolie (CCE) eine potenziell lebensbedrohliche Komplikation mit einer durchschnittlichen MortalitĂ€t von 62,8%. Autopsien oder Gewebebiopsien zeigen Cholesterinkristalle (CC) im arteriellen Lumen, umgeben von einer fibrotischen Matrix, die das GefĂ€ĂŸlumen verschließt. Über die genauen zellulĂ€ren und molekularen Mechanismen nach CCE ist wenig bekannt, was teilweise auf das Fehlen eines Tiermodells zurĂŒckzufĂŒhren ist. Wir stellten daher die Hypothese auf, dass die Entwicklung eines reproduzierbaren Mausmodells der CCE zur Nachahmung der morphologischen und funktionellen Eigenschaften der CCE beim Menschen dazu beitragen wĂŒrde, die molekularen Mechanismen des CC-gesteuerten arteriellen Verschlusses, des Gewebeinfarkts und des Organversagens zu untersuchen. CCE wurden in C57BL/6J-MĂ€usen durch Injektion von CC ĂŒber einen minimal- invasiven Eingriff in die linke Nierenarterie induziert. PrimĂ€rer Endpunkt war die glomerulĂ€re Filtrationsrate (GFR), die am wachen und frei beweglichen Tier gemessen wurde, um den Abfall der exkretorischen Nierenfunktion als Marker eines akuten Nierenversagens zu bestimmten. Die GrĂ¶ĂŸe des Niereninfarkts wurde, wie bei Myokardinfarkt oder Schlaganfallmodellen etabliert, per TTC-FĂ€rbung von Nierenschnitten und Planimetrie quantifiziert. Injektion von CC verursachte einen dosis-abhĂ€ngigen Abfall der GFR und Territorialinfarkte der Niere. Ursache waren VerschlĂŒsse prĂ€glomerulĂ€rer Arterien und Arteriolen. Der Kristallanteil am GefĂ€ĂŸverschluss war gering, stattdessen fanden sich Fibrin+ Thrombusmaterial um die Kristalle, die das arterielle Lumen ausfĂŒllten. Wir nannten diese Strukturen “Kristallthrombosen”. Im Vergleich zum GFR Abfall, war das Ausmaß der InfarktgrĂ¶ĂŸen variabler. 3D Rekonstruktionen von Angio-ÎŒCTs zeigte partielle und vollstĂ€ndige arterielle VerschlĂŒsse und Rarefizierung der arteriellen BlutgefĂ€ĂŸe. Histologisch fand sich nach 24 h ein deutliches perilesionales Neutrophileninfiltrat. Somit imitiert unser Modell periphere CCE mit arteriellen VerschlĂŒssen, die akute territoriale Infarkte, perilesionale EntzĂŒndung und fiunktionelles Organversagen. Das Blockieren der Nekroinflammation/Infarzierung in mixed lineage kinase domain-like (Mlkl)-defizienten MĂ€usen oder mit dem Inhibitor Nec-1s bzw. einem NLRP3-Inhibitor reduzierte signifikant die InfarktgrĂ¶ĂŸe und Infiltration von Neutrophilen im Vergleich zu Kontrollen. Keine dieser Interventionen hatte jedoch Auswirkungen auf den durch CCE verursachten GFR-Verlust (=Organversagen), weil keine der Interventionen Einfluss auf die arteriellen VerschlĂŒsse hatte. Da in der Niere die Funktion zu allererst von der glomerulĂ€ren Perfusion abhĂ€ngt, verhindert die Hemmung der ischĂ€men Nekrose alleine noch nicht das Nierenversagen. Somit war klar, dass die Kristallthrombosen das entscheidende Therapietarget bei CCE darstellen. Histologisch bestanden die Kristallthrombosen aus Erythrozyten, PlĂ€ttchen, Neutrophile, Fibrin, und extrazellulĂ€re DNA (ecDNA). ZunĂ€chst haben wir Neutrophile mit einem depletierenden Antikörper selektiv entfernt, bzw. die Bildung von neutrophil extracellular traps (NETs) mit einem Inhibitor gehemmt. Beide Interventionen verringerten die GrĂ¶ĂŸe des Niereninfarkts im Vergleich zur Kontrollgruppe, dies hatte jedoch keinen signifikanten Einfluss auf die arteriellen VerschlĂŒsse bzw. den GFR-Verlust. Im Gegensatz dazu schĂŒtzte der Thrombozyten-P2Y12-Rezeptorantagonist Clopidogrel MĂ€use vollstĂ€ndig vor Kristallthrombosen, GFR-Abfall und Niereninfarkt. Daher sind BlutplĂ€ttchen, jedoch nicht neutrophile Granulozyten, von zentraler Bedeutung fĂŒr CCE-induzierte Kristallthrombosen und ihre Folgen. Als NĂ€chstes testeten wir die Wirkung von Heparin und des Fibrinolytikums Urokinase. Nach 24 Stunden reduzierten sowohl Heparin als auch Urokinase die Anzahl der arteriellen VerschlĂŒsse signifikant. Niereninfarkt, Nierenverletzung, Infiltration von Neutrophilen, GefĂ€ĂŸverletzung sowie tubulĂ€re Nekrose waren nahezu vollstĂ€ndig abwesend. Beide Behandlungen hatten im Vergleich zu mit Vehikel-behandelten MĂ€usen einen vollstĂ€ndigen Schutz vor GFR-Abfall. Zusammenfassend lĂ€sst sich sagen, dass nicht die Kristalle an sich, sondern die Kristallthrombosen arterielle Obstruktion, Gewebeinfarkt und Organversagen verursachen. Um die Bedeutung der ecDNA zu untersuchen, gaben wir rekombinante DNase I, die ecDNA degradiert. TatsĂ€chlich war 24 h nach DNase I Gabe in den Arterien keine ecDNA mehr nachweisbar und, ĂŒberraschenderweise, traten auch Kristallthrombosen nicht mehr auf. Die Verhinderung von arteriellen VerschlĂŒssen war mit einem vollstĂ€ndigen Schutz vor GFR-Abfall, einer signifikanten Verringerung der NiereninfarktgrĂ¶ĂŸe verbunden. Somit ist ecDNA eine weitere nicht-redundante Komponente der CCE-bedingten arteriellen Obstruktion, des Gewebeinfarkts und des Organversagens. Da Herz- oder Aortenoperationen die Verwendung von Antikoagulanzien oder Fibrinolytika ausschließen, betrachteten wir rekombinante DNase I als mögliche Alternative zur AbschwĂ€chung der CC-Gerinnselbildung durch Hemmung der Fibrinbildung und der ecDNA-Akkumulation. Zuerst testeten wir das therapeutische Zeitfenster und stellten fest, dass die DNase I-Behandlung, die 3 Stunden nach der CCE verabreicht wurde, immer noch einen Trend zu verbesserten Ergebnissen im Vergleich zu 6 und 12 Stunden zeigte. Um die Ergebnisse bei der Einstellung einer CCE im Zusammenhang mit kardiovaskulĂ€ren Eingriffen weiter zu optimieren, haben wir ein Regime getestet, das eine prĂ€ventive Einzeldosis des Nekroptosehemmers Nec-1s mit therapeutischer Gabe von rekombinanter DNase 1 3 Stunden nach Kristallinjektion kombiniert. Hierunter kam es zu einer vollstĂ€ndigen Protektion von Kristallthrombosen Organversagen und Infarkt, was eine neue Behandlungsoption bei elektiven Eingriffen bei Hochrisikopatienten aufzeigen könnte. Mechanistische in vitro Untersuchungen im Organ-Chip Modell, zeigten wie Cholesterin-Kristalle zu EndothelschĂ€den fĂŒhren, dass ecDNA v.a. aus Endothel und Neutrophilen freigesetzt wird. Thrombozyten setzen nur wenig mitochondriale DNA frei. DNase I inhibiert die CC-induzierte Thrombozytenaktivierung, möglicherweise durch Abbau von ADP. Zusammengenommen prĂ€sentieren wir erstmals ein Mausmodell einer CCE mit Organversagen und Infarkt, das pathophysiologische Studien gestattet. Nicht der Infarkt an sich, sondern die Kristallthrombosen sind fĂŒr das Organversagen entscheidend. EndothelschĂ€digung mit Freisetzung von ecDNA und PlĂ€ttchenaktivierung fĂŒhren zur Bildung der Kristallthrombosen und bieten alte und neue Therapietargets. Eine prophylaktische Einmalgabe eines Zelltodinhibitors und die Gabe von DNase I im postinterventionellen Zeitfenster von 3 h (bei der Maus) könnten helfen, die Prognose von Patienten mit Prozedur-assoziierter CCE zu verbessern.Atherosclerosis is a leading cause of global morbidity and mortality. In advanced atherosclerosis, cholesterol crystal (CC) embolism (CCE) is a potentially life-threatening complication with an average mortality of 62.8 %. Autopsies or tissue biopsies reveal CC inside the arterial lumen surrounded by an undefined biological matrix obstructing the vessel lumen. Little is known about the precise cellular and molecular mechanisms following CCE, in part due to the lack of animal models. Therefore, I hypothesized that developing a reproducible mouse model of CCE to mimic the morphological and functional characteristics of CCE in humans would be instrumental to dissect the molecular mechanisms of CC-driven arterial occlusion, tissue infarction, and organ failure. To induce CCE, different doses of CC were injected into the left kidney artery of C57BL/6J mice. Acute kidney failure was evaluated by kidney function (i.e. GFR), kidney infarction was quantified using the TTC method. CC caused crystal clots occluding intrarenal arteries and a dose-dependent drop in GFR. In contrast, the extent of kidney infarction was more variable. 3D ÎŒCT showed partial and complete arterial occlusions, blood vessel rarefaction, and volume change. The macroscopic analysis revealed kidney swelling and territorial infarctions, tubular necrosis, interstitial edema, neutrophil infiltrates, and loss of CD31. Thus, intraarterial CC injection induces arterial occlusions causing acute territorial infarctions, perilesional inflammation, and organ failure. Blocking necroptosis with Mlkl-/- mice or Nec-1s, and the NLRP3 inhibitor significantly reduced infarct size, kidney injury, and neutrophil infiltration at 24 h compared to WT controls. However, none of these interventions affected CCE-related GFR loss. Consistently, necroinflammation is involved in kidney infarction but not in arterial occlusions as an upstream event. Thus, as nephron perfusion is ultimately required for kidney function, inhibiting infarction alone does not prevent acute kidney failure. Immunostaining revealed that crystal clots involved platelets, neutrophils, fibrin, and extracellular DNA (ecDNA). Therefore, I depleted neutrophils or inhibited NET formation before CC injection. Neutrophil depletion or NET inhibition significantly decreased kidney infarction compared to the control groups, but this had no significant effect on arterial obstructions or GFR loss, maybe because mononuclear cells had partially replaced neutrophils inside crystal clots as a source of ecDNA. In contrast, the platelet P2Y12 receptor antagonist clopidogrel completely protected mice from intravascular obstructions, GFR loss, kidney infarction, and perilesional neutrophil infiltrate. Therefore, CC occlude arteries by forming crystal clots consisting of fibrin, platelets, and neutrophils. Thus, platelets but not neutrophils are central for CCE-related arterial occlusion, organ failure, and tissue infarction. Next, I tested the effects of the anticoagulant heparin and the fibrinolytic agent urokinase. At 24h both heparin and urokinase significantly reduced the arterial occlusions number, kidney infarction, kidney injury, neutrophils infiltration, vascular injury as well as tubular necrosis. Both treatments had complete protection from GFR loss compared to vehicle-treated mice. Conclusively, not the crystals per se but rather crystal clots cause arterial obstruction, tissue infarction, and organ failure. In the DNase I treatment group, I noticed a significant reduction in the percentage of CC clots with ecDNA. After 24h of DNase I treatment intraarterial ecDNA had disappeared and the number of arterial occlusions was significantly reduced. Preventing arterial occlusions was associated with complete protection from GFR loss, a significant reduction in kidney infarct size as well as kidney cell death, neutrophil infiltrates, and vascular rarefaction. Thus, ecDNA is another non-redundant component of CCE-related arterial obstruction, tissue infarction, and organ failure. As cardiac or aorta surgeries preclude the use of anticoagulants or fibrinolytic agents, I considered recombinant DNase I as a possible alternative to attenuate CC clot formation by inhibiting fibrin formation and ecDNA accumulation. First, I tested the therapeutic window-of-opportunity and found that DNase I treatment given 3 h after CCE showed trends towards improved outcomes compared to 6 h and 12 h. To further optimize outcomes in the setting of a cardiovascular procedure-related CCE I tested a regimen combining a pre-emptive single dose of the necroptosis inhibitor Nec-1s with therapeutic recombinant DNase I gave 3 h after intraarterial CC injection. This approach could be feasible as prophylaxis given to all patients at risk, while DNase I would be only given to those with signs of CCE into the kidney, e.g. an early decline of urinary output. This dual strategy resulted in significant protection from GFR loss and kidney infarction in almost all animals together with a significant reduction in vascular occlusions by crystal clots. In my in vitro studies, platelets were exposed to thrombin with or without CC and found that CC enhances fibrinogen release from platelet alpha (α)-granules, which further promotes fibrin clot formation. CC exposure also induced ATP secretion from dense (ÎŽ)-granules, but co-incubation with DNase I strongly reduced these extracellular ATP releases. Next, I stimulated platelets with thrombin and collagen-related peptide and indicated DNase I can inhibit fibrinogen and ATP secretion and subsequent fibrin formation and P2Y12 receptor signaling, respectively. To model this process in vitro, I tested collagen-driven platelet aggregation with or without CC. Indeed, collagen I triggered massive platelet aggregation within 5 min with CC, DNase I treatment normalized this accelerated aggregation response. Endothelial cells and neutrophils studies showed that CC did not directly induce plasmatic coagulation but induced NET formation and DNA release mainly from kidney endothelial cells, neutrophils, and few from platelets. Thus, the in vitro studies support that CC and platelet dependent ecDNA release from neutrophils and endothelial cells, and DNase I can attenuate CC-induced platelet activation, aggregation, and fibrin clot formation. In summary, not CC by itself but the fibrin clots forming around CC obstruct peripheral arteries causing tissue infarction and organ failure. Hence, crystal clots represent the primary target for therapeutic interventions. Among the possible molecular targets in thrombosis and haemostasis, especially enhancing fibrinolysis or inhibiting platelet purinergic signaling could reduce arterial occlusions, infarction, and organ failure albeit with a relatively short window-of-opportunity up to 3 h. My results suggest that prophylactic necroptosis inhibition with a combination of DNase I therapy could have a synergistic effect on CC induced clot formation in mice and might be a feasible two-step prophylactic/therapeutic approach in human patients with a risk for procedure-related CCE

    Multimodality ImAging of Cardiovascular Dysfunction : risk factors, diagnostics and treatment options

    Get PDF

    Multimodality ImAging of Cardiovascular Dysfunction : risk factors, diagnostics and treatment options

    Get PDF

    Hemodynamics

    Get PDF
    Hemodynamics is study of the mechanical and physiologic properties controlling blood pressure and flow through the body. The factors influencing hemodynamics are complex and extensive. In addition to systemic hemodynamic alterations, microvascular alterations are frequently observed in critically ill patients. The book "Hemodynamics: New Diagnostic and Therapeuric Approaches" is formed to present the up-to-date research under the scope of hemodynamics by scientists from different backgrounds

    Multimodality ImAging of Cardiovascular Dysfunction : risk factors, diagnostics and treatment options

    Get PDF
    Cardiovascular diseases are a major cause of mortality worldwide, and includes all diseases of the heart and circulation. Despite improvements in knowledge and treatment options over the last decades, it remains one of the leading causes of disability and death. The underlying mechanisms vary depending on the disease in question. Some of these risk factors can be avoided, controlled, treated or modified such as high cholesterol, high blood pressure and obesity. While others, such as family history and gender, cannot be avoided and their emphasis lies on monitoring and treatment. In this thesis, the role of DNA damage, atherosclerosis and the renin angiotensin system, factors that modulate cardiovascular damage and disease, are investigated and discussed. Additionally, the effect of nutritional and therapeutic interventions is explored

    Transglutaminase 2 Conformation as a New Target to Treat Vascular Dysfunction in Aging and Diabetes

    Get PDF
    Endothelial dysfunction is an independent risk factor for cardiovascular complications associated with aging and diabetes. Transglutaminase 2 (TG2) is a ubiquitously expressed enzyme with calcium-dependent transamidase activity; it is overactive in aging and diabetes and has been linked with fibrotic processes in the cardiovascular and renal systems (e.g. stiffening, calcification) as well as with endothelial dysfunction in diabetes and inward remodeling in hypertension. These effects have been ascribed to the open TG2 conformation. On the other hand, the closed conformation of TG2 has GTP-binding activity, acting as a G protein in transmembrane signaling, opening potassium channels in vascular smooth muscle cells (VSMCs) and participating in cell survival. This led to the hypothesis that induction of the closed conformation by pharmacological means would present blood-pressure lowering effects and prevent endothelial dysfunction..

    Studies on Atrial Natriuretic Peptide

    Get PDF
    Atrial Natriuretic Peptide (ANP) is a hormone secreted by the heart with a unique spectrum of actions: natriuresis, diuresis, vasorelaxation and suppression of the renin-angiotensin system. This thesis is divided into four sections each of which examines a different aspect of ANP. The common theme is the question of how the actions of ANP may be "harnessed" therapeutically, either directly using novel inhibitors of the enzyme Neutral Endopeptidase (NEP; EC 3.4.24.11) which degrades ANP, or indirectly, by investigating potential interactions with available therapeutic agents including Angiotensin Converting Enzyme (ACE) inhibitors, and calcium channel blockers

    Le diabÚte maternel influence la morphogenÚse rénale et la programmation périnatale

    Get PDF
    Le diabĂšte maternel est un facteur de risque majeur pour le dĂ©veloppement de malformations congĂ©nitales. Dans le syndrome de l’embryopathie diabĂ©tique, l’exposition prolongĂ©e du fƓtus Ă  de hautes concentrations ambientes de glucose induit des dommages qui peuvent affecter plusieurs organes, dont les reins. Les malformations rĂ©nales sont la cause de prĂšs de 40 pourcent des cas d’insuffisance rĂ©nale infantile. L’hyperglycĂ©mie constitue un environnement utĂ©rin adverse qui nuit Ă  la nĂ©phrogenĂšse et peut causer l’agenĂšse, la dysplasie (aplasie) ou l’hypoplasie rĂ©nale. Les mĂ©canismes molĂ©culaires par lesquels les hautes concentrations ambientes de glucose mĂšnent Ă  la dysmorphogenĂšse et aux malformations demeurent toutefois mal dĂ©finis. Le diabĂšte maternel prĂ©dispose aussi la progĂ©niture au dĂ©veloppement d’autres problĂšmes Ă  l’ñge adulte, tels l’hypertension, l’obĂ©sitĂ© et le diabĂšte de type 2. Ce phĂ©nomĂšne appelĂ© ‘programmation pĂ©rinatale’ a suscitĂ© l’intĂ©rĂȘt au cours des derniĂšres dĂ©cennies, mais les mĂ©canismes responsables demeurent mal compris. Mes Ă©tudes doctorales visaient Ă  Ă©lucider les mĂ©canismes molĂ©culaires par lesquels le diabĂšte maternel ou un environnement in utero hyperglycĂ©mique affecte la nĂ©phrogenĂšse et programme par la suite la progĂ©niture a dĂ©velopper de l’hypertension par des observations in vitro, ex vivo et in vivo. Nous avons utilisĂ© les cellules MK4, des cellules embryonnaires du mĂ©senchyme mĂ©tanĂ©phrique de souris, pour nos Ă©tudes in vitro et deux lignĂ©es de souris transgĂ©niques (Tg) pour nos Ă©tudes ex vivo et in vivo, soient les souris HoxB7-GFP-Tg et Nephrin-CFP-Tg. Les souris HoxB7-GFP-Tg expriment la protĂ©ine fluorescente verte (GFP) dans le bourgeon urĂ©tĂ©rique (UB), sous le contrĂŽle du promoteur HoxB7. Les souris Nephrin-CFP expriment la protĂ©ine fluorescente cyan (CFP) dans les glomĂ©rules, sous le contrĂŽle du promoteur nephrin spĂ©cifique aux podocytes. Nos Ă©tudes in vitro visaient Ă  dĂ©terminer si les hautes concentrations de glucose modulent l’expression du gĂšne Pax2 dans les cellules MK4. Les cellules MK4 ont Ă©tĂ© traitĂ©es pendant 24h avec du milieu contenant soit 5mM D-glucose et 20mM D-mannitol ou 25mM D-glucose et avec ou sans antioxydants ou inhibiteurs de p38 MAPK, p44/42 MAPK, PKC et NF-kB. Nos rĂ©sultats ont dĂ©montrĂ© que le D-glucose Ă©levĂ© (25mM) augmente la gĂ©nĂ©ration des espĂšces rĂ©actives de l’oxygĂšne (ROS) dans les cellules MK4 et induit spĂ©cifiquement l’expression du gĂšne Pax2. Des analogues du glucose tels le D-mannitol, L-glucose ou le 2-Deoxy-D-glucose n’induisent pas cette augmentation dans les cellules MK4. La stimulation de l’expression du gĂšne Pax2 par le D-glucose dans les cellules MK4 peut ĂȘtre bloquĂ©e par des inhibiteurs des ROS et de NF-kB, mais pas par des inhibiteurs de p38 MAPK, p44/42 MAPK ou PKC. Ces rĂ©sultats indiquent que la stimulation de l’expression du gĂšne Pax2 par les concentrations Ă©levĂ©es de glucose est due, au moins en partie, Ă  la gĂ©nĂ©ration des ROS et l’activation de la voie de signalisation NF-kB, et non pas via les voies PKC, p38 MAPK et p44/42 MAPK. Nos Ă©tudes ex vivo s’intĂ©ressaient aux effets d’un milieu hyperglycĂ©mique sur la morphogenĂšse de la ramification du bourgeon urĂ©tĂ©rique (UB). Des explants de reins embryonnaires (E12 Ă  E18) ont Ă©tĂ© prĂ©levĂ©s par micro-dissection de femelles HoxB7-GFP gestantes. Les explants ont ensuite Ă©tĂ© cultivĂ©s dans un milieu contenant soit 5mM D-glucose et 20mM D-mannitol ou 25mM D-glucose et avec ou sans antioxydants, catalase ou inhibiteur de PI3K/AKT pour diverses durĂ©es. Nos rĂ©sultats ont dĂ©montrĂ© que le D-glucose stimule la ramification du UB de maniĂšre spĂ©cifique, et ce via l’expression du gĂšne Pax2. Cette augmentation de la ramification et de l’expression du gĂšne Pax2 peut ĂȘtre bloquĂ©e par des inhibiteurs des ROS et de PI3K/AKT. Ces Ă©tudes ont dĂ©montrĂ© que les hautes concentrations de glucose altĂšrent la morphogenĂšse de la ramification du UB via l’expression de Pax2. L’effet stimulant du glucose semble s’effectuer via la gĂ©nĂ©ration des ROS et l’activation de la voie de signalisation Akt. Nos Ă©tudes in vivo visaient Ă  dĂ©terminer le rĂŽle fondamental du diabĂšte maternel sur les dĂ©fauts de morphogenĂšse rĂ©nale chez la progĂ©niture. Dans notre modĂšle animal, le diabĂšte maternel est induit par le streptozotocin (STZ) chez des femelles HoxB7-GFP gestantes (E13). Les souriceaux ont Ă©tĂ© Ă©tudiĂ©s Ă  diffĂ©rents Ăąges (naissants et ĂągĂ©s de une, deux ou trois semaines). Nous avons examinĂ© leurs morphologie rĂ©nale, nombre de nĂ©phrons, expression gĂ©nique et les Ă©vĂ©nements apoptotiques lors de cette Ă©tude Ă  court terme. La progĂ©niture des mĂšres diabĂ©tiques avait un plus faible poids, taille et poids des reins, et possĂ©dait des glomĂ©rules plus petits et moins de nĂ©phrons par rapport Ă  la progĂ©niture des mĂšres contrĂŽles. La dysmorphogenĂšse rĂ©nale observĂ©e est peut-ĂȘtre causĂ©e par l’augmentation de l’apoptose des cellules dans la rĂ©gion du glomĂ©rule. Nos rĂ©sultats ont montrĂ© que les souriceaux nĂ©s de mĂšres diabĂ©tiques possĂšdent plus de podocytes apoptotiques et plus de marquage contre la caspase-3 active dans leurs tubules rĂ©naux que la progĂ©niture des mĂšres contrĂŽles. Les souriceaux des mĂšres diabĂ©tiques montrent une augmentation de l’expression des composants du systĂšme rĂ©nine angiotensine (RAS) intrarĂ©nal comme l’angiotensinogĂšne et la rĂ©nine, ainsi qu’une augmentation des isoformes p50 et p65 de NF-kB. Ces rĂ©sultats indiquent que le diabĂšte maternel active le RAS intrarĂ©nal et induit l’apoptose des glomĂ©rules, menant Ă  une altĂ©ration de la morphogenĂšse rĂ©nale de la progĂ©niture. En conclusion, nos Ă©tudes ont permis de dĂ©montrer que le glucose Ă©levĂ© ou l’environnement in utero diabĂ©tique altĂšre la morphogenĂšse du UB, qui rĂ©sulte en un retard dans la nĂ©phrogenĂšse et produit des reins plus petits. Cet effet est dĂ», au moins en partie, Ă  la gĂ©nĂ©ration des ROS, Ă  l’activation du RAS intrarĂ©nal et Ă  la voie NF-kB. Nos Ă©tudes futures se concentreront sur les mĂ©canismes par lesquels le diabĂšte maternel induit la programmation pĂ©rinatale de l’hypertension chez la progĂ©niture adulte. Cette Ă©tude Ă  long terme porte sur trois types de progĂ©nitures : adultes nĂ©s de mĂšres contrĂŽles, diabĂ©tiques ou diabĂ©tiques traitĂ©es avec insuline pendant la gestation. Nous observerons la pression systolique, la morphologie rĂ©nale et l’expression de divers gĂšnes et protĂ©ines. Nous voulons de plus dĂ©terminer si la prĂ©sence d’un systĂšme antioxydant (catalase) peut protĂ©ger la progĂ©niture des effets nĂ©fastes des ROS causĂ©s par l’environnement in utero hyperglycĂ©mique. Les souris Catalase-Tg expriment la catalase spĂ©cifiquement dans les tubules proximaux et nous permettrons d’explorer notre hypothĂšse sur le rĂŽle des ROS dans notre modĂšle expĂ©rimental de diabĂšte maternel.Maternal diabetes is a major risk factor for congenital malformations. When the fetus is exposed to high, sustained, ambient glucose levels, widespread fetal damage may affect multiple organs, including the kidneys, evoking diabetic embryopathy syndrome. Renal malformations account for up to 40% of childhood renal failure cases. Hyperglycemia constitutes an adverse in utero environment that dynamically impairs nephrogenesis, resulting in renal agenesis, dysplasia, aplasia or hypoplasia. However, the molecular mechanisms by which high, ambient glucose levels lead to renal dysmorphogenesis and birth defects have not yet been delineated. Maternal diabetes also programs the offspring to develop other problems later in life, such as hypertension, obesity and type 2 diabetes. This phenomenon, called ‘perinatal programming’, has attracted worldwide attention in recent decades, yet the mechanisms by which it occurs are incompletely understood. My PhD studies are designed to elucidate the underlying molecular pathways by which maternal diabetes or hyperglycemic environments in utero impair nephrogenesis and subsequently make the offspring develop perinatal programming of hypertension in vitro, ex vivo and in vivo. We employed mouse embryonic metanephric mesenchyme cells, namely MK4 cells, for our in vitro experiments, and 2 transgenic (Tg) mouse lines, Hoxb7-GFP-Tg and Nephrin-CFP-Tg mice, for ex vivo and in vivo investigations. Hoxb7-GFP-Tg mice specifically express green fluorescent protein (GFP) in ureteric buds (UB), driven by the Hoxb7 promoter. Nephrin-CFP-Tg mice express cyan fluorescent protein (CFP) in glomeruli, driven by the podocyte-specific nephrin promoter. In our in vitro studies, we examined whether high glucose alters Pax2 gene expresson in MK4 cells. The cells were treated with either 5 mM D-glucose plus 20 mM D-mannitol or 25 mM D-glucose media with or without reactive oxygen species (ROS) blockers (DPI, rotenone), and inhibitors of p38 mitogen-activated protein kinase (MAPK) (SB203580), p44/22 MAPK (PD98059), protein kinase C (PKC) (GF109203X), or nuclear factor kappa B (NK-kB) (PDTC) for 24-hr incubation. Our data showed that high D-glucose (25 mM) increased ROS generation and specifically induced Pax2 gene expression, but not other glucose analogs such as D-mannitol, L-glucose or 2-deoxy-D-glucose in MK4 cells. The stimulatory effect of high D-glucose on Pax2 gene expression could be blocked by ROS and NF-kB inhibitors in MK4 cells but not by inhibitors of p38 MAPK (SB203580), p44/22 MAPK (PD98059), and PKC (GFX) in MK4 cells. These data indicated that the stimulatory effect of high glucose on Pax2 gene expression is mediated, at least in part, via ROS generation and activation of NF-ÎșB, but not via the PKC, p38 MAPK and p44/42 MAPK signalling pathways. In our ex vivo studies, we investigated the influence of a high-glucose milieu on UB branching morphogenesis. Kidney explants (E12 to E18) were microdissected from timed-pregnant Hoxb7-GFP mice and cultured with either 5 mM D-glucose plus 20 mM D-mannitol or 25 mM D-glucose media with or without ROS blockers (DPI, rotenone), catalase and phosphoinositide-3-kinase (PI3K)/AKT inhibitor at different time points, depending on the experiment. We found that high D-glucose specifically stimulated UB branching in a time-dependent manner. High D-glucose stimulation of UB branching morphogenesis was mediated via Pax2 gene expression. High D-glucose-induced UB branching and Pax2 gene expression could be blocked by ROS and PI3K/AKT inhibitors. These studies demonstrated that high glucose alters UB branching morphogenesis via Pax2 gene and protein expression. The stimulatory effect of high glucose seems to be mediated via ROS generation and activation of the AKT signalling pathway. In our in vivo studies, we explored the fundamental role of maternal diabetes on renal morphogenesis impairment in offspring. In our experimental model, maternal diabetes was induced by streptozotocin in pregnant Hoxb7-GFP mice at embryonic day 13. The offspring were examined at several time points after birth (neonatal, 1 week, 2 weeks, and 3 weeks) with follow-up of kidney morphology, nephron number, gene expression, and apoptotic events in this short-term postnatal experiment. We observed that the offspring of diabetic mice had lower body weight, body size, kidney weight, small volume of glomeruli and a reduced number of nephrons in comparison to non-diabetic control offspring. Renal dysmorphogenesis may have been the result of increased cell apoptosis in glomeruli. Our findings showed that the offspring of diabetic mice displayed significantly more apoptotic podocytes as well as augmented active caspase-3 immunostaining in renal tubules compared to control mice offspring. Diabetic mice offspring presented heightened expression of intrarenal renin-angiotensin system (RAS) components, such as angiotensinogen and renin, with upregulation of p50 and p65 NF-kB isoforms. These data indicated that maternal diabetes activates the intrarenal RAS and induces glomerular apoptosis, resulting in impairment of renal morphogenesis in diabetic offspring. In conclusion, our findings indicated that a high-glucose milieu in utero or maternal diabetic alters UB morphogenesis, culminating in retardation of nephrogenesis with smaller kidney size. The underlying mechanism(s) is mediated, at least in part, via ROS generation and activation of the intrarenal RAS and NF-kB pathways. In the future, we aim to investigate the underlying mechanism(s) of how maternal diabetes induces perinatal programming of adult hypertension in offspring in vivo. This long-term postnatal study will be undertaken in 3 groups: adult offspring (20 weeks) of control mice, adult offspring of diabetic pregnant mice, and adult offspring of insulin-treated, diabetic, pregnant mice. We will follow-up by tracking hypertension, kidney morphology, and gene expression. Furthermore, we also plan to determine whether an antioxidant system (catalase) can protect against an hyperglycemic environment in utero that affects embryonic organogenesis via an increase in ROS generation. Catalase-Tg mice that specifically overexpress catalase in proximal tubules will be tested. Such Tg mice with catalase overexpression represent a model for exploring our hypothesis on the role of ROS in gestational diabetes
    • 

    corecore