29,526 research outputs found

    Fusing Loop and GPS Probe Measurements to Estimate Freeway Density

    Full text link
    In an age of ever-increasing penetration of GPS-enabled mobile devices, the potential of real-time "probe" location information for estimating the state of transportation networks is receiving increasing attention. Much work has been done on using probe data to estimate the current speed of vehicle traffic (or equivalently, trip travel time). While travel times are useful to individual drivers, the state variable for a large class of traffic models and control algorithms is vehicle density. Our goal is to use probe data to supplement traditional, fixed-location loop detector data for density estimation. To this end, we derive a method based on Rao-Blackwellized particle filters, a sequential Monte Carlo scheme. We present a simulation where we obtain a 30\% reduction in density mean absolute percentage error from fusing loop and probe data, vs. using loop data alone. We also present results using real data from a 19-mile freeway section in Los Angeles, California, where we obtain a 31\% reduction. In addition, our method's estimate when using only the real-world probe data, and no loop data, outperformed the estimate produced when only loop data were used (an 18\% reduction). These results demonstrate that probe data can be used for traffic density estimation

    Recurrence-based time series analysis by means of complex network methods

    Full text link
    Complex networks are an important paradigm of modern complex systems sciences which allows quantitatively assessing the structural properties of systems composed of different interacting entities. During the last years, intensive efforts have been spent on applying network-based concepts also for the analysis of dynamically relevant higher-order statistical properties of time series. Notably, many corresponding approaches are closely related with the concept of recurrence in phase space. In this paper, we review recent methodological advances in time series analysis based on complex networks, with a special emphasis on methods founded on recurrence plots. The potentials and limitations of the individual methods are discussed and illustrated for paradigmatic examples of dynamical systems as well as for real-world time series. Complex network measures are shown to provide information about structural features of dynamical systems that are complementary to those characterized by other methods of time series analysis and, hence, substantially enrich the knowledge gathered from other existing (linear as well as nonlinear) approaches.Comment: To be published in International Journal of Bifurcation and Chaos (2011

    2.5K-Graphs: from Sampling to Generation

    Get PDF
    Understanding network structure and having access to realistic graphs plays a central role in computer and social networks research. In this paper, we propose a complete, and practical methodology for generating graphs that resemble a real graph of interest. The metrics of the original topology we target to match are the joint degree distribution (JDD) and the degree-dependent average clustering coefficient (cˉ(k)\bar{c}(k)). We start by developing efficient estimators for these two metrics based on a node sample collected via either independence sampling or random walks. Then, we process the output of the estimators to ensure that the target properties are realizable. Finally, we propose an efficient algorithm for generating topologies that have the exact target JDD and a cˉ(k)\bar{c}(k) close to the target. Extensive simulations using real-life graphs show that the graphs generated by our methodology are similar to the original graph with respect to, not only the two target metrics, but also a wide range of other topological metrics; furthermore, our generator is order of magnitudes faster than state-of-the-art techniques
    corecore