4 research outputs found

    Navigation of mini swimmers in channel networks with magnetic fields

    Get PDF
    Controlled navigation of swimming micro robots inside fluid filled channels is necessary for applications in living tissues and vessels. Hydrodynamic behavior inside channels and interaction with channel walls need to be understood well for successful design and control of these surgical-tools-to-be. In this study, two different mechanisms are used for forward and lateral motion: rotation of helices in the direction of the helical axis leads to forward motion in the viscous fluid, and rolling due to wall traction results with the lateral motion near the wall. Experiments are conducted using a magnetic helical swimmer having 1.5 mm in length and 0.5 mm in diameter placed inside two different glycerol-filled channels with rectangular cross sections. The strength, direction and rotational frequency of the externally applied rotating magnetic field are used as inputs to control the position and direction of the micro swimmer in Y- and T-shaped channels

    Silicon and Polymer Components for Microrobots

    Get PDF
    This dissertation presents the characterization and implementation of the first microfabrication process to incorporate high aspect ratio compliant polymer structures in-plane with traditional silicon microelectromechanical systems (MEMS). This discussion begins with in situ mechanical characterization of microscale polymer springs using silicon-on-insulator-MEMS (SOI-MEMS). The analysis compares microscale samples that were tested on-chip with macroscale samples tested using a dynamic mechanical analyzer. The results describe the effect of the processing steps on the polymer during fabrication and help to guide the design of mechanisms using polymers. Characterization of the dielectric breakdown of polymer thin films with thicknesses from 2 to 14 μm between silicon electrodes was also performed. The results demonstrate that there is a strong dependence of the breakdown field on both the electrode gap and shape. The breakdown fields ranged from 250 V/μm to 635 V/μm, depending on the electrode geometry and gap, approaching 10x the breakdown fields for air gaps of the same size. These materials were then used to create compliant all-polymer thermal and electrostatic microactuators. All-polymer thermal actuators demonstrated displacements as large at 100 μm and forces as high as 55 μN. A 1 mm long electrostatic dielectric elastomer actuator demonstrated a tip displacement as high as 350 μm at 1.1 kV with a electrical power consumption of 11μW. The actuators are fabricated with elastomeric materials, so they are very robust and can undergo large strains in both tension and bending and still operate once released. Finally, the compliant polymer and silicon actuators were combined in an actuated bio-inspired system. Small insects and other animals use a multitude of materials to realize specific functions, including locomotion. By incorporating compliant elastomer structures in-plane with traditional silicon actuators, compact energy storage systems based on elastomer springs for small jumping robots were demonstrated. Results include a 4 mm x 4 mm jumping mechanism that has reached heights of 32 cm, 80x its own height, and an on-chip actuated mechanism that has been used to propel a 1.4mg projectile over 7 cm

    Design, characterization, visualization and navigation of swimming micro robots in channels

    Get PDF
    Recent advances in micro- and nano-technology and manufacturing systems enabled the development of small (1μm – 1 mm in length) robots that can travel inside channels of the body such as veins, arteries, similar channels of the central nervous system and other conduits in the body, by means of external magnetic fields. Bioinspired micro robots are promising tools for minimally invasive surgery, diagnosis, targeted drug delivery and material removal inside the human body. The motion of micro swimmers interacting with flow inside channels needs to be well understood in order to design and navigate micro robots for medical applications. This thesis emphasizes the in-channel swimming characteristics of robots with helical tails at low Reynolds number environment. Effects of swimming parameters, such as helical pitch, helical radius and the frequency of rotations as well as the effect of the radial position of the swimmer on swimming of the helical structures inside channels are analyzed by means of experiments and computational fluid dynamics (CFD) models using swimmers at different sizes. Micro particle image velocimetry (micro-PIV) experiments are performed to visualize the flow field in the cylindrical channel while micro robot has different angular velocities. The effects of solid plane boundaries on the motion of the micro swimmers are studied by experiments and modeling studies using micro robots placed inside rectangular channels. Controlled navigation of micro robots inside fluid-filled channel networks is performed using two different motion mechanism that are used for forward and lateral motion, and using the strength, direction and frequency of the externally applied magnetic field as control inputs. Lastly, position of the magnetic swimmers is detected using Hall-effect sensors by measuring the magnetic field strength
    corecore