405 research outputs found

    MRI-VisAct: a Bowden cable-driven MRI compatible series viscoelastic actuator

    Get PDF
    Presence of the strong magnetic fields in the Magnetic Resonance Imaging (MRI) environment limits the integration of robotic rehabilitation systems to the MRI process. The tendency to improve imaging quality by the amplification of magnetic field strength further tightens the bidirectional compatibility constraints on MRI compatible rehabilitation devices. We present the design, control, and characterization of MRI-VisAct—a low-cost, Bowden cable-actuated rotary series viscoelastic actuator that fulfills the bidirectional compatibility requirements to the maximum extend. Components of MRI-VisAct that are placed in the magnet room are built using nonconductive, diamagnetic MRI compatible materials, while ferromagnetic/paramagnetic components are placed in the control room, located outside the MRI room. Power and data transmission are achieved through Bowden-cables and fiber optics, respectively. This arrangement ensures that neuroimaging artifacts are minimized, while safety hazards are eliminated, and the device performance is not affected by the magnetic field. MRIVisAct works under closed-loop torque control enabled through series viscoelastic actuation. MRI-VisAct is fully customizable; it can serve as the building block of higher degrees of freedom MRI compatible robotic devices

    Design and Validation of a MR-compatible Pneumatic Manipulandum

    Get PDF
    The combination of functional MR imaging and novel robotic tools may provide unique opportunities to probe the neural systems underlying motor control and learning. Here, we describe the design and validation of a MR-compatible, 1 degree-of-freedom pneumatic manipulandum along with experiments demonstrating its safety and efficacy. We first validated the robot\u27s ability to apply computer-controlled loads about the wrist, demonstrating that it possesses sufficient bandwidth to simulate torsional spring-like loads during point-to-point flexion movements. Next, we verified the MR-compatibility of the device by imaging a head phantom during robot operation. We observed no systematic differences in two measures of MRI signal quality (signal/noise and field homogeneity) when the robot was introduced into the scanner environment. Likewise, measurements of joint angle and actuator pressure were not adversely affected by scanning. Finally, we verified device efficacy by scanning 20 healthy human subjects performing rapid wrist flexions against a wide range of spring-like loads. We observed a linear relationship between joint torque at peak movement extent and perturbation magnitude, thus demonstrating the robot\u27s ability to simulate spring-like loads in situ. fMRI revealed task-related activation in regions known to contribute to the control of movement including the left primary sensorimotor cortex and right cerebellum

    Principles of sensorimotor control and learning in complex motor tasks

    Get PDF
    The brain coordinates a continuous coupling between perception and action in the presence of uncertainty and incomplete knowledge about the world. This mapping is enabled by control policies and motor learning can be perceived as the update of such policies on the basis of improving performance given some task objectives. Despite substantial progress in computational sensorimotor control and empirical approaches to motor adaptation, to date it remains unclear how the brain learns motor control policies while updating its internal model of the world. In light of this challenge, we propose here a computational framework, which employs error-based learning and exploits the brain’s inherent link between forward models and feedback control to compute dynamically updated policies. The framework merges optimal feedback control (OFC) policy learning with a steady system identification of task dynamics so as to explain behavior in complex object manipulation tasks. Its formalization encompasses our empirical findings that action is learned and generalised both with regard to a body-based and an object-based frame of reference. Importantly, our approach predicts successfully how the brain makes continuous decisions for the generation of complex trajectories in an experimental paradigm of unfamiliar task conditions. A complementary method proposes an expansion of the motor learning perspective at the level of policy optimisation to the level of policy exploration. It employs computational analysis to reverse engineer and subsequently assess the control process in a whole body manipulation paradigm. Another contribution of this thesis is to associate motor psychophysics and computational motor control to their underlying neural foundation; a link which calls for further advancement in motor neuroscience and can inform our theoretical insight to sensorimotor processes in a context of physiological constraints. To this end, we design, build and test an fMRI-compatible haptic object manipulation system to relate closed-loop motor control studies to neurophysiology. The system is clinically adjusted and employed to host a naturalistic object manipulation paradigm on healthy human subjects and Friedreich’s ataxia patients. We present methodology that elicits neuroimaging correlates of sensorimotor control and learning and extracts longitudinal neurobehavioral markers of disease progression (i.e. neurodegeneration). Our findings enhance the understanding of sensorimotor control and learning mechanisms that underlie complex motor tasks. They furthermore provide a unified methodological platform to bridge the divide between behavior, computation and neural implementation with promising clinical and technological implications (e.g. diagnostics, robotics, BMI).Open Acces

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Design and control of an MRI compatible series elastic actuator

    Get PDF
    Bidirectional compatibility requirements with Magnetic Resonance Imaging (MRI) have limited the adaptation of rehabilitation robots for use in MRI machines. In this paper, we present the design and control of a Bowden cable-actuated, MRI-compatible series elastic actuator (SEA) that aims to fulfil the bidirectional compatibility requirements to the maximum extend. The proposed device is built using nonconductive diamagnetic MRI compatible materials, fiber optic sensing units and a Bowden cable based actuation, such that imaging artifacts created under strong magnetic field required for neuro-imaging are minimized. In particular, utilization of Bowden-cable transmission enables the placement of the conventional non-MRI compatible control/signal processing units and electric actuators outside the MRI room. This approach not only helps avoid the MR interference caused by these parts and eliminates safety hazards within the MRI room, but also ensures that the performance of the device is not affected by the strong magnetic field, resulting in ideal bidirectional MRI compatibility. Use of a custom-built fiber optic encoder together with nonconductive leaf spring based elastic element enables torque outputs of the device to be measured and used for closed-loop torque control, rendering the system into a series elastic actuator. The proposed MRI compatible SEA is easily customizable and can be used as the building block of higher degrees of freedom MRI compatible robotic devices. Current prototype is validated to administer continuous torques up to 2 Nm with a torque control bandwidth of 1 Hz and a torque sensing resolution of 0.05 Nm

    Design and Development of a Low Cost Platform to Facilitate Post-Stroke Rehabilitation of the Elbow/Shoulder Region

    Get PDF
    For post-stroke rehabilitation of the upper limbs, increased amounts of therapy are directly related to improved rehabilitation outcomes. As such, a low cost therapy platform is proposed suitable for facilitating active therapy and administering activeassist therapy to the shoulder/elbow region of the upper limbs of individuals post-stroke in a local clinic or domestic setting. Enabling a person to undergo intensive rehabilitation therapy outside of a rehabilitation hospital setting permits the amount of therapy administered to be maximised. While studies have shown that technological approaches to post-stroke rehabilitation do not produce better outcomes than equal amounts of traditional therapy in a rehabilitation hospital setting, a technological approach has the potential to have significant benefits when that therapy is being undertaken in a local clinic or domestic setting, where the individual undergoing therapy is relatively unsupervised. These benefits largely relate to a technological approach being more motivational for the person than an equivalent manual approach. However, for such an approach to be economically viable, effective, low cost devices are required. This document presents and critically discusses the design of this proposed low cost therapy platform along with possible routes for its further development

    Design of Cognitive Interfaces for Personal Informatics Feedback

    Get PDF

    The interaction between motion and texture in the sense of touch

    Get PDF
    Besides providing information on elementary properties of objects, like texture, roughness, and softness, the sense of touch is also important in building a representation of object movement and the movement of our hands. Neural and behavioral studies shed light on the mechanisms and limits of our sense of touch in the perception of texture and motion, and of its role in the control of movement of our hands. The interplay between the geometrical and mechanical properties of the touched objects, such as shape and texture, the movement of the hand exploring the object, and the motion felt by touch, will be discussed in this article. Interestingly, the interaction between motion and textures can generate perceptual illusions in touch. For example, the orientation and the spacing of the texture elements on a static surface induces the illusion of surface motion when we move our hand on it or can elicit the perception of a curved trajectory during sliding, straight hand movements. In this work we present a multiperspective view that encompasses both the perceptual and the motor aspects, as well as the response of peripheral and central nerve structures, to analyze and better understand the complex mechanisms underpinning the tactile representation of texture and motion. Such a better understanding of the spatiotemporal features of the tactile stimulus can reveal novel transdisciplinary applications in neuroscience and haptics
    corecore