7,654 research outputs found

    Victoria Amazonica Optimization (VAO): An Algorithm Inspired by the Giant Water Lily Plant

    Full text link
    The Victoria Amazonica plant, often known as the Giant Water Lily, has the largest floating spherical leaf in the world, with a maximum leaf diameter of 3 meters. It spreads its leaves by the force of its spines and creates a large shadow underneath, killing any plants that require sunlight. These water tyrants use their formidable spines to compel each other to the surface and increase their strength to grab more space from the surface. As they spread throughout the pond or basin, with the earliest-growing leaves having more room to grow, each leaf gains a unique size. Its flowers are transsexual and when they bloom, Cyclocephala beetles are responsible for the pollination process, being attracted to the scent of the female flower. After entering the flower, the beetle becomes covered with pollen and transfers it to another flower for fertilization. After the beetle leaves, the flower turns into a male and changes color from white to pink. The male flower dies and sinks into the water, releasing its seed to help create a new generation. In this paper, the mathematical life cycle of this magnificent plant is introduced, and each leaf and blossom are treated as a single entity. The proposed bio-inspired algorithm is tested with 24 benchmark optimization test functions, such as Ackley, and compared to ten other famous algorithms, including the Genetic Algorithm. The proposed algorithm is tested on 10 optimization problems: Minimum Spanning Tree, Hub Location Allocation, Quadratic Assignment, Clustering, Feature Selection, Regression, Economic Dispatching, Parallel Machine Scheduling, Color Quantization, and Image Segmentation and compared to traditional and bio-inspired algorithms. Overall, the performance of the algorithm in all tasks is satisfactory.Comment: 45 page

    A Hybrid Bacterial Swarming Methodology for Job Shop Scheduling Environment

    Get PDF
    Optimized utilization of resources is the need of the hour in any manufacturing system. A properly planned schedule is often required to facilitate optimization. This makes scheduling a significant phase in any manufacturing scenario. The Job Shop Scheduling Problem is an operation sequencing problem on multiple machines with some operation and machine precedence constraints, aimed to find the best sequence of operations on each machine in order to optimize a set of objectives. Bacterial Foraging algorithm is a relatively new biologically inspired optimization technique proposed based on the foraging behaviour of E.coli bacteria. Harmony Search is a phenomenon mimicking algorithm devised by the improvisation process of musicians. In this research paper, Harmony Search is hybridized with bacterial foraging to improve its scheduling strategies. A proposed Harmony Bacterial Swarming Algorithm is developed and tested with benchmark Job Shop instances. Computational results have clearly shown the competence of our method in obtaining the best schedule

    A NOVEL DISCRETE RAT SWARM OPTIMIZATION ALGORITHM FOR THE QUADRATIC ASSIGNMENT PROBLEM

    Get PDF
    The quadratic assignment problem (QAP) is an NP-hard problem with a wide range of applications in many real-world applications. This study introduces a discrete rat swarm optimizer (DRSO)algorithm for the first time as a solution to the QAP and demonstrates its effectiveness in terms of solution quality and computational efficiency. To address the combinatorial nature of the QAP, a mapping strategy is introduced to convert real values into discrete values, and mathematical operators are redefined to make then suitable for combinatorial problems. Additionally, a solution quality improvement strategy based on local search heuristics such as 2-opt and 3-opt is proposed. Simulations with test instances from the QAPLIB test library validate the effectiveness of the DRSO algorithm, and statistical analysis using the Wilcoxon parametric test confirms its performance. Comparative analysis with other algorithms demonstrates the superior performance of DRSO in terms of solution quality, convergence speed, and deviation from the best-known values, making it a promising approach for solving the QAP

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system
    corecore