3,505 research outputs found

    A novel framework for assessing metadata quality in epidemiological and public health research settings

    Get PDF
    Metadata are critical in epidemiological and public health research. However, a lack of biomedical metadata quality frameworks and limited awareness of the implications of poor quality metadata renders data analyses problematic. In this study, we created and evaluated a novel framework to assess metadata quality of epidemiological and public health research datasets. We performed a literature review and surveyed stakeholders to enhance our understanding of biomedical metadata quality assessment. The review identified 11 studies and nine quality dimensions; none of which were specifically aimed at biomedical metadata. 96 individuals completed the survey; of those who submitted data, most only assessed metadata quality sometimes, and eight did not at all. Our framework has four sections: a) general information; b) tools and technologies; c) usability; and d) management and curation. We evaluated the framework using three test cases and sought expert feedback. The framework can assess biomedical metadata quality systematically and robustly

    ‘Next-Generation’ surveillance: an epidemiologists’ perspective on the use of molecular information in food safety and animal health decision-making

    Get PDF
    Advances in the availability and affordability of molecular and genomic data are transforming human health care. Surveillance aimed at supporting and improving food safety and animal health is likely to undergo a similar transformation. We propose a definition of ‘molecular surveillance’ in this context and argue that molecular data are an adjunct to rather than a substitute for sound epidemiological study and surveillance design. Specific considerations with regard to sample collection are raised, as is the importance of the relation between the molecular clock speed of genetic markers and the spatiotemporal scale of the surveillance activity, which can be control- or strategy-focused. Development of standards for study design and assessment of molecular surveillance system attributes is needed, together with development of an interdisciplinary skills base covering both molecular and epidemiological principles

    Status and potential of bacterial genomics for public health practice : a scoping review

    Get PDF
    Background: Next-generation sequencing (NGS) is increasingly being translated into routine public health practice, affecting the surveillance and control of many pathogens. The purpose of this scoping review is to identify and characterize the recent literature concerning the application of bacterial pathogen genomics for public health practice and to assess the added value, challenges, and needs related to its implementation from an epidemiologist’s perspective. Methods: In this scoping review, a systematic PubMed search with forward and backward snowballing was performed to identify manuscripts in English published between January 2015 and September 2018. Included studies had to describe the application of NGS on bacterial isolates within a public health setting. The studied pathogen, year of publication, country, number of isolates, sampling fraction, setting, public health application, study aim, level of implementation, time orientation of the NGS analyses, and key findings were extracted from each study. Due to a large heterogeneity of settings, applications, pathogens, and study measurements, a descriptive narrative synthesis of the eligible studies was performed. Results: Out of the 275 included articles, 164 were outbreak investigations, 70 focused on strategy-oriented surveillance, and 41 on control-oriented surveillance. Main applications included the use of whole-genome sequencing (WGS) data for (1) source tracing, (2) early outbreak detection, (3) unraveling transmission dynamics, (4) monitoring drug resistance, (5) detecting cross-border transmission events, (6) identifying the emergence of strains with enhanced virulence or zoonotic potential, and (7) assessing the impact of prevention and control programs. The superior resolution over conventional typing methods to infer transmission routes was reported as an added value, as well as the ability to simultaneously characterize the resistome and virulome of the studied pathogen. However, the full potential of pathogen genomics can only be reached through its integration with high-quality contextual data. Conclusions: For several pathogens, it is time for a shift from proof-of-concept studies to routine use of WGS during outbreak investigations and surveillance activities. However, some implementation challenges from the epidemiologist’s perspective remain, such as data integration, quality of contextual data, sampling strategies, and meaningful interpretations. Interdisciplinary, inter-sectoral, and international collaborations are key for an appropriate genomics-informed surveillance

    The evaluation and harmonisation of disparate information metamodels in support of epidemiological and public health research

    Get PDF
    BACKGROUND: Descriptions of data, metadata, provide researchers with the contextual information they need to achieve research goals. Metadata enable data discovery, sharing and reuse, and are fundamental to managing data across the research data lifecycle. However, challenges associated with data discoverability negatively impact on the extent to which these data are known by the wider research community. This, when combined with a lack of quality assessment frameworks and limited awareness of the implications associated with poor quality metadata, are hampering the way in which epidemiological and public health research data are documented and repurposed. Furthermore, the absence of enduring metadata management models to capture consent for record linkage metadata in longitudinal studies can hinder researchers from establishing standardised descriptions of consent. AIM: To examine how metadata management models can be applied to ameliorate the use of research data within the context of epidemiological and public health research. METHODS: A combination of systematic literature reviews, online surveys and qualitative data analyses were used to investigate the current state of the art, identify current perceived challenges and inform creation and evaluation of the models. RESULTS: There are three components to this thesis: a) enhancing data discoverability; b) improving metadata quality assessment; and c) improving the capture of consent for record linkage metadata. First, three models were examined to enhance research data discoverability: data publications, linked data on the World Wide Web and development of an online public health portal. Second, a novel framework to assess epidemiological and public health metadata quality framework was created and evaluated. Third, a novel metadata management model to improve capture of consent for record linkage metadata was created and evaluated. CONCLUSIONS: Findings from these studies have contributed to a set of recommendations for change in research data management policy and practice to enhance stakeholders’ research environment

    The European Institute for Innovation through Health Data

    Get PDF
    The European Institute for Innovation through Health Data (i~HD, www.i-hd.eu) has been formed as one of the key sustainable entities arising from the Electronic Health Records for Clinical Research (IMI-JU-115189) and SemanticHealthNet (FP7-288408) projects, in collaboration with several other European projects and initiatives supported by the European Commission. i~HD is a European not-for-profit body, registered in Belgium through Royal Assent. i~HD has been established to tackle areas of challenge in the successful scaling up of innovations that critically rely on high-quality and interoperable health data. It will specifically address obstacles and opportunities to using health data by collating, developing, and promoting best practices in information governance and in semantic interoperability. It will help to sustain and propagate the results of health information and communication technology (ICT) research that enables better use of health data, assessing and optimizing their novel value wherever possible. i~HD has been formed after wide consultation and engagement of many stakeholders to develop methods, solutions, and services that can help to maximize the value obtained by all stakeholders from health data. It will support innovations in health maintenance, health care delivery, and knowledge discovery while ensuring compliance with all legal prerequisites, especially regarding the insurance of patient's privacy protection. It is bringing multiple stakeholder groups together so as to ensure that future solutions serve their collective needs and can be readily adopted affordably and at scale

    Data challenges for international health emergencies: lessons learned from ten international COVID-19 driver projects

    Get PDF
    The COVID-19 pandemic highlighted the importance of international data sharing and access to improve health outcomes for all. The International COVID-19 Data Alliance (ICODA) programme enabled 12 exemplar or driver projects to use existing health-related data to address major research questions relating to the pandemic, and developed data science approaches that helped each research team to overcome challenges, accelerate the data research cycle, and produce rapid insights and outputs. These approaches also sought to address inequity in data access and use, test approaches to ethical health data use, and make summary datasets and outputs accessible to a wider group of researchers. This Health Policy paper focuses on the challenges and lessons learned from ten of the ICODA driver projects, involving researchers from 19 countries and a range of health-related datasets. The ICODA programme reviewed the time taken for each project to complete stages of the health data research cycle and identified common challenges in areas such as data sharing agreements and data curation. Solutions included provision of standard data sharing templates, additional data curation expertise at an early stage, and a trusted research environment that facilitated data sharing across national boundaries and reduced risk. These approaches enabled the driver projects to rapidly produce research outputs, including publications, shared code, dashboards, and innovative resources, which can all be accessed and used by other research teams to address global health challenges

    Exploring the integration of traditional and molecular epidemiological methods for infectious disease outbreaks

    Get PDF
    BACKGROUND: Understanding the transmission dynamics of infectious pathogens is critical to developing effective public health strategies. Traditionally, time consuming epidemiological methods were used, often limited by incomplete or inaccurate datasets. Novel phylogenetic techniques can determine transmission events, but have rarely been used in real-time outbreak settings to inform interventions and limit the impact of outbreaks. METHODS: I undertook a series of novel studies to explore the utility of combining phylogenetics with traditional epidemiological analysis to enhance the understanding of transmission dynamics. I investigated HIV in an endemic South African setting and Ebola in an acute outbreak in Sierra Leone. The strengths and limitations of this combined approach are explored, ethical issues investigated and recommendations made regarding the implications of this work for public health. RESULTS: Phylogenetics provides an exciting and synergistic tool to epidemiological analysis in outbreak investigation and control. These combined methods enable a more detailed understanding than is possible through either discipline alone. My key findings include: • Identification of infection source: Phylogenetics gives new insight into the role of external introductions (e.g. migrators) in driving and sustaining the high incidence of HIV. • Earlier identification of new emerging clusters: I identified a new cluster of HIV from around a mining community. This is one of the first examples of molecular methods detecting a previously unknown outbreak. • Identification of novel mechanisms of transmission: This work suggests that children may have been infected by playing in puddles contaminated with Ebola, a previously unrecognised route of transmission. CONCLUSION: The integration of these two methods facilitate sophisticated real-time techniques to maximise understanding of transmission dynamics, allowing faster and more effectively targeted interventions. Moving forwards, sequence data should be incorporated into standard outbreak investigation. This is critical at a time when infectious disease outbreaks have led to the some of the most significant global health threats of the recent past

    Genome sequencing for viral pathogen detection and surveillance

    Get PDF

    Genome sequencing for viral pathogen detection and surveillance

    Get PDF
    • …
    corecore