22,510 research outputs found

    Drug prescription support in dental clinics through drug corpus mining

    Get PDF
    The rapid increase in the volume and variety of data poses a challenge to safe drug prescription for the dentist. The increasing number of patients that take multiple drugs further exerts pressure on the dentist to make the right decision at point-of-care. Hence, a robust decision support system will enable dentists to make decisions on drug prescription quickly and accurately. Based on the assumption that similar drug pairs have a higher similarity ratio, this paper suggests an innovative approach to obtain the similarity ratio between the drug that the dentist is going to prescribe and the drug that the patient is currently taking. We conducted experiments to obtain the similarity ratios of both positive and negative drug pairs, by using feature vectors generated from term similarities and word embeddings of biomedical text corpus. This model can be easily adapted and implemented for use in a dental clinic to assist the dentist in deciding if a drug is suitable for prescription, taking into consideration the medical profile of the patients. Experimental evaluation of our model’s association of the similarity ratio between two drugs yielded a superior F score of 89%. Hence, such an approach, when integrated within the clinical work flow, will reduce prescription errors and thereby increase the health outcomes of patients

    Drug prescription support in dental clinics through drug corpus mining

    Get PDF
    The rapid increase in the volume and variety of data poses a challenge to safe drug prescription for the dentist. The increasing number of patients that take multiple drugs further exerts pressure on the dentist to make the right decision at point-of-care. Hence, a robust decision support system will enable dentists to make decisions on drug prescription quickly and accurately. Based on the assumption that similar drug pairs have a higher similarity ratio, this paper suggests an innovative approach to obtain the similarity ratio between the drug that the dentist is going to prescribe and the drug that the patient is currently taking. We conducted experiments to obtain the similarity ratios of both positive and negative drug pairs, by using feature vectors generated from term similarities and word embeddings of biomedical text corpus. This model can be easily adapted and implemented for use in a dental clinic to assist the dentist in deciding if a drug is suitable for prescription, taking into consideration the medical profile of the patients. Experimental evaluation of our model’s association of the similarity ratio between two drugs yielded a superior F score of 89%. Hence, such an approach, when integrated within the clinical work flow, will reduce prescription errors and thereby increase the health outcomes of patients

    Herb Target Prediction Based on Representation Learning of Symptom related Heterogeneous Network.

    Get PDF
    Traditional Chinese Medicine (TCM) has received increasing attention as a complementary approach or alternative to modern medicine. However, experimental methods for identifying novel targets of TCM herbs heavily relied on the current available herb-compound-target relationships. In this work, we present an Herb-Target Interaction Network (HTINet) approach, a novel network integration pipeline for herb-target prediction mainly relying on the symptom related associations. HTINet focuses on capturing the low-dimensional feature vectors for both herbs and proteins by network embedding, which incorporate the topological properties of nodes across multi-layered heterogeneous network, and then performs supervised learning based on these low-dimensional feature representations. HTINet obtains performance improvement over a well-established random walk based herb-target prediction method. Furthermore, we have manually validated several predicted herb-target interactions from independent literatures. These results indicate that HTINet can be used to integrate heterogeneous information to predict novel herb-target interactions

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues
    • …
    corecore