220 research outputs found

    A review on design of upper limb exoskeletons

    Get PDF

    Development of a Wearable Mechatronic Elbow Brace for Postoperative Motion Rehabilitation

    Get PDF
    This thesis describes the development of a wearable mechatronic brace for upper limb rehabilitation that can be used at any stage of motion training after surgical reconstruction of brachial plexus nerves. The results of the mechanical design and the work completed towards finding the best torque transmission system are presented herein. As part of this mechatronic system, a customized control system was designed, tested and modified. The control strategy was improved by replacing a PID controller with a cascade controller. Although the experiments have shown that the proposed device can be successfully used for muscle training, further assessment of the device, with the help of data from the patients with brachial plexus injury (BPI), is required to improve the control strategy. Unique features of this device include the combination of adjustability and modularity, as well as the passive adjustment required to compensate for the carrying angle

    Design Methodology for Soft Wearable Devices—The MOSAR Case

    Get PDF
    This paper proposes a methodology from the conception to the manufacture of soft wearable devices (SWD). This methodology seeks to unify medical, therapeutic and engineering guidelines for research, development and innovation. The aforementioned methodology is divided into two stages (A and B) and four phases. Stage A only includes phase 1 to identify the main necessity for a patient that will define the target of its associated device. Stage B encompasses phases 2, 3 and 4. The development of three models (virtual, mathematical and experimental physical) of the required device is addressed in phase 2. Phase 3 concerns the control and manufacture of the experimental physical model (EPM). Phase 4 focuses on the EPM experimental validation. As a result of this methodology, 13 mobility, 11 usability and 3 control iterative design criteria for SWD are reported. Moreover, more than 50 products are provided on a technological platform with modular architectures that facilitate SWD diversification. A case study related to a soft mobilizer for upper limb rehabilitation is reported. Nevertheless, this methodology can be implemented in different areas and accelerates the transition from development to innovation

    MOSAR: A Soft-Assistive Mobilizer for Upper Limb Active Use and Rehabilitation

    Get PDF
    In this study, a soft assisted mobilizer called MOSAR from (Mobilizador Suave de Asistencia y Rehabilitación) for upper limb rehabilitation was developed for a 11 years old child with right paretic side. The mobilizer provides a new therapeutic approach to augment his upper limb active use and rehabilitation, by means of exerting elbow (flexion-extension), forearm (pronation-supination) and (flexion-extension along with ulnar-radial deviations) at the wrist. Preliminarily, the design concept of the soft mobilizer was developed through Reverse Engineering of his upper limb: first casting model, silicone model, and later computational model were obtained by 3D scan, which was the parameterized reference for MOSAR development. Then, the manufacture of fabric inflatable soft actuators for driving the MOSAR system were carried out. Lastly, a law close loop control for the inflation-deflation process was implemented to validate FISAs performance. The results demonstrated the feasibility and effectiveness of the FISAs for being a functional tool for upper limb rehabilitation protocols by achieving those previous target motions similar to the range of motion (ROM) of a healthy person or being used in other applications

    Modeling and Design of a Spring-loaded, Cable-driven, Wearable Exoskeleton for the Upper Extremity

    Get PDF
    An approach to the design of wearable exoskeletons on the basis of simulation of the exoskeleton and a human body model is proposed in this paper. The new approach, addressing the problem of physical human-exoskeleton interactions, models and simulates the mechanics of both the exoskeleton and the human body, which allows designers to effectively analyze and evaluate an exoskeleton design for their function in concert with the human body. A simulation platform is developed by integrating a biomechanical model of the human body and the exoskeleton. With the proposed approach, an exoskeleton is designed for assisting patients with neuromuscular injuries. Results of the analysis and optimization are included

    Robotic Home-Based Rehabilitation Systems Design: From a Literature Review to a Conceptual Framework for Community-Based Remote Therapy During COVID-19 Pandemic

    Get PDF
    During the COVID-19 pandemic, the higher susceptibility of post-stroke patients to infection calls for extra safety precautions. Despite the imposed restrictions, early neurorehabilitation cannot be postponed due to its paramount importance for improving motor and functional recovery chances. Utilizing accessible state-of-the-art technologies, home-based rehabilitation devices are proposed as a sustainable solution in the current crisis. In this paper, a comprehensive review on developed home-based rehabilitation technologies of the last 10 years (2011–2020), categorizing them into upper and lower limb devices and considering both commercialized and state-of-the-art realms. Mechatronic, control, and software aspects of the system are discussed to provide a classified roadmap for home-based systems development. Subsequently, a conceptual framework on the development of smart and intelligent community-based home rehabilitation systems based on novel mechatronic technologies is proposed. In this framework, each rehabilitation device acts as an agent in the network, using the internet of things (IoT) technologies, which facilitates learning from the recorded data of the other agents, as well as the tele-supervision of the treatment by an expert. The presented design paradigm based on the above-mentioned leading technologies could lead to the development of promising home rehabilitation systems, which encourage stroke survivors to engage in under-supervised or unsupervised therapeutic activities

    A Novel 3D Printed Wrist Rehabilitation Robot: Design, Development and Optimal Trajectory Planning

    Get PDF
    Rehabilitation of patients suffering after stroke impairment is a lengthy process and requires experienced therapists. These limitations have led to the introduction of rehabilitation robots that can operate for a longer time while eliminating the lack of professional therapists. In this thesis, we propose a two-degrees-of-freedom robot for wrist rehabilitation, referred to as MOCH. The MOCH mechanism comprises a remote center of motion (RCM) mechanism with a rotation center outside of the robot structure. When the patient holds the robot end-effector, coinciding the RCM of the robot with the rotation axis of the wrist, allows pure rotational motion of the hand. As the RCM lies out of the robot structure, there is less risk of interference with the patient. Furthermore, MOCH benefits a novel actuation that enables the actuators to be grounded, reducing the inertia and the size of the robot. The optimal design of MOCH is provided considering the mechanical criteria and requirements of the wrist rehabilitation. Based on the proposed design, a prototype of the robot is developed with a total mass of 1.3 kg using 3D printing technology. Additionally, we introduce a novel methodology for passive rehabilitation exercise, exploiting the wrist dynamics which removes the complexity of force/impedance control approaches. This method involves designing an optimal trajectory within the limits of the wrist motion, and to keep the applied torque on the patient's hand in a safe range without using force sensors. The proposed trajectory is tested on a healthy individual using the implemented prototype

    A Bamboo-inspired Exoskeleton (BiEXO) Based on Carbon Fiber for Shoulder and Elbow Joints

    Get PDF
    This paper presents a novel cable-driven exoskeleton (BiEXO) for the upper limb including shoulder and elbow joints. BiEXO is made of carbon fiber that is inspired by the Bamboo structure. The key components of BiEXO are carbon fiber tubes that mimic bamboo tubes. A combined driver is developed for BiEXO with two cable-driven mechanisms (CDMs) and a power transmission belt (PTB). The CDMs are used for shoulder and elbow flexion/extension movement utilizing cables to mimic the skeletal muscles function, while the PTB system drives a shoulder link to mimic the scapula joint for shoulder abduction/adduction movement. Simulation studies and evaluation experiments were performed to demonstrate the efficacy of the overall system. To determine the strength-to-weight of the bamboo-inspired links and guarantee high buckling strength in the face of loads imposed from the user side to the structure, finite element analysis (FEA) was performed. The results show that the carbon fiber link inspired by bamboo has more strength in comparison to the common long carbon fiber tube. The kinematic configuration was modeled by the modified Denavit-Hartenberg (D-H) notation. The mean absolute error (MAE) was 5.9 mm, and the root-mean-square error (RMSE) was 6 mm. In addition, verification experiments by tracking the trajectory in Cartesian space and the wear trials on a subject were carried out on the BiEXO prototype. The satisfactory results indicate BiEXO to be a promising system for rehabilitation or assistance in the future.</p

    A Bamboo-inspired Exoskeleton (BiEXO) Based on Carbon Fiber for Shoulder and Elbow Joints

    Get PDF
    This paper presents a novel cable-driven exoskeleton (BiEXO) for the upper limb including shoulder and elbow joints. BiEXO is made of carbon fiber that is inspired by the Bamboo structure. The key components of BiEXO are carbon fiber tubes that mimic bamboo tubes. A combined driver is developed for BiEXO with two cable-driven mechanisms (CDMs) and a power transmission belt (PTB). The CDMs are used for shoulder and elbow flexion/extension movement utilizing cables to mimic the skeletal muscles function, while the PTB system drives a shoulder link to mimic the scapula joint for shoulder abduction/adduction movement. Simulation studies and evaluation experiments were performed to demonstrate the efficacy of the overall system. To determine the strength-to-weight of the bamboo-inspired links and guarantee high buckling strength in the face of loads imposed from the user side to the structure, finite element analysis (FEA) was performed. The results show that the carbon fiber link inspired by bamboo has more strength in comparison to the common long carbon fiber tube. The kinematic configuration was modeled by the modified Denavit-Hartenberg (D-H) notation. The mean absolute error (MAE) was 5.9 mm, and the root-mean-square error (RMSE) was 6 mm. In addition, verification experiments by tracking the trajectory in Cartesian space and the wear trials on a subject were carried out on the BiEXO prototype. The satisfactory results indicate BiEXO to be a promising system for rehabilitation or assistance in the future.</p
    • …
    corecore