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Abstract 
  

This thesis describes the development of a wearable mechatronic brace for upper limb 

rehabilitation that can be used at any stage of motion training after surgical reconstruction 

of brachial plexus nerves. The results of the mechanical design and the work completed 

towards finding the best torque transmission system are presented herein. As part of this 

mechatronic system, a customized control system was designed, tested and modified. The 

control strategy was improved by replacing a PID controller with a cascade controller. 

Although the experiments have shown that the proposed device can be successfully used 

for muscle training, further assessment of the device, with the help of data from the patients 

with brachial plexus injury (BPI), is required to improve the control strategy. Unique 

features of this device include the combination of adjustability and modularity, as well as 

the passive adjustment required to compensate for the carrying angle. 

 

Keywords: brachial plexus injury, elbow, powered exoskeleton, wearable brace, 

rehabilitation, EMG, biceps and triceps. 
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CHAPTER 1 

1 INTRODUCTION 
 

Over 60 million people in North America require trauma-related care [1]. The major causes 

of musculoskeletal traumas in Canada between 2008 and 2009 were accidents (79%): the 

result of a fall (38%) or of motor vehicle collisions (41%) [2]. After hospitalization, many 

patients struggle to find a therapy that works for them. A common challenge for a patient 

during the recovery process is to follow a long-term home-based exercise program 

customized for each specific case. Failure to comply with the rehabilitation program and a 

lack of cooperation by the patient leads to chronic pain, limited range of motion and other 

unresolved issues. 55–75% of patients retain the limb impairment after 3–6 months [3]. 

Thus, a huge area in biomedical engineering known as robotic-aided-rehabilitation 

proposes alternative solutions for complex and time-consuming motion training programs.  

The attraction of using robotic-aided-rehabilitation is based on the idea that a smart device 

has the capability of measuring the patient’s performance outside of the clinical settings 

and providing effective feedback both to the patient and to the therapist. Thus, the 24/7 

supervision provided by a rehabilitation device is a promising option for patients with 

functional impairment that lack motivation during long-lasting home-based treatment.  

1.1 Motivation 

Musculoskeletal trauma (MST), as a result of a peripheral nerve injury, was reported in 

2.8% among the trauma population [4]. One particular MST that requires extensive upper 

limb therapy results when the brachial plexus nerves are damaged [5]. Brachial plexus 

injury (BPI) produces sensory degradation that starts immediately after nerve lesion occurs. 

Thus, early surgical nerve reconstruction is recommended [6]. 



2 

 

 

 

 

Due to the complexity of the human neuromuscular system, the postoperative recovery 

process may take 12–24 months. During the reinnervation, i.e., nerve regeneration after a 

lesion, sensory functions are based on the previous experience of cortex (the region of the 

brain that controls movements), i.e., new profiles of nerve impulses are not immediately 

associated with corresponding movements. Therefore, some patients are not able to lift their 

arm without external assistance despite the presence of neural activity in the muscles. As a 

result, BPI patients have to learn how to control the extremity by means of repetitive 

training with dynamic splints and mechanical braces [6]. However, despite the desire to 

restore functional activity of the impaired extremity, many patients tend to skip the follow 

up meetings with the therapist due to social and economic problems [7]. Additionally, 

patients do not provide enough information about the progress and frequency of muscle 

training at home. Thus, therapists have difficulties in correcting the rehabilitation 

equipment properly and maintaining or accelerating the recovery of the impaired limb. 

Moreover, without constant professional feedback during the home-based therapy, a 

phenomenon called “learned non-use” (LNU) may occur [6]. During the daily activities, 

BPI patients learn to involve their non-affected limb due to repetitive failure to use of the 

affected one. Eventually, when the motor skills are changed, patients suppress to use their 

recovered limb even when full reinnervation takes place. 

At the end of the rehabilitation, in 20–25% of BPI patients, only half of the functional skills 

are restored [8] or they continue with lifelong limb impairment [9]. As a result, they have 

a lower quality of life compared to the normal population [8] due to such factors as reduced 

family income, low emotional connection between family members and overall emotional 

instability and constant stress. Consequently, despite clinicians’ effort and patients’ 

willingness to recover, the current postoperative treatment strategies are limited when 

assisting BPI patients during home-based therapy. Thus, an automated method of muscle 

training control with remote clinicians’ supervision during the home-based training is a 

promising but still unexplored possibility to accelerate BPI patients’ recovery. 

The constant communication between the patient and the therapist via an automated method 

of muscle training control will increase the patient’s motivation to perform all of the 

prescribed training exercises. At the same time, the therapist will be provided with the 

information on how the patient progresses or whether the patient’s program/equipment 

should be corrected.  
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The automated method of control may be achieved by using smart robotic technologies for 

assistive-rehabilitation that can measure patient’s muscle activity, record progress and 

communicate with the therapist 24/7. However, despite the abundance of robot-assisted 

projects during the last years, there is still no consistency on how to design wearable 

mechatronic devices for upper limbs, nor is there information on how to apply them to the 

needs of patients with BPI. Hence, it is necessary to determine how to expand the 

application of robots to home-based muscle trainings for BPI patients, as well as to identify 

the role of a wearable mechatronic device in the postoperative rehabilitation process. 

1.2 General Problem Statement 

Nerve related trauma can involve connective tissues, muscles and tendons. Despite the 

variety of nerve lesions, physical therapy modalities and postoperative care, therapeutic 

exercise plays an essential role for BPI patients. Although active-assistive rehabilitation 

has been shown [10] to help restore musculoskeletal functionality, many patients are not 

compliant with their rehabilitation program due to social responsibilities, forgetfulness, 

lack of motivation, boredom and/or lack of instant feedback [7]. Thus, a promising option 

for this group of patients is a home-based therapy assisted by an interactive portable 

mechatronic device that 1) maintains patient motivation, 2) monitors and measures 

movements outside of a clinical setting and 3) provides motion assistance. Hence, it was 

proposed to design a wearable mechatronic brace for upper limb rehabilitation that can be 

used at any stage of motion training after surgical reconstruction of brachial plexus nerves. 

1.3 Research Objectives and Scope 

The main goal of this thesis is to design a mechatronic home-based device for postoperative 

muscle training that assists patients to perform desired motions and ensures that the motion 

is within a safe range. Since the brachial plexus nerves control all upper limb muscles 

including neck muscles, the focus of interest was narrowed down to the upper arm muscles 

that move the elbow joint.  

The scope of the work includes the mechanical design of the proposed device and an 

assessment of the performance of the prototype. In order to identify the design requirements 

for the safe and effective motion therapy of the upper limb, a proper review of elbow 

biomechanics and the natural movement of this joint, standard postoperative techniques of 
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motion restoration currently used and prior art in elbow rehabilitation robotics were 

required. The design stage of the project includes following objectives: 

 to identify technical specifications for the mechanical and actuation parts of the device; 

 to develop and evaluate proposed design concepts; 

 to select the most optimal solution for the mechanical and actuation parts of the device; 

 to build a prototype of the proposed device; 

 to setup and calibrate the actuation system of the prototype. 

Since motion rehabilitation involves both passive and active training, three basic modes of 

postoperative treatments were considered as the main functions of the device: (1) passive 

(assistive) exercises, (2) assisted (assistive-as-needed) motions and (3) resistive (assistive-

as-needed) exercises. All modes require a sensing system that quantifies patient’s intention 

to move the upper limb. Therefore, a method of motion intention estimation that can be 

adapted for different exercise modes was designed as part of the current work. To achieve 

this goal, the following objectives were addressed: 

 Sensing systems that quantify the patient’s intention to move the upper limb were 

reviewed. 

 A motion sensing strategy for BPI patients that undergo postoperative motion 

rehabilitation was selected. 

 An elbow motion model that uses sensed data from the user and estimates the desired 

elbow position was designed and evaluated. 

 The proposed elbow motion sensing model was integrated into the control system of the 

prototype. 

Finally, an assessment of the mechatronic elbow brace performance can be achieved by 

evaluating reliability, accuracy and repeatability of the device response for the three modes 

under diverse conditions according to the specifications. Based on the results, further 

modifications to the device were proposed. 

1.4 Overview of the Thesis 

The structure of the rest of the thesis is as follows: 
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Chapter 2 Background: Provides an overview of elbow biomechanics and 

current strategies for postoperative elbow treatment. 

Literature Review: Summarizes the state of the art in portable 

rehabilitation robotics for elbow motion rehabilitation, as well as 

sensing strategies for motion detection. 

Chapter 3 Device Design: Outlines the design and development of the prototype 

of the wearable elbow brace. A comprehensive decision making 

analysis of mechanical and actuation design was also described in this 

section. 

Chapter 4 Device Prototype: Provides an overview of the wearable elbow 

mechatronics-enabled brace prototype. An assessment of the design 

features is described and discussed. 

Chapter 5 Methods of Digital Signal Processing: Presents the work done 

towards the development of two rehabilitation modes of the wearable 

elbow brace. The educational mode was designed to mimic the 

training sessions with the therapist, while the assistive mode was 

developed for home use. This chapter includes the preliminary 

evaluation of two hypotheses used for estimation of a trajectory and 

a speed profile of the forearm motion. 

Chapter 6 Performance Assessment: This chapter explains how the two 

postoperative modes were simulated using MATALB scripts and 

duplicated in C++ Visual Studio project to test prototype 

performance. The results of the experiment were compared to the 

design goal. The prototype performance, as well as errors and 

limitations of the experiment, are discussed in this chapter. 

Chapter 7 Concluding Remarks: Highlights the contributions of this thesis and 

proposed suggestions to refine the preferred design. 

Appendix A Rated Life of Bearings: Based on the findings in Section 3.3.1, 

calculation of the rated life of a bearing are presented in the 

Appendix. 

Appendix B Motor–Gearbox selection: This Appendix presents the summary of 

motor–gearbox selection according to actuation system specification 

in Section 3.3.4. 
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Appendix C Motor Specification: This Appendix includes motor specification that 

was selected in Chapter 3. 

Appendix D Bearing Specification: This Appendix includes the specifications of 

the bearings selected in Chapter 3. 

Permissions 

and Approvals 

Presents proof of ethics approval for the trials that involved human 

subjects, as well as the supporting documents for the trials. 
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CHAPTER 2 

2 LITERATURE REVIEW AND BACKGROUND 
 

In order to develop the list of design requirements for a mechatronic elbow brace, the elbow 

biomechanics, current postoperative motion rehabilitation techniques, prior art in portable 

rehabilitation robotics for upper limb, as well as sensing strategies for motion detection 

were reviewed. The section presents a summary of the findings. 

A comprehensive literature search was performed during the period of January to August 

2014 and continuously updated during the period of September 2014 to April 2015 using 

Google Scholar, IEEE Xplore, SpringerLink Journals and PubMed. A diverse combination 

of the following keywords were used: elbow, powered, exoskeleton, brace, orthosis, 

wearable, portable, rehabilitation, EMG-driven, EMG model, EMG prediction, EMG 

biceps (BB) and EMG triceps (TB). The priority was given to papers published in the 

previous 5 years. A total of 154 papers formed a database, including 70 papers selected for 

the mechanical design review of powered elbow braces and 52 papers that review sensing 

systems for elbow motion and rehabilitation. Additionally, a review of the commercially 

available devices for upper arm and elbow rehabilitation was summarized in order to 

estimate cost constrains and to develop a custom-oriented design strategy. 

The following section focuses on the basics of the upper limb neuromuscular structure 

(Section 2.1), a brief overview of the elbow motion restoration process (Section 2.2) and 

current methods for postoperative elbow motion rehabilitation strategies (Section 2.3). 

Based on the literature research in Section 2.3, Section 2.4 summarizes this chapter with an 

outline of the unresolved problems in upper limb motion rehabilitation for BPI patients.  
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2.1 Brachial Plexus Structure and Lesions 

The sensory-motor innervation of the upper arm is provided by the brachial plexus nerves 

formed by the confluence of the ventral rami of the spinal nerve roots from C5 to T1. 

Considering the location of nerve dissection (nerve root, trunk, division, cord or 

musculocutaneous nerve), each scenario of muscle palsy will limit upper limb functionality.  

As shown in  Fig. 2.1, a lesion in the musculocutaneous nerve (Fig. 2.1 blue area in the 

brachial plexus nerves diagram) results in a palsy of three muscles: coracobrachialis, 

brachialis and biceps brachii (Fig. 2.1 blue area in the corresponding palsy diagram), which 

cause flexion movements at the elbow.  

 
Fig. 2.1. Brachial plexus (C5-C7)  

and muscles that motor the upper limb. 

 

As the contraction of the brachialis and biceps brachii muscles is diminished, the elbow 

loses its main function: to position the forearm in space. In normal circumstances, the elbow 

performs flexion–extension (FE) motions within 0–130° [10] (Fig. 2.2 A) in the sagittal 

plane with a gradual change of carrying angle within -50–+15° [11] (Fig. 2.2 B) in the 

coronal plane (Fig. 2.2 C). During the normal elbow FE movement, a linear change in 

carrying angle was reported by Morrey and Chao in 1976 [12]. 
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A.  B. C.  

Fig. 2.2.  Elbow biomechanics:  𝛗 - carrying angle, 𝛃 - range of motion. 

A. Active range of motion in the sagittal plane. B. Carrying angle in the coronal 

plane. C. Sagittal and coronal plane of the upper limb. 

 

The inability to flex the elbow results in abnormal upper limb function and muscle atrophy. 

When flexion of the elbow becomes impossible to perform, an investigation of the nerves 

using electromyography (EMG) should be done. When the musculocutaneous nerve alone 

is injured, nerve repair is prescribed after a 3-month observation period [13]. 

2.2 Brachial Plexus Reinnervation 

Since an injury can occur near the target muscle, nerves may recover in few months. If no 

improvement is observed, reconstructive surgery takes place.  

Reinnervation, i.e., nerve regeneration after a lesion, is a complex and time-consuming 

postoperative process. The postoperative management starts with arm immobilization at 

900 of elbow flexion (see Table 2.1, Phase I). The goals of Phase I are to protect the healing 

tissue and to decrease pain and inflammation. During this phase, patients are instructed to 

perform biceps isometric contraction to prevent muscle atrophy and neurophysiological 

alterations. 

Slings and upper limb supports are usually provided by the therapist, see Fig. 2.3. The 

design is based on the therapist’s experience and the patient’s needs [14]. The polymer used 

for casting elbow splints can vary in price between $2 and $10 per unit [15]. Commercially 

available braces can also be proposed for immobilization. The price for an item starts at 

$30 [16]. 



10 

 

 

 

 

The other option is to use more advanced mechanical braces (see Fig. 2.3) that can fix the 

forearm in a certain position and are able to limit the range of motion (ROM) for different 

rehabilitation purposes. In this case, the brace has to be regulated and adapted to various 

stages and progress of the physical therapy [10]. The average price is $260 [17]. 

In order to maintain muscle trophism and stretch denervated muscle fibers while the nerve 

recuperation progresses, passive movements are applied to the appropriate joint (see Table 

2.1, Phase II). To promote the healing process, the physiotherapist manually helps the 

forearm to overcome gravity. As pain and edema subside, the amount of assistance is 

decreased [18]. In addition, postural education and balance retraining [4] help to decrease 

neuropathic pain, re-educate the cortex and promote return to normal activities.  

Table 2.1. Postoperative care after brachial plexus nerve reconstruction. 

Postoperative management Equipment Limitations 

Phase I. Protection. Time: up to 6 weeks 

Arm is immobilized, i.e. no elbow 

movement. Biceps isometric 

contractions. 

Static orthotic/splint 

[19], sling or 

mechanical brace 

(see Fig. 2.3). 

(1) May be difficult for a 

nontherapist to position 

and/or adjust [19]. 

 

Phase II. Occupational therapy. Time: week 2 to 8 [19] 

Passive muscle training with 

therapist. 

Postural and full passive ROM 

education. 

Review of slings/ supports. 

Dynamic 

orthotic/splint [19] 

or mechanical 

brace. Physical 

therapy [6]. 

(1) May be difficult for a 

nontherapist to position 

and/or adjust [19]. 

(2) Therapist can be available 

only at the clinic. 

Phase III. Home-based muscle training program. Time: week 8 to 12–24 months [19] 

Maintain passive and active elbow 

ROM. Begin resistive exercises. 

 

(1) Mechanical 

braces with elastic 

bands (see Fig. 2.4) 

or springs for home 

daily exercises. 

 

(1) Constant adjustment of 

the elastic bands or springs 

are needed to ensure that the 

patient continues to progress. 

(2) Lack of professional 

feedback. 

(3) Failure to comply with the 

rehabilitation program. 
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Fig. 2.3. Mechanical brace, Innovator X® (Össur). 

 

As the nature of recovery does not require long-term and constant physiotherapy, a daily 

home exercise program (see Table 2.1, Phase III) with continuously progressive 

strengthening regimes [4] supplements the physical therapy and later becomes the main 

rehabilitation activity. Although patients are encouraged to use their affected arm in their 

daily activity, the phenomenon LNU may occur [6]. However, if provided with sufficient 

opportunities to practice [21], [22], patients can restore motor performance.  

Elastic bands, rubber bands (see Fig. 2.4), spring wires and springs are used as additional 

components in passive hinges to provide torque to a joint [23] at the resistive training stage.  

Regardless of the choice of an energy-storing component, the resistance must be 

progressive during the entire BPI rehabilitation. Additionally, as the patient’s ROM may 

increase, changes in the resistance of the elastic components should be made. Since the 

length of the component and stiffness of the material change the amount of applied torque, 

the size of elastic components should be adjusted with respect to new conditions. 

 
Fig. 2.4. Mechanical rehabilitation braces for post-operative management of 

brachial plexus injuries. St. Joseph's Health Care London, ON. ©2014 IEEE 
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Due to the constant stretching and relaxing of the elastic components, they experience 

cyclic deformation (cumulative damage to the material). Thus, the resistive properties of 

the material decreases over time and eventually the resistive component must be replaced. 

However, the frequency of periodic replacements may vary from case to case. Moreover, 

specific sensors for torque estimation has to be applied in order to check the level of damage 

to the material. Thus, in order to save time, the therapist simply installs a new component 

with known resistive properties instead of estimating the resistive properties of the material. 

Nevertheless, each new component will still experience cyclic deformation and, therefore, 

apply an unknown torque to the joint. 

Even though elastic and resistive components are affordable and cheap, constant 

replacement or size adjustment is required to tailor the amount of torque applied to a joint, 

as the affected muscles get stronger, as the patient’s ROM may increase during the training 

program and as the materials experience cyclic deformation. 

At the end of the rehabilitation, a BPI patient will spend around $300 for equipment rent 

and supporting materials. Additionally, since patients are limited to staying at home (due 

to the need of frequent clinical appointments and daily muscle training for 12–24 months), 

their income may decrease by an average of $49,000 per year [24]. Even with increased 

effort and time, in 20–25% of cases, only half of the functional skills of BPI patients are 

restored [8] or lifelong limb impairment persists [9]. As a result, they have a lower quality 

of life compared to the normal population [8]. 

2.3 Portable Mechatronic Elbow Devices: State 

of the Art 

Since the likelihood of a positive outcome from current BPI rehabilitation techniques is 

low, alternative ideas for muscle training programs that involve automated methods for 

controlling patients’ movement control have been developed during recent years. This new 

concept can be accomplished by using smart robotic technologies for assistive-

rehabilitation that can measure patient’s muscle activity, record progress and communicate 

with the therapist 24/7. Even though multiple attempts to create a robot-assisted 

rehabilitation program were reported in recent years, there is no consistency on the optimal 

design for wearable robotics aimed to train muscles. Therefore, a review of smart elbow 
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rehabilitation mechatronic systems, as well as the types of actuation and sensing systems 

that can be adapted for BPI patients with upper arm palsy is summarized below. 

2.3.1 Mechanical Design of Smart Elbow Devices 

for Rehabilitation 

Systematic reviews confirm that powered assistive devices have high potential of 

improving upper limb functionality in neuromuscular rehabilitation [25]–[29]. Therapeutic 

exoskeletons for the upper limb were shown to be more effective on motor functional 

improvement than continuous passive motion (CPM) machines [30], and as efficient as the 

same amount of exercise performed with a therapist [31], [32]. Lo, et al. reported that more 

frequent and longer training with appropriate movements and intensities speed up the 

recovery process [33]. The latest reports [35]–[67] show that adapting assistive robotic 

therapy to home-based conditions is a promising way to increase patient’s motivation to 

perform repetitive daily exercises. Home-based training with wearable rehabilitation 

devices has benefits over robot-based training in a clinical environment, since portable 

technologies can meet two criteria for a successful recovery [68]–[70]: (1) the device has 

to oversee the patient’s performance and (2) it must provide regular feedback to the 

therapist. 

Wearable assistive devices combine the advantages of the leading robotic technologies 

(high accuracy of motions, stable positioning of the forearm in space and high 

repeatability), with the clinical experience of therapists (customized rehabilitation 

programs and effective feedback), while maintaining independence from the clinical 

environment. Such possibilities inspired many research groups to develop wearable smart 

elbow devices [35]–[67] (see Table 2.3). However, the reviewed mechatronic systems have 

a number of limitations that are discussed below.   

The overall mechanical design of the smart elbow systems is based on the type of the torque 

transmission system. Thus, reviewed mechatronic systems can be grouped in three 

categories (see Fig. 2.5): 

A. Rigid bars and one actuation system located on the lateral side of the upper limb, 

see Fig. 2.5 A.   
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B. Rigid bars are located symmetrically on both sides of the upper limb. One actuation 

system drives the brace from the lateral side, see Fig. 2.5 B.  

C. Rigid bars are placed symmetrically on both sides of the upper limb. The actuation 

system transmits torque to both sides of the joint, see Fig. 2.5 C. 

 

A.     

B.     

C.      

Fig. 2.5. Mechanical design of an elbow wearable powered brace. 
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Table 2.3. Review of wearable devices for elbow rehabilitation. 

Ref. General Information Type Limitations 

[37] 

 

Proposed device was designed to assist 

in recovery therapy of motor function 

about elbow joint. 

A No mechanical stoppers. No rigid 

cuffs. May slide off the arm. The 

design does not take into account 

the carrying angle. 

[42] A powered orthosis for upper limb 

training and functional support. The 

weight of the control system is 

distributed on the backside of the upper 

arm. 

 

C May slide off the arm. Actuators 

are limited in producing torque. 

Splints are not adjustable in size 

and position. No mechanical 

stoppers. The design does not 

take into account the carrying 

angle. 

[43] RAO, robotic arm orthosis, is a portable 

assistive device for the upper 

extremities. ROM was mechanically 

limited to 110 degrees. All structural 

components were fabricated out of an 

ABS derivative. A strap that goes over 

the user’s right shoulder and underneath 

the left arm prevents slid-off effect. 

Portable battery.  

A No information about the weight 

of the prototype. The design does 

not take into account the carrying 

angle. 

[47] AVSER is an active variable stiffness 

exoskeleton robotic system with an 

active variable stiffness elastic actuator. 

The total weight is 1.6 kg. ROM: 0–150 

degrees.  

A The weight of two motors and 

transmission mechanism may 

distort the device. No mechanical 

stoppers. May slide of the arm. 

The design does not take into 

account the carrying angle. 

[48] Powered elbow orthosis for 

rehabilitation. Can be used for three 

stages of the rehabilitation process: 

passive, active and interactive mode. 

Mechanical stops. The total weight is 

1.1 kg. 

A The weight of two motors and 

transmission mechanism may 

distort the device. May slide off 

the arm. The design does not take 

into account the carrying angle. 

[53] A powered orthotic brace is designed to 

follow the natural motion of the elbow. 

C The backpack makes the 

exoskeleton too bulky. No 

mechanical stoppers. 

[54] An upper limb orthosis for 

rehabilitation. The materials are a 

combination of carbon reinforced 

plastics and polyamide PA6. A carrying 

system distributes the weight of the 

device on both shoulders. 

A No rigid cuffs. No mechanical 

stoppers. 

[57] A wearable robotic device that assists or 

resists the subject’s joint torques. The 

weight is 2.5 kg (excluding a pneumatic 

servo valves and a compressor). 

A Transmission system limits the 

workplace. No mechanical 

stoppers. The design does not 

take into account the carrying 

angle. 
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Ref. General Information Type Limitations 

[58] An exoskeleton system for elbow 

assistance. The total weight is 2 kg. The 

weight of the control system is 

distributed on the backside of the lower 

arm. 

 

C The elbow joint is not actuated in 

an extension direction. No 

mechanical stoppers. May slide 

off the arm. Cuff position is not 

adjustable. The design does not 

take into account the carrying 

angle. 

[59] An exoskeleton that provides elbow 

flexion–extension movements. The 

exoskeleton structure was built in 

aluminum. The weight is 2.9 kg. 

A No mechanical stoppers. May 

slide off the arm. The weight of 

the motor and transmission 

mechanism may distort the 

device. The design does not take 

into account the carrying angle. 

[60] NEUROExos is a portable version of 

the robotic elbow exoskeleton designed 

for the treatment of stroke survivors in 

acute/subacute phases. The weight of 

the control system and actuators are 

distributed on the backside of the upper 

arm. 

B No mechanical stoppers. May 

slide off the arm. Cuffs are not 

adjustable in position. The design 

does not take into account the 

carrying angle. 

[62] MAHI Exo II is an exoskeleton 

designed for rehabilitation of stroke and 

SCI patients. Mechanism allows 

changing the transmission from one side 

to the other. 

C The actuation mechanism makes 

the exoskeleton too bulky. No 

mechanical stoppers. May slide 

off the arm. Cuff size and 

position are not adjustable. The 

design does not take in to account 

the carrying angle. 

[64] An upper-limb power-assist 

exoskeleton.  

The total weight is 2.1 kg. 

A No mechanical stoppers. May 

slide off the arm. The design does 

not take into account the carrying 

angle. 

[66]

[67] 

My Own Motion E100 (Myomo) is a 

powered orthotic device designed to 

provide rehabilitation exercises. The 

weight of the wearable portion of the 

unit is 0.5 kg.  

C May slide off the arm. The design 

does not take into account the 

carrying angle. No mechanical 

stoppers. 

 

Despite reduced weight, powered elbow braces Type A [37], [43], [47], [48], [54], [57], 

[59], [64] and Type B [60] can be distorted by the weight of the actuation system if they 

are not distributed across the arm. Due to this fact, the brace may slide down the arm or 

provide undesired additional torsion force to the joint. Uncontrolled assistance may result 

in joint deformity and limited ROM in the elbow coronal plane. The more advanced 

mechanical designs can be seen in mechatronic elbow braces Type C [42], [53], [58], [62], 

[66], [67]. The two-sided actuation system distributes the torque applied to the joint and 
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supports the forearm during FE movements in a synchronized manner. The resulting torque 

produced by the actuation system ranges between 10 Nm [43], [48] and 30 Nm [60]. 

One method increasing the reliability of a mechatronic system is to use an additional 

component, which duplicates the function of a part that can fail, i.e., to use a reserve 

component. Realistically only critical functions of the system should contain reserve 

components. In case of the powered elbow mechatronic system, the range of motion has to 

be constantly monitored and maintained within safe limits. Thus, if the control or the 

actuation systems fail to limit the patient to a specific ROM to the patient, a mechanical 

stopper will limit patient’s ROM and therefore increase the system’s reliability. Despite the 

benefits of reserve components, most of the reviewed projects [37], [42], [47], [53], [54], 

[57]–[60], [62], [64], [66], [67] did not pay attention to the reliability of the prototype. 

Since the main function of an elbow brace is to support the forearm and help it to overcome 

gravity, the mechatronic brace should maintain the natural biomechanics of the elbow. 

Incorrect elbow positioning or movement during the rehabilitation program may cause 

alterations in joint anatomy and limitations of elbow motions. Hence, a simplified model 

of an elbow that has one degree of freedom (DOF) in the sagittal plane (see Fig. 2C) may 

trigger disease aggravation. A 2-DOF model of an elbow motion is the minimum 

requirement for a mechatronic brace as it includes active flection-extension and passive 

adduction-abduction movements (driven by the bone structure of the elbow). Only two 

prototypes found in the literature [53], [54] met this requirement.  

The last main limitation of the reviewed elbow braces is the lack of adjustable components 

[42], [58], [60], [62]. Fixed rigid cuffs and bars without a telescopic feature will 

dramatically decrease the adjustability of a device to different users. 

2.3.2 Actuation Systems for Wearable Elbow 

Powered Applications 

Smart elbow devices are aimed at delivering forces with high precision and repeatability. 

Thus, the choice of the actuation technology is a key decision for creating an efficient 

rehabilitation system. The most frequently used actuators are electromagnetic motors [35], 

[40], [41], [43]–[54], [58]–[62], [65]–[67], while less popular technologies include 

pneumatic muscles [37], [56], [57], [64], hydraulic drivers [42], [55],  and shape memory 
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alloys [38].  A short summary of actuation systems used for powered elbow projects 

designed within the last 5 years is presented in Table 2.4. 

Table 2.4. Actuation and power transmission in wearable devices for elbow 

rehabilitation. 

Ref. Type of 

actuator 

 Actuation and Power Transmission 

[37] 

 

Pneumatic 

actuator 

 Two artificial pneumatic muscles (Shadow Robot) on the lateral 

side of the upper limb. Maximum pull 20 kg. 

[42] Hydraulic 

drive 

 Hydraulically driven elbow training system: two miniaturized 

flexible fluidic actuators. 

[43] DC motor  Was designed to generate 10 Nm of output torque by a brushless 

DC motor with customized gearbox. 

[47] DC motor  One DC-motor is used to control the position of the joint, and 

the other is used to adjust the stiffness. Maximum output torque 

of 29 Nm. 

[48] DC motor  Two electric drives. The larger one, attached nearest to the joint 

allows the orthosis a maximum torque of 10 Nm. The smaller 

drive sets the compliance of the system. Clip-off actuator. 

[53] Motor  Cable-driven (Bowden cables) series elastic actuators with 

motors in the backpack. 

[54] DC motor  A 24 V Maxon Amax 22 DC motor with a 333:1 Maxon 

planetary gear and a 4:1 worm wheel gear drives the joint. The 

DC-drive can generate a torque of about 16 Nm. 

[57] Pneumatic 

actuator 

 Pneumatic actuators. 

[58] Motor  Six motors are placed on both sides of the forearm support part. 

Two wires connect the motors and the upper arm support part. 

Each motor produces 0.468 Nm. The gear ratio is 66:1. 

[59] DC motor  DC brushed motor produces mean torque of 45 Nm. 

[60] DC motor  DC servomotor (Maxon EC motor EC60, 400W) produces a 

maximum joint torque of 30 Nm. Harmonic Drive reduction 

stage (CPL-17A-080-2) has a reduction ratio of 80. 

[62] DC motor  Two high torque DC motors (Maxon RE65) with cable drives 

achieve a maximum torque of 11.61 Nm. 

[64] Pneumatic 

actuator 

 Two pneumatic muscles (SPCU-S-1, The Shadow Robot 

Company Ltd., London) connecting to the Nylon® axis drive 

rotate the joint of the device. 

[66] 

[67] 

Motor  Two motors, each located on opposite sides of the joint, are 

connected to a drive assembly on the corresponding side of the 

joint. The actuation mechanism generates up to 14 Nm. 

 

Electric motors as part of assistive robotics are well studied due to their availability and 

high precision. However, the complexity of the mechanical coupling and heavy weight 

motivates researchers to use pneumatic muscles that have a better power to weight ratio. 

Despite the attractiveness of using simple and inexpensive pressure-driven muscles, the 



19 

 

 

 

 

biggest disadvantage is the pressure source, which can be noisy and heavy. Another 

alternative is the use of dielectric polymers that do not require an intermediate transducer 

and operates silently. Nevertheless, this type of actuation is the most expensive and requires 

high voltages. Accordingly, a report that describes an actuation system that has high 

feasibility and efficacy was not found. Hence, the choice of the actuation technology mainly 

relies on the experience of the design engineer and the design constraints. 

2.3.3 Control Strategy of Actuation Systems in 

Motion Rehabilitation 

For a wearable mechatronic device to be controlled, human interaction can be detected and 

transferred to the actuation system of the device. Human intent can be measured by a 

number of sensors [71]: position and motion sensors, force and pressure sensors, muscle 

activity sensors or brain activation sensors. Moreover, muscle activity sensors that measure 

cognitive human-robot interaction include EMG (electromyography) sensors, muscle 

stiffness sensors, muscle tenseness sensor, ultrasonic muscle activity sensors and mechano-

myography sensors [71]. 

Surface EMG sensors (see Fig. 2.6) have been proposed as natural muscle interfaces for 

wearable mechatronic devices [72]. As EMG measurements have high sensitivity to muscle 

activity, they have been successfully used to measure fatigue [73] and to identify the 

operator’s intention [72], [74]. Surface EMG recordings provide a safe, easy and 

noninvasive method that allows objective quantification of muscle energy [75].  

A.  B.  

Fig. 2.6. EMG sensors and electrodes.  

A. Assembled and placed on a silicone skin.  

B. Sensors separated from the electrodes. 

 

The raw EMG signal can be analyzed in one of four different approaches: amplitude, 

frequency, EMG-force relationship and amplitude probability distributions [77]. The 
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average, root mean square (RMS) and mean spike amplitude of band-passed EMG activity 

have been used to quantify the magnitude of muscle activity [78].  

Over the past 5 years, several research groups have developed EMG-driven models that 

quantify upper arm muscle activity and provide elbow FE motion profiles [79]–[91] (see 

Table 2.5). The aim of the models is to describe limb motion as a function of its EMG 

signals. At first, Hill-based models used knowledge about the dynamics of individual 

sarcomeres within a fiber [93] to link extremity motion to muscle activity. Later, it was 

shown that a mapping technique (e.g. classification models, artificial neural networks or 

support vector machines) could achieve better accuracy (88.15–98.8%) than Hill-based 

models [81], [84], [87], [89], [90] that have 90.54–96.37% accuracy. On the other hand, 

mapping EMG signals directly to joint kinematics [79], [80], [83], [85], [86], [88], [91] 

requires a long individualized calibration process that must be updated as muscles 

strengthen. Thus, despite good accuracy, mapping models are complex and limited in their 

application. 

The error of converting motion intention from EMG signals to motion profiles for these 

models [79]–[91] was estimated to be in the range of 1.20–11.85%. However, it is hard to 

compare the dynamic models’ performance since a different number of EMG signals are 

used as input signals to the models. The most frequent and intuitive method of describing 

elbow motion is thought the EMG signals from the biggest flexor (BB) and biggest extensor 

(TB) [79], [83], [84], [87], [91]. The more advanced attempts involve adding the input 

signals from additional EMG sensors placed on the upper limb muscles: brachioradialis 

[85], [90] or forearm muscles [86]. Controversially, the simplified models were using only 

one input from BB [80], [81] or TB [88]. As a result, there is no standard rule for using 

EMG signals neither for describing dynamic elbow motion, nor for justifying why a certain 

group of muscles may result in better accuracy of prediction for EMG-driven models. 

As human limb positioning and movements are controlled by receptors with specific 

precision, we are interested in the ability to assist during the motion with sensitivity equal 

to that of human joint positioning. The error of joint position sensing for the elbow is 20 

[92]. An expert from St. Joseph's Health Care London, hand physiotherapist S. Chinchalkar, 

has confirmed that elbow FE position error can vary between 2° and 5°. As an average 

elbow ROM is 0–130°, the accuracy of limb positioning can be between 96% –98.5% (5° 

of error out of 130° is equivalent to 96% accuracy, and 2° of error out of 130° is equivalent 

to 98.5% accuracy). Therefore, an EMG-driven model will be considered effective and 
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stable if it can quantify the patient’s intention to move within a specific accuracy of 96–

98.5% for different ROMs. 

Table 2.5. EMG-driven models for elbow motion quantification. 

Ref. Method Muscles Accuracy 

(%) 

Limitation 

[79] Acceleration data and 

RMS of the EMG 

data was mapped with 

the help of a Kalman 

filter. 

BB1, TB2 88.15 The model was designed to 

predict tremor, thus may be 

suitable only for fast 

motions. Low accuracy. 

[80] Artificial neural 

network. 

BB 89.51 Low accuracy. 

[81] Modified Hill-based 

model and a Kalman 

filter. 

BB 90.54 Low accuracy and long 

calibration process. The 

model was tested only for the 

EMG signal from the biceps. 

[83] Mapped model and a 

Kalman filter. 

BB, TB 91.7 Low accuracy. 

[84] Classic Hill's model. BB, TB 92.5 Low accuracy and long 

calibration process. 

[85] Artificial neural 

network that uses 

mechanomyography 

in combination with 

EMG. 

BB, BRD3 93 Low accuracy. The model 

was tested for isometric 

contractions. 

[86] Artificial neural 

network. 

BB, TB, PM4, 

DA5, DP6 

93.8 Low accuracy. 

[87] Hill-type model. BB, TB 94.78 The model was tested for 

moderate speeds. 

[88] Fuzzy-neuro modifier. TB 

(BB was used 

for scaling the 

signal) 

93.73 Low accuracy. 

[89] Hill’s model [93] with 

a Calcium 

concentration rule. 

BB short 

head, BB long 

head, TB long 

head, TB 

lateral head 

96.03 Limited to isometric 

contractions at a stationary 

elbow position (90°). 

[90] Switching the model 

between two different 

modes (velocity and 

force). 

BB, TB, BRD 96.37 The model is restricted to 

normal and high speeds (25–

80°/s). 

[91] Mapping models. BB, TB 98.8 It is not clear how the model 

will perform for a ROM 

between 90° and 130°. 

 

1 BB – biceps brachial. 3 BRD – brachioradialis. 5 DA – deltoid anterior. 
2 TB – triceps brachial. 4 PM – pectoralis major. 6 DP – deltoid posterior. 
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Accordingly, only three models [89]–[91] meet this requirement. Despite good accuracy, 

these models are restricted to specific exercise conditions: isometric contractions (i.e., 

stationary contraction of the muscles) [89], normal and high speeds [90] and limited 

ROMs–[91].  

2.4 Conclusions 

Rehabilitation therapy of a neuromuscular injury consists of daily exercises, as they prevent 

joint stiffness and deformity, contractures, and increase the range of motion. However, due 

to muscle weakness, some patients may not be able to lift their limb without external help. 

To prevent muscle degradation a therapist or a rehabilitation robot assists with the exercise 

during the in-clinic-sessions, while a mechanical brace can immobilize the joint in a certain 

position the rest of the time. An alternative way is to use a smart home-based device that 

senses the patient’s intention to move, assists him or her to perform the desired motion and 

ensures that the range of motion is within a safe limit. A number of research groups have 

developed powered elbow devices for home use, but only a limited number of projects can 

meet basic requirements for safe and effective therapy [35]–[67]. In order to mimic the 

natural biomechanics of the elbow, most devices consider the elbow FE movement as the 

only motion occurring at the joint. However, according to the review, a 2–DOF model of 

the elbow is the minimum requirement for a device to provide natural movements to the 

upper limb. Additionally, it was found that most existing prototypes do not assess the 

reliability of critical functions of the device. As ROM overshoots may damage the 

reconstructed nerve, a pair of mechanical stoppers was proposed to maintain a specific ROM 

even if the control or the actuation system fails. 

EMG-driven models quantify upper arm muscle activity in order to convert EMG to elbow 

motion and force [79]–[91]. A device employing such models can use estimated motion 

profiles as commands to the actuators to assist in the movement. Nevertheless, current 

models are very complex, require long calibration processes and result in relatively low 

accuracy, which limits their applicability in motion-based rehabilitation systems.  

Thus, the focus of current project is to adapt the mechanical design of wearable elbow 

devices presented in the literature review to the needs of BPI rehabilitation. The work 

includes the development of a simple sensing technique for elbow motion postoperative 

rehabilitation that can be integrated into the control system of an assistive device. The 

following_chapter_presents_the_design_of_the_wearable_elbow_brace_for_motion_rehabilitation.  
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CHAPTER 3 

3   DESIGN OF THE WEARABLE ELBOW BRACE 
 

As presented in the previous chapter, a promising option for postoperative elbow motion 

restoration is a smart elbow device that provides guidance while BPI patients perform the 

required exercises outside of the clinical setting. However, most projects designed within 

the last 5 years do not meet basic safety requirements or require further improvements in 

order to be used for BPI muscle re-education. Therefore, with the support of a hand 

therapist from the St. Joseph's Health Care London (London, ON) and based on the 

literature research presented in the previous section, a wearable elbow brace was designed. 

This chapter describes the design and development of the prototype. 

 

3.1 General Design Specification 

An elbow mechatronics-enabled brace has two major functions: 1) to assist movement of 

the upper limb when muscles are weak; and 2) to reduce muscle tone of spastic muscles to 

promote joint mobility [94]. To account for this, the force transmitting mechanism of the 

brace should provide a non-jerky motion compatible with the natural movements of the 

elbow. A list of mechanical constraints is described in Section 3.2. The final design is 

presented in Section 3.3. 
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3.2 Design Constraints and Specification 

The following questions were considered in the design of an ergonomic wearable elbow 

brace that can be used in all stages of elbow rehabilitation after nerve surgery: 

(1) How should the device be adjusted in order to be used at all stages of the BPI 

rehabilitation? 

(2) How should the device support the affected upper limb? 

(3) What is the balance between the portability and the functionality of the device? 

A detailed discussion of the design specifications is presented below. 

3.2.1 Adjustability in Size 

In order to account for anthropometric diversity, ergonomic design should accommodate a 

range of user dimensions, typically up to the 95th percentile of the population [95]. Hence, 

the ability to adjust fixators (i.e., straps, cuffs, splints, shells) and links is an essential feature 

of the proposed mechatronic device for BPI muscle training. Since the length of both the 

upper and lower arms differs for males and females (i.e., the location of the centre of mass 

for the lower and for the upper arm differs for males and females), size alteration of the 

device is critical, see Table 3.1 [96]–[98].  

 

Table 3.1. Anthropometric data for 95th percentile of the population.1 

Parameter Male Female 

Upper arm length (m) 0.389 0.358 

Lower arm length (m) 0.312 0.268 

Hand length (m) 0.205 0.189 

Lower arm mass (kg) 1.66 1.24 

Hand mass (kg) 0.63 0.50 

Centre of mass for the lower arm and hand (%)* 31.8 

* Distal orientation (i.e. direction from fingers to the elbow) 

By supporting the forearm at its centre of mass, the elbow brace minimizes the acting on 

the lower arm and maintains static equilibrium of the affected arm. Since the training 

sessions with the rehabilitation equipment are conducted while the patient is sitting or 

standing, no torque is applied to the upper arm and, therefore, the role of the upper cuff is 

                                                 
1 Anthropometric data for 95th percentile of the population has a normal distribution, i.e., the mean, median, 

and mode of the parameters shown in Table 3.1 are the same and within two standard deviations. 
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to position the device on the upper arm. To ensure that the position of the lower cuff can 

be adjusted to the location of the forearm’s center of mass, positions of the lower cuff were 

calculated as follows: 

𝑙EC = 𝑙com − 0.5𝑐𝑚 = (𝑙la + 𝑙h) · 𝐶𝑂𝑀 − 0.5𝑐𝑚, 

where 𝑙com is location of the centre of mass, 𝑙la is the lower arm length (cm), 𝑙h is the hand 

length (cm), and 𝐶𝑂𝑀 is the centre of mass for the lower arm and hand (%), and, finally, 

the edge of the lower cuff 𝑙EC was shifted distally to the elbow (-0.5 cm) in order to minimize 

high pressure points at the centre of mass.  The forearm 𝑙COM for females and males was 

calculated to be 11.5 cm and 13.4 cm, respectively, see Fig. 3.1A. The 𝑙EC for the lower cuff 

is equal to 11 cm and 13 cm. Since BPI affects males more commonly than females [99] 

[100], an additional position of the lower cuff (14.5 cm) was included in the design 

specification, see Fig. 3.1A. 

A.      B.  

Fig. 3.1. Size variations of a human arm (cm). 

A. Right side: Distance from the elbow to the centre of mass for the lower arm and 

hand (calculated for 95th percentile of the population). Left side: Recommended 

distances from the elbow to the lower cuff (based on the 𝐥𝐂𝐎𝐌 location for 95th 

percentile of the population). B. Elbow breadth variations.  

Blue values for males, red values for females. 

 

It is known that the elbow breadth for people 20 years and older is 8.2 cm for males and 7.4 

cm for females (data for the 95th percentile of population) [101]. The presence of edema 

may increase interlimb discrepancy by 5%–30% [102]. Therefore, elbow breadth may 

fluctuate between 8.61 cm and 10.66 cm for males and between 7.77 cm and 9.62 cm for 

females. Based on this data, a two-sided elbow brace must be able to accommodate an elbow 

joint that is 7.4–10.66 cm in width, see Fig. 3.1B.  
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3.2.2 Payload and Torque Analysis 

In musculoskeletal rehabilitation, daily exercises play an important role in the recovery 

process. Assistive and resistive motions are prescribed until the patient can lift a 1-kg load 

during the elbow FE movement. Thus, a smart elbow brace should be able to support the 

weight of the lower arm, 1-kg load and its own mass. To account for this, a torque analysis 

of a forearm that holds a 1-kg load in hand was performed, as follows: 

𝑇 = 𝑀 ∙ 𝑔 ∙ 𝑅, 𝑀 = 𝑚forearm + 𝑚hand + 𝑚load, 𝑅 = (𝑙la + 𝑙ℎ) ∙ 𝐶𝑂𝑀, 

where 𝑇 is the torque applied by the brace to support the lower arm and a load,                            

𝑔 = 9.8 m/s2 (earth’s gravity), 𝑀 is the total mass that should be supported by the brace, 𝑅 

is the center of gravity of the lower arm, 𝑚forearm is the mass of a forearm, 𝑚hand is the 

mass of a hand, 𝑚load corresponds to the combination of a 1-kg load and the weight of the 

lower part of the brace, 𝑙la is the  length of the forearm, 𝑙h is the  length of the hand, and 

𝐶𝑂𝑀 is the center of mass of the lower arm.  

Using these equations and the anthropometric data for the 95th percentile (Table 3.1), it was 

calculated that the actuator must be able to produce at least 5.3 Nm for males and 3.9 Nm 

for females to overcome gravity during the assistive and resistive training. However, it has 

been found in the literature that the torque measured during daily activities at the elbow 

exceeds this range [103], [104], see Table 3.2. Moreover, the daily activities require 

complex movements of the upper limb, which involve the shoulder, elbow and wrist. Since 

the elbow motions are not isolated from the movements of other upper limb joint, the 

forearm rotation (i.e., pronation–supination) significantly influences the torque produced 

by the elbow during the flexion–extension movements [105], as summarized in Table 3.2. 

Table 3.2. Measured torque at the elbow under different conditions. 

Measurement conditions Torque Ref. 

Torque needed to hold an average forearm against gravity at a 

flexion angle of 90°. 
3.1 Nm [103] 

Torque measured during activities of daily living. 5.8 Nm [104] 

Maximum torque measured in the range 0°–90° of the FE 

motion during reaching and lifting tasks. 

7.0 Nm 

Maximum torque measured in the range 90°–120° of the FE 

motion during reaching and lifting tasks. 

5.0 Nm 

Range of extra torque that the elbow produces during the FE 

(0–130°) while the motion is combined with the forearm 

rotation. 

from 3.88 Nm 

to -3.2 Nm 

[105] 
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As the maximum torque for elbow FE motion was found to be 10.88 Nm (i.e., 7 Nm [104] 

plus 3.88 Nm [105]), it was decided to design an actuation mechanism that can produce 

10 Nm and will allow a patient to use the brace not only as a rehabilitation tool, but also as 

a helper during everyday activities while their muscles are weak or restricted.  

3.2.3 Weight of a Wearable Elbow Brace 

The mass of the mechanical parts and the control system of the brace should be distributed 

throughout the upper limb. Based on the discussions with an expert, the goal is to design 

an elbow mechatronics-enabled elbow brace that weighs less than 1 kg including the 

actuators and the control system. Portable batteries are considered as the main energy 

source for the device. Since these can be carried in a built in a waist belt, their weight can 

be excluded from the total weight of a device. The control and sensing systems are expected 

to weigh 0.1–0.2 kg. 

The device should be fixed with a shoulder strap that goes over the patient’s shoulder and 

underneath the arm. Such strap will reduce the sliding effect, i.e., it prevents the brace from 

migrating down the arm. Having the mass distributed along the arm will reduce the inertial 

effect, which can be detrimental to the shoulder-neck section of a patient. 

Other reviewed powered elbow orthosics and exoskeletons [35]–[67] are bulky and/or 

heavy. Thus, a promising option for the wearable rehabilitation system is to have detachable 

heavy components, i.e., to apply a “modular” design strategy. An easy “clip-on–clip-off” 

feature of the motor, for example, will decrease the weight of the brace for constant wear 

conditions. Additionally, the force applied to the affected arm can be increased or decreased 

by replacing the motor with an appropriate one. This allows customizing the actuation 

system for each specific rehabilitation program without changing the mechanical structure 

of the device. 

3.2.4 Actuator Placement 

The placement of the actuator with respect to the upper limb of a user is one of the critical 

design specifications. From experience the first prototype of the ME-Brace designed at the 

Wearable Biomechatronics Laboratory (see Fig. 3.2), it was learned that when the elbow 
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joint is actuated only on one side, it creates a twisting effect on the brace, thereby causing 

the brace to migrate from its actual location.  

 

Fig. 3.2. CAD model of the first prototype of the ME-Brace. 

To maintain the weight balance on both sides of the extremity, it was decided to place the 

actuator on the backside of the upper arm. As shown in Fig. 3.2, the weight of the actuator 

can be supported by a structure or a strap connected to the shoulder. Additionally, since the 

actuation system does not have to produce extra power to support its own weight, the size 

of the driver can be decreased. 

   

Fig. 3.3. Actuator placement. 

3.2.5 Hinge Type 

The humerus, ulna and radius bones that act as a hinge form the elbow joint, see Fig. 3.4. 

While the ulna and the radius bones slide backwards and forwards along the head of the 

humerus, the center of rotation migrates. Displacement of the pivot point results from the 
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nature of the bone structure. Due to this fact, a polycentric hinge (Fig. 3.5)  can be used to 

mimic natural elbow motion [106].  

 
Fig. 3.4. Elbow motion. 

Although the polycentric hinge makes it relatively easy to move the arm [107], the 

primarily articulation of the joint is made by the ulnar-humeral coupling [108], and, 

therefore, the elbow can be represented as a single-axis hinge (Fig. 3.6). 

A.  B.  

Fig. 3.5. Polycentric hinge elbow. 

A. Elbow bones modeled as a polycentric hinge. B. Rigid polycentric hinge. 

A.  B.  

Fig. 3.6. Single-axis hinge elbow model.  

A. Elbow bones modeled as a single-axis hinge. B. Rigid single-axis hinge. 
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Hence, a single-axis hinge was used for the design of the wearable mechatronic elbow 

brace. 

3.2.6 Arm Mounting  

The design of fixators with an appropriate width should minimize the high pressure points 

by maximizing the distribution of the force applied by the cuff. A 5-cm wide strap should 

be used to ensure comfort and safety [98]. 

The trough of the cuffs, see Fig. 3.7, should be sufficiently deep so that the limb is well 

seated. A widely used practice is to make the trough of the cuffs such that it extends 

slightly more than halfway up the sides of the limb [98]. 

 

Fig. 3.7. Various design of the trough of the cuffs. 

a) The limb overflows the sides of the trough (40% of the limb’s circumference); 

b) Slightly more than halfway up the sides of the limb (60% of the limb’s 

circumference); c) Too difficult to position the cuff around the forearm or upper 

arm (70% of limb’s circumference). 
 

Since postoperative motions decrease wound edema by milking fluid out of the extremity, 

it is important to correct the trough of the cuffs periodically. Thus, the process of 

customizing cuffs should be easy and affordable to rehabilitation clinics. All materials 

contacting to the body should be nontoxic. Additionally, all corners should be rounded, as 

sharp edges may injure the skin. 

3.2.7 Safety Throughout the Rehabilitation 

Progress 

The strategy for treatment following surgery mainly includes pain management, decreasing 

edema and protection of the nerve coaptation site. To achieve these goals, upper limb 

immobilization is recommended. Thus, mechanical stoppers that can limit the elbow’s 

ROM are considered for protection Phase I (Table 2.1). Based on the literature review in 

Chapter 2 and the experience of a hand therapist from the St. Joseph's Health Care London 
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(London, ON), the elbow’s range of motion was divided in 26 sections, i.e. the increment 

for mechanical stopper position is equal to 5° The proposed increment allows controlling 

the tension applied to the affected muscle by limiting the elbow ROM.   

Additionally, the reliability of the proposed device can be increased by using the 

mechanical stoppers as safety reserve components in the torque transmission system. It was 

found that most wearable elbow braces simplify the brace design and avoid using duplicate 

components for critical features of the device [37], [42], [47], [53], [54], [57]–[60], [62], 

[64], [66], [67]. As a result, mechanical stoppers are important components of the elbow 

mechatronics-enabled brace for BPI rehabilitation that provide upper limb immobilization 

and increase the safety of the device. 

3.2.8 User Requirements 

A wearable device will become a part of the patient’s daily life. This means that the 

appearance of the device should meet cosmetic and aesthetic needs. Thus, functional parts 

of the device should be covered by a detachable housing that makes it easy to clean the 

device. Another important factor for the user is the device portability. Despite the 

complexity of the proposed device, the maximum setup time for the system should not 

exceed 3 minutes. The setup time was selected based on an interview with an expert 

presented in [110]. 

3.3 Presentation of the Mechanical Design 

The final design of the wearable elbow mechatronics-enabled brace for the upper limb is 

presented in Fig. 3.8. By using the SolidWorks Mass Analysis Tool, the total expected 

weight of the mechanical components and the actuation system was calculated to be 1.4 kg. 

Further explanation of the device components is presented in the following sections.  

As it was outlined in Section 2.3.1, a 2-DOF model of an elbow motion is the minimum 

requirement for a mechatronic brace as it includes active flection-extension and passive 

adduction-abduction movements. Thus, Section 3.3.1 presents summary of bearing 

selection process for the passive adduction–abduction elbow movements, while Sections 

3.3.2–3.3.7 describe the process of designing the actuation system for the proposed 
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wearable elbow mechatronics-enabled brace. Additionally, a short summary of material 

selection is presented in Section 3.3.8. 

 

Fig. 3.8. CAD model of the device. 

 

3.3.1 Bearing Selection and Rated Life  

The passive adduction–abduction elbow movements require a properly selected bearing 

that minimizes friction energy losses between the lower link of the device that supports the 

weight of the forearm, the hand and the load and the surrounding structures (Fig. 3.9 A). 

The bearing selection process involves an analysis of the loads acting on the surface of the 

bearing and of the environmental conditions. Since the device should become a part of the 

BPI rehabilitation process, low levels of dust and external disturbances allows the 

consideration of low-cost sealed rolling-element bearings that do not require further 

lubrication.  

The load conditions on the bearings are a combination of radial and axial loads, see Fig. 15 

B. According to the loading scenario, active FE movements driven by the actuation system 

result in a 40 N radial load (i.e., 5 Nm at a 0.125 m distance). The weight of the forearm, 

the hand and the 1-kg load produce 25 N axial load on the bearing (i.e., 15 N from the lower 

arm and 10 N from the 1-kg load). Additionally, a 3 N axial load should account for the 
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external gentle disturbances. By knowing that the passive adduction–abduction motions are 

slow (e.g., 1142 rpm), the rated life of the bearing can be calculated according to 

Appendix-D [111]. The goal of the calculation is to find a bearing that has the rated life of 

operation greater than the length of the rehabilitation process for a patient.  

A.  

B.  

Fig. 3.9. Bearing loading scenario.  

A. Section view. B. Forces acting on the bearing. 

 

 

The seven-step process for calculating the rated bearing life is described in Appendix A. 

After several iterations, it was found that the 5908K390 Stainless Steel Ball Bearing from 

the McMaster-Carr catalogue satisfies the design requirements. The calculated rated life of 

the bearing was 10,056 h (i.e., 14 months of constant use), which is equal to the expected 

rehabilitation time for BPI. 
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3.3.2 2-DOF Motion of the Brace 

The main ROM (Fig. 3.10 A and B) of the elbow brace was limited by the customized 

internal gear and mechanical stoppers that are coupled to the gear’s teeth, see Fig. 3.11. A 

metal pin 1, secured in a plastic housing 3, can be moved along the inner gear 2 within the 

grooves of the surrounding parts to a certain position by applying a force to the button 4. A 

screw 5 fixes the position of the inner gear 2. Thus, bar 6 that transmits the force to the 

forearm can only move between two pins 1 meshed with the inner gear 2. Since the single-

axis hinge elbow design was modified to meet all design requirements, the position of bar 

6 has a 90° shift with respect to the position of the forearm, see Fig. 18. Hence, a start 

position (0°) of the forearm corresponds to a -90° position of bar 6. 

A. B.  

C.  

Fig. 3.10. Elbow brace DOFs. 



36 

 

 

 

 

A. Full extension. B. Full flexion. C. Carrying angle. 

As it was discussed in Section 3.3.1, the passive movement of the forearm in the coronal 

plane was achieved by using a stainless steel ball bearing that allows the lower link of the 

device to move within ±12°, see Fig. 3.10 C. 

 

A.  
 

 

 

B.  

Fig. 3.11. Mechanical stoppers.  

1 – pin, 2 – inner gear, 3 – pin housing, 4 – button, 5 – screw, 6 – bar. 
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Fig. 3.12. Schematic diagram of the performance of the mechanical stoppers.  

The red line is the bar 6. The yellow lines are the upper arm and the forearm. The 

blue bar is the lower part of the elbow brace that supports the weight of the 

forearm, the hand and the load.  The position of the forearm at 0° corresponds to the 

position of the bar at -90°. The position of the forearm at 45° corresponds to the 

position of the bar at -45°. The position of the forearm at 130° corresponds to the 

position of the bar at 40°. 

3.3.3 Driver Selection 

As defined in Section 2.3.2, the device should produce 10 Nm in order to provide support 

to the affected arm during the training sessions and everyday activities. Based on the 

literature review presented in Chapter 2, the wearable devices for upper limb rehabilitations 

use DC motors, pneumatic muscles, hydraulic drives and smart materials for torque 

generation. As no consistency in driver selection was found in the reported projects [35]–

[67], the grid analysis method was used to narrow down driver options, see Table 3.3. High 

priority (scaling factors 3 and 4) was assigned to the torque output, weight, and size criteria. 

A medium scaling factor of 2 was chosen for safety, easy installation, and weight of the 

control system. The cost of the prototype was chosen as less critical among other criteria 

(scaling factor of 1). Each type of actuator was assigned with a score for each criteria 

(where 1 means that the design requirements is not met by the actuator, 2 means that the 

design requirement is met, and 3 means that the property of the actuator exceeds the design 

requirement). The final scores was calculated as a sum of criteria score multiplied by the 

scaling factor. 

The motor–gear box combination and smart materials were eliminated based on the low 

final score achieved by them (31 and 32 respectively). Both options were not addressing 

the main requirement: the torque specifications. Pneumatic muscles and 
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pneumatic/hydraulic drives require large housings due to the nature of the pressure-driven 

actuators. This makes them bulky, despite the high power-to-weight ratio. Therefore, the 

final score of a motor–gear box drive with a transmission system was higher (39) than the 

pneumatic muscles and pneumatic/hydraulic drives (36 and 34 respectively) due to having 

the best power density (torque-to-weight ratio) among the remaining drivers. 

Table 3.3. Grid analysis of drivers for a powered elbow brace. 
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Torque output  4 1 4 3 12 3 12 0 0 3 12 

Weight 3 2 6 3 9 2 6 3 9 2 6 

Size 3 2 6 0 0 0 0 3 9 2 6 

Safety 2 2 4 2 4 2 4 1 2 2 4 

Cost  1 1 1 3 3 2 2 0 0 1 1 

Ease of 

installation 
2 3 6 3 6 3 6 3 6 3 6 

Weight of the 

control system 
2 2 4 1 2 2 4 3 6 2 4 

     31   36   34   32   39 

  

According to the literature review, smart elbow braces that are driven from both sides of 

the elbow should provide more stable assistance during a movement compared to one-sided 

driven prototypes. Hence, a number of design concepts for an actuation system that splits 

torque (i.e., symmetrically transmits half of the torque to several directions) from a motor–

gear box combination were analyzed, see Table 3.4.  

Gears with intersecting axes and parallel axes typically have 98%–99% efficiency (ȠG) 

[111], while efficiency of gears with nonparallel and nonintersecting axes may vary 

between 30% and 90% [111]. Hence, due to excessive friction, worm gears were eliminated 

from further analysis, see Table 3.4. 
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Table 3.4. Grid analysis of splitter transmissions. 
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Complexity of transmission 

(1 – complex, 2 – straightforward) 

1 1 1 2 

Efficiency of transmission 

(1 – less than 50%, 2 – between 50% 

and 95%, 3 – greater than 95%) 

2 6 2 6 

  7 3 8 

 

                 

Fig. 3.13. Bevel gear and belt–pulley   

transmission for one motor–gear box 

combination.       

Fig. 3.14. Worm gear and belt–pulley 

transmission for one motor–gear box 

combination. 

 

 

Fig. 3.15. Spur gears and belt–pulley transmission  

for one motor–gear box combination. 
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Since spur gears are easy to find, inexpensive, and efficient, a spur gear was chosen as the 

optimal. It should also be mentioned, that beveled gears can be noisy when operating at 

high speeds. Thus, may be inappropriate for home-based devices. 

3.3.4 Motor–Gear Box Selection 

The kinematic diagram of the transmission system in presented in Fig. 3.16. The output 

torques from the transmission system, 𝑇1,2 OUT , can be found as: 

𝑇IN = 𝑇M ∙ 𝑁GH ∙ ȠGH       

where 𝑇IN is the output torque from the gearhead that is attached to the motor, 𝑇M is the 

continuous output torque from a motor, 𝑁GH is the gear ratio of a gearhead, ȠGH is the 

efficiency of the gearhead.  

 

Fig. 3.16. Kinematic diagram of the transmission system. 

 

The output torque from the transmission system, 𝑇1,2 OUT , can be calculated as follows: 

𝑇1,2 OUT =
(𝑇IN∙ȠG)

2
∙

𝑁2 ·ȠTA

𝑁1
         

where ȠTA is the efficiency of the torque amplifier and ȠG (0.98) is the efficiency of the 

gear transmission, 𝑁1 and 𝑁2 are the diameters of the pulleys of a torque amplifier (
𝑁1

𝑁2
  ratio 

is 3). The efficiency of the torque amplifier is assumed to be ȠTA = 0.95. Substituting the 

corresponding values into this equation gives:  
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5 =
𝑋 ∙ 0.98

2
∙

3 · 0.95

1
 

𝑋 = 3.58 Nm. 

Therefore, 3.58 Nm torque is required from the output shaft of the driver to get 10 Nm 

torque applied to the forearm. The exerted force is applied symmetrically from both sides 

of the forearm. According to the required torque from the gearhead, a summary of the 

catalogue search is presented in Appendix B. As a result of the driver’s analysis, two 

motor–gear box combinations can be used for the current project: Maxon Planetary 

Gearhead 143995 + Maxon EC-max 22 283840 or Maxon Planetary Gearhead GP 32 

166979 + Maxon A-max 26 110192. The preference was given to the first option with dual 

drivers, since this configuration results in more possible solutions for the transmission 

system. 

3.3.5 Actuation System 

Two brushless DC Maxon motors (EC-max22, continuous torque 0.0108 Nm) combined 

with planetary gears (GP22C, gear ratio 333:1 and maximum efficiency 49%) can produce 

1.76 Nm per each combination. In order to achieve 10 Nm, a custom transmission system 

was designed, see Fig. 3.17.  

 

Fig. 3.17. Actuation system of the smart elbow brace. 

The torque is transmitted through a gear set (efficiency 0.98%, maximum continuous 

torque1.727 Nm) and through a torque amplifier (e.g. belt/chain/cable and pulleys system) 

that increases the output torque from 1.727 Nm up to 5.42 Nm:  
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𝑇1

𝑇2
=

𝑁1

𝑁2
 

where  𝑇1 is input torque to the transmission system,  𝑇2 is the output torque from the 

transmission system, 𝑁1 and 𝑁2 are the diameters of the pulleys of a torque amplifier (
𝑁1

𝑁2
  

ratio is 3) . The final output torque from the actuation system is 𝑇OUT = 𝑇2 ∙ 2 ∙ ȠTA = 5.42 

N∙ 2·0.95 = 10.29 Nm for the worst-case scenario. 

The reverse calculation will estimate whether torque 𝑇2 can lift the weight of the brace, the 

patient’s lower limb and a 1-kg load in the hand for a particular brace design.  

A combination of forces 𝐹, 𝑄 and 𝐵 act on the brace, see Fig. 3.18; where 𝐹 = 𝑚𝑔, 𝑚 is 

the mass of lower part of the brace, the mass of patient’s forearm and hand plus the mass 

of the load in the hand; 𝑔 = 9.8 m/s2; 𝑟2 is the distance from the elbow pivot point to the 

𝐶𝑂𝑀 of the forearm; 𝑄 is a force generated by the drive system of the brace; 𝑟1 is the 

distance from the center of large pulley to the point where the force 𝑄 is applied; 𝐵 is the 

force generated by a large pulley; and 𝑟3 is the radius of the large pulley. 

 

Fig. 3.18. Reverse payload and torque calculation diagram. 

The balance condition at 90° can be described as follows: 

∑ 𝑥𝑖 = 0, ∑ 𝑦𝑖 = 0, ∑ 𝑧𝑖 = 0, ∑ 𝑀𝑖𝐴 = 0;  

𝑀𝑥𝐴: �̅�𝑐𝑜𝑠𝛼 + �̅�𝑐𝑜𝑠휀 = 0,   𝑀𝑦𝐴:   �̅�𝑐𝑜𝑠𝜇 + �̅�𝑐𝑜𝑠𝛽 = 0,     𝑀𝑍𝐴:    �̅�𝑐𝑜𝑠𝜃 + �̅�𝑐𝑜𝑠𝛿 = 0; 

where 𝛼 = 90° is the angle between force 𝑄 and plane 𝑋;  

휀 = 0° is the angle between force 𝐹 and plane 𝑋;  



43 

 

 

 

 

𝜇 = 0° is the angle between force 𝑄 and plane 𝑌; 

𝛽 = 90° is the angle between force 𝐹 and plane 𝑌; 

𝜃 = 90° is the angle between force 𝐹 and plane 𝑍; 

𝛿 = 90° is the angle between force 𝑄 and plane 𝑍; 

∑ 𝑀𝑖𝐴 = 0 + �̅�𝑐𝑜𝑠휀 + �̅�𝑐𝑜𝑠𝜇 + 0 + 0 + 0 = 0; 

In other words, the brace will stay at the 90° position if  

𝐹 ∙ 𝑐𝑜𝑠휀 ∙ 𝐶𝑂𝑀 + 𝑄 ∙ 𝑐𝑜𝑠𝜇 = 0, 

where 𝐶𝐷 (𝐶𝑂𝑀)  is the distance from the elbow to the centre of gravity of the forearm 

and hand (0.145 m for females and 0.164 m for males), and 𝑄 has to be equal to the output 

torque from the actuation system 𝐵. Therefore, the relation between 𝑄, 𝐵 and 𝐹 can be 

represented as follows: 

𝑄 =
𝐹∙1∙0.145

1
= 0.145𝐹f  and  𝑄 =

𝐹∙1∙0.164

1
= 0.164𝐹m 

�̅� + �̅� ∙ 𝑐𝑜𝑠𝛾 = 0; 

where γ = 5.92° is the angle between force 𝐵 and plane 𝑌 that was measured according 

to Fig. 3.19, 𝐵 is the output torque from the actuation system (10.29 Nm). 

 

Fig. 3.19. Diagram of the torque amplifier. Dimensions are in mm. 

0.145𝐹f = 𝐵 ∙ 𝑐𝑜𝑠𝛾, 𝐹f =
10.29∙0.99

0.145
= 6.83 ∙ 𝐵 = 70.26 N; 

0.164𝐹m = 𝐵 ∙ 𝑐𝑜𝑠𝛾, 𝐹m =
10.29∙0.99

0.164
= 6.04 ∙ 𝐵 = 62.15 N. 

𝑚f = 7.17 kg; 𝑚m = 6.34 kg, 
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Since the estimated load is larger than the required load (7.17 kg>2.5 kg for females and 

6.34 kg>2.9 kg for males), the reverse calculation proved that the designed brace is capable 

not only for a BPI rehabilitation, but also can be used during daily activities.  

3.3.6 Transmission System 

Three hubless gears (SPD/SI, 2024 Aluminum alloy, Module 1, 26 Teeth, 20° Pressure 

Angle) were used in the torque transmission system to allow the motor to be coupled and 

decoupled from the transmission system, Fig. 3.20, component 1, 2 and 11.  

To decouple the motor, the user has to shift gears 1 and 2 manually. By locking the selected 

gear pair 1–2 and 11 to the output shaft of component 6 inside the transmission, the torque 

from the shaft of the gearhead 12 is directly transmitted through the motor coupler 14 to 

the torque amplifier (components 8, 9 and 10). As the handle 5 is pulled away from motor, 

the shaft 4 pulls gears 1–2 away from the motor coupler 14 and unlocks the transmission 

system. Both subsystems (1–5 and 6–8, 11, 13) are connected to a wall of a housing (not 

shown on the Fig. 3.20). In order to minimize torque losses, bearings 3, 7 and 13 were used 

to decrease friction.  

 

Fig. 3.20. Transmission system. Position A – coupled. Position B – decoupled. 1 – 

gear Z1, 2 – gear Z2, 3 – bearing B1, 4 – shaft, 5 – handle, 6 – shaft, 7 – bearing B2, 8 

– small pulley/sprocket, 9 – belt/chain/cable, 10 – large pulley/sprocket, 11 – gear Z3, 

12 – motor holder, 13– bearing B3, 14 – motor coupler.  
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In the decoupled mode (Position B, Fig. 3.20), the motors and their housing can be easily 

detached from the device (Fig. 3.21). Then, the user has the option to either to move the 

forearm within a specific ROM or to fix it in a certain position. 

  

Fig. 3.21. Detachable motor housing.  

3.3.7 Torque Amplifier 

As part of the transmission system, a torque amplifier is required to achieve 10 Nm in total 

from both sides of the device. During the design stage, the ratio of the amplifier was 

selected as  𝑅a = 3. Thus, the diameter/teeth/grooves ratio between the driver 

pulley/sprocket and the driven one should be at least 3. The amplifier has to include a belt, 

chain or a cable that actually conveys the power from the driver to the driven shaft. In order 

to select the best option, three types of torque amplifiers were analyzed and designed for 

further testing.  

The initial input values for torque amplifier selection are: the torque 𝑇 = 1.75 Nm, the 

driving speed 𝑛1 = 10 rpm, the ratio of the torque amplifier 𝑅𝑎 = 3, the center distance 

between the sprockets/pulleys 𝑎 = 83 mm, maximal permissible external diameter of the 

larger pulley/sprocket 𝑑2 = 80 mm, and the maximal permissible external diameter of the 

smaller pulley/sprocket 𝑑1 = 20 mm. 
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3.3.7.1 Timing Belt–Pulley Transmission 

The design load 𝑇peak can be determined by multiplying the torque on the smaller pulley 

by a service factor 𝑆: 𝑇peak = 𝑇 ∙ 𝑆 = 1.75 ∙ 2 = 3.50 Nm, where 𝑆 = 2 for small pitch 

synchronous drives [113]. According to the belt technical information [113], a 3 mm pitch 

GT2 belts are the smallest potential choice for the computed  𝑇peak. 

The pulleys size was computed according to the following algorithm: 

1) The number of groves was selected according to the SDP/SI manufacturer’s 

documentation [113]. 

2) The larger pulley combination was found based on the following criterion: the ratio 

between the diameter of the smaller pulley and the larger pulley should not be less 

than 3. 

3) A belt was selected if two criteria were met: 

(a) the distance between the centers of the pulleys should not be less than 83 mm; 

(b) the number of teeth in contact with the belt should not be less than 6 for both 

pulleys. 

The rated torque for the smaller pulley multiplied by the appropriate belt width factor and 

applicable belt length factor should be equal or larger than the computed  𝑇peak. Based on 

the size constrains for the torque amplifier (Section 3.3.7), three combinations of the small 

and larger pulleys can be used in the torque amplifier, see Table 3.5.  

Table 3.5. Belt–pulley selection chart for 3 mm pitch GT2 belts. 

Small pulley 

Number of 

grooves and 

Pitch diameter, 

mm 

Larger pulley 

Number of 

grooves and 

Pitch diameter, 

mm 

Belt 

Number of teeth 

and Length 

Correction 

Factor 

Belt 

Width, mm 

and belt width 

factor 

Calculated 

torque, 

Nm 

16; 10.19 mm 48; 45.84 mm 89; 0.95 

6 mm; 1.00 1.50 
9 mm; 1.50 2.25 
12 mm; 2.00 3.00 
15 mm; 2.50 3.75 

18; 17.19 mm 56; 53.48 mm  94; 0.95 

6 mm; 1.00 1.75 
9 mm; 1.50 2.62 

12 mm; 2.00 3.50 
15 mm; 2.50 4.37 

20; 19.10 mm 60; 57.30 mm 98; 1.00 

6 mm; 1.00 2.09 
9 mm; 1.50 3.14 
12 mm; 2.00 4.18 
15 mm; 2.50 5.23 



47 

 

 

 

 

According to the calculated torque that the belt-pulley can transmit, the SDP/SI Aluminum 

Alloy Timing Pulley with grooves 𝑁1=56 and 𝑁2=18 in combination with 3 mm pitch GT2 

belt 12 mm width that has 94 teeth was found to be the best space saving option. 

3.3.7.2 Chain–Sprocket Transmission 

The power transmission of a chain–sprocket combination can be found as: 

𝑃 =
𝑇 ∙ 𝑛1

9550
 

where T is the input torque to the transmission system, n is an average speed of force 

transmission, °/s.   

𝑃 =
1.75∙10

9550
= 0.002 kW. 

According to the DIN curve [114], chain M106 Single (DIN ISO – 10B1) with chain pitch 

16 satisfies the power requirements. The recommendation is to have 11–13 teeth of a 

sprocket for chain speed under 4 m/s. A sprocket with less than 11 teeth is not used for 

power distribution. Therefore, the number of teeth 𝑧1 = 11 of a small chain wheel 

corresponds to a power coefficient 𝑓1 = 1.72 [114]. The transmission ratio of a large 

sprocket to a small sprocket 𝑅 = 3 corresponds to a power coefficient 𝑓2 = 1.0 [114]. The 

effect of the shock factor 𝑌 = 2.5 [114] corresponds to a power coefficient 𝑓3 = 1.59 [114]. 

The ratio of center distance (a) to chain pitch (p) 
𝑎

𝑝
=

83

16
= 5.19 corresponds to a power 

coefficient 𝑓4 = 1.18 [114]. Chains that move with speed less than 4 m/s have a power 

coefficient 𝑓5 = 1.4 [114]. The resulting power coefficient is 𝑓𝑅 = 𝑓1 ∙ 𝑓2 ∙ 𝑓3 ∙ 𝑓4 ∙ 𝑓5 =

1.72 ∙ 1.00 ∙ 1.59 ∙ 1.18 ∙ 1.4 = 4.52. Thus, the corrected power is 𝑃𝐷 = 𝑃 ∙ 𝑓𝑅 =

0.002 kW ∙ 4.52 = 0.01 kW. The chain M106 Single (DIN ISO – 10B1) with chain pitch 

16 still satisfies the power requirements. The technical details of the selected chain driver 

are: 33.81 mm of the smaller pitch diameter and 100.21 mm of the larger pitch diameter. 

3.3.7.3 Cable–Pulley Transmission 

The cable drivers combine unique features: no backlash, high stiffness and low friction 

[115]. Easy installation and cable flexibility allows designing the smallest torque amplifier 

for the current brace transmission.  



48 

 

 

 

 

Since the cable–pulley option does not require specific pulley dimensions, a set of general 

constraints for pulley selection can be described as follows:  

a) the diameters of the two pulleys should satisfy the ratio criteria (𝑅 = 3); 

b) the overall force applied through the rope to the pulley should be taken into account in 

order to eliminate pulley deformation; 

c) the groove depth should be equal to 1.5 of the cable diameter; 

d) the slip angle φ, the minimum angle of wrap required to support the applied load, can 

be calculated according to [115]: 

𝜑 = 𝑙𝑜𝑔 (
𝑇2

𝑇1
) ≈ 1° 

where 𝑇2 − output torque from the cable-driven system, 𝑇1 − input torque to the torque 

amplifier. A Nylon® rope with breaking strength 9.1 kg and ∅ = 0.25 mm (Micron, 

Cortland Line Company Inc.) was selected as a cheap representative of lifting ropes.  

3.3.7.4  Comparison of Torque Amplifiers 

Section 0 showed that the chain–sprocket option cannot be used with the designed 

transmission system due to the large size of both sprockets. The cable–pulley option is the 

most easily implemented combination due to pulley size flexibility. However, the selected 

rope and belt have different material properties: Nylon® (Polyamide 66) can be stretched 

(about 10% elongation at 30% of breaking strain) and has fair moisture resistance (moisture 

regain is 4–4.5%) [116], [117], while neoprene belts with a fiberglass cord (Fig. 3.22) have 

high resistance to elongation and good tear resistance, but a high modulus of elasticity 

(difficult to bend) [113]. 

 
Fig. 3.22. Neoprene belts with a fiberglass cord. 
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Since both belt–pulley and cable–pulley combinations can potentially be used in the 

transmission system; a real world comparison and assessment is required and is presented 

later in Section 4.2. 

3.3.8 Material Selection 

The material selection preference was given to nontoxic materials such as aluminum, 

plastic and polyester. They are inexpensive, lightweight, easy to machine and widely used 

in the hand rehabilitation practice. Even though only a few cases have reported contact 

allergy to aluminum [118], the skin of the user will only be in contact with the plastic and 

polymer structures. This will ensure that the risk of an allergic reaction is minimized. 

The components of the prototype were built out of acrylonitrile butadiene styrene (ABS) 

plastic in a Dimension Elite 3D Printer or manufactured from 6061/7075 aluminum bars. 

The material assigning process was based on the results of the Finite Element Analysis 

(FEA) under loads in the SolidWorks Simulation Module. Each component was analyzed 

according to the function in the device, external forces from the user and a Safety Factor 

(FOS). The results of the FEA analysis of each part (e.g., Fig. 3.23) are provided in the 

form of displacements (e.g., Fig. 3.24) and stresses (e.g., Fig. 3.25). An example of the 

FEA analysis is described below. 

The base for the forearm (Fig. 3.23) supports the weight of the lower arm and the 1-kg load, 

while its ribs act as limiters for the carrying angle. Thus, it was assumed that a weight of 5 

kg was supported by the base during everyday activities. According to the displacement 

analysis, the maximum deflection of the base was found to be 0.1126 mm (red zone in Fig. 

3.24 A). The deflection will result in acceptable 0.52° displacement of the carrying angle 

(Fig. 3.24B). 

 

Fig. 3.23. Forces acting on the base for the forearm. 
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A.  

B.  

Fig. 3.24. Displacement analysis of the base for the forearm. 

A. Deflection analysis of the base (red zone corresponds to 0.1126 mm deflection).  

B. Displacement of the carrying angle (0.52°). 

 

The von Mises-Heneky theory states that “a ductile material starts to yield at a location 

when the von Mises stress 𝜎VM becomes equal to the stress limit 𝜎limit” [119]. Therefore, 

by knowing the stress limit of a material (i.e. yield strength), a FOS failure criteria for the 

components of the proposed device can be determined as 
𝜎VM

𝜎limit
> 4, where 𝜎𝑉𝑀 is 

calculated in the SolidWoks Simulation Module (Fig. 3.25). An example of the FOS 

analysis is presented in Fig. 3.26. The simulation shows that the base for the forearm made 
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from ABS plastic will not stretch or contract under loads and therefore will not fracture 

since the FOS is greater than 4 (blue area in Fig. 3.26). 

Cotton and polypropylene bandages were used as interface materials for lining and padding. 

All selected materials either do not absorb moisture and odours, or are easily washable [94]. 

 

 

Fig. 3.25. Stress analysis of the base for the forearm. 

 

Fig. 3.26. FOS analysis of the base for the forearm. 

 

A polyester sheet was used for forming the cuffs, as it is flexible, low-cost and common in 

rehabilitation clinics. A press-vacuum machine Formech 300XQ (Fig. 3.27) was used for 

cuff customization. 
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A.  B.  

Fig. 3.27. Vacuum-forming cuffs. A. Formech 300XQ. B. Formed cuffs. 

3.4 Conclusion 

This chapter described the design and development of the wearable elbow brace. Technical 

specifications for the mechanical and actuation parts of the device were identified based on 

the literature review and discussions with a hand therapist. Different design concepts were 

considered and the best solution for the mechanical and actuation parts of the device were 

selected. In order to verify and test the developed device, a prototype was built and tested. 

The following chapter presents the resulting prototype and an evaluation of its performance. 
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CHAPTER 4 

4   WEARABLE ELBOW MECHATRONICS-

ENABLED BRACE PROTOTYPE 
 

One of the goals of this project was to make the first prototype of the elbow brace as fault-

free as possible. For this reason, the previous Chapter presented the work done towards 

developing the list of mechanical constraints and analyzing the results of static simulations 

in SolidWorks. Nevertheless, an evaluation of the performance of separate subsystems of 

the device under the real-world stresses and loads is required in order to provide smooth 

motions to the forearm of a BPI patient. Thus, Section 4.1 and Section 4.2 outline how the 

prototype meets the mechanical design specification. Section 4.3 describes how the best 

option for the torque transmission system was selected. Finally, Section 4.4 summarizes 

the budget for the prototype development and assembly.  

4.1 Design Overview 

A first prototype of the designed wearable elbow brace is presented in Fig. 4.1. The total 

weight of the device is 1.4 kg, while the mechanical structure that can be used for 

immobilization purposes weights 0.6 kg. The weight exceeds the design requirement of 

1-kg and is higher than commercially available mechanical braces for immobilization (e.g., 

mechanical brace, Innovator X® (Össur) weights 0.4 kg). Despite this, the overweight of 

the prototype is a justifiable tradeoff since the proposed device offers a number of 
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advantages, as will be described in Section 4.2 and Section 4.4. Moreover, a shoulder strap 

can be used to compensate for extra weight of the device, see Fig. 4.1B.  

A     B    

Fig. 4.1. Prototype of the wearable mechatronic elbow brace.  

A. Side view of the prototype.  

B. View from the back showing the overall width of the brace. 

 

The mechanical design requirements were verified as shown in Fig. 35–Fig. 39. The natural 

elbow motion is achieved by mimicking a 2-DOF single-axis hinge type elbow model, as 

follows:  

(1) The position A and B (Fig. 4.2) corresponds to the full range of elbow motion in the 

sagittal plane, i.e., from 0° in position A to 130° in position B. 

(2) Position C and D (Fig. 4.3) accounts for the carrying angle that changes during forearm 

motion in the coronal plane from -12° to +12°. This passive change of carrying angle 

provides comfortable FE movements driven by the bone structure of the elbow joint. 

(3) Mechanical stoppers, see Fig. 4.4, limit the elbow motion in the sagittal plane, i.e., 

flexion–extension. Each mechanical stopper provides a 5° step increment, see Fig. 4.4B. 

The prototype can be adjusted to a wide range of upper limb sizes, as follows: 

(1) The forearm length can be varied from 25 cm to 32 cm. Button 1 allows setting 3 

positions of Link 1 (Fig. 4.2A and Fig. 4.5) that correspond to 25 cm, 28.5 cm and 32 cm 
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of forearm length. If extra length is required, Link 1 can be easily replaced with a new 

longer version without any other design updates. 

(2) The upper arm length can be adjusted from 36 cm to 39 cm. Button 2 allows setting 2 

positions of Link 2 (Fig. 4.2 B) that correspond to 36 cm and 39 cm of upper arm length. 

If extra length is required, Link 2 can be easily replaced with a new longer version without 

any other design updates. 

A.       B.      

Fig. 4.2. Range of motion of the prototype.  

A. Position A – full extension. B. Position B – full flexion. 

  

    

Fig. 4.3. Passive ROM to account for the natural carrying angle. 
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(3) The elbow breadth can be adjusted from 85 mm to 125 mm, see Fig. 4.6. However, due 

to the padding that will cover the brace surfaces that contact the skin, the actual space for 

the elbow is between 74 and 114 mm, see Fig. 4.7.  

(4) The cuffs, see Fig. 3.27B, can be formed according to the unique forearm and upper 

arm circumference of each user. They are flexible, light weight and can be easily screwed 

onto Link 1 and Link 2 of the device, see Fig. 3.27 B.  

 

A.    B.  

Fig. 4.4. Mechanical stopper of the prototype.  

A. Side of brace with the external part of the mechanical stoppers.  

B. Customized aluminum gear with two mechanical stoppers. 

 

 

 

  

Fig. 4.5. Adjustment of the device for a specific forearm length. 
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Fig. 4.6. Minimum and maximum elbow breadth.   

A     B    

Fig. 4.7. Elbow breadth that the prototype can handle.  

A. A possible padding for increasing comfort of a user. B. Thickness of padding.  
 

The prototype can be resized in 1–3 minutes depending on skill level and experience of the 

user. 
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4.2 Testing of the Mechanical Stoppers 

The mechanical stoppers have two functions: (1) to protect the affected forearm during the 

reinnervation process, i.e., to immobilize it, and (2) to act as safety reserve components in 

the torque transmission system. Thus, an assessment of the performance of the mechanical 

stoppers should include not only scenarios in which the brace is loaded with the weight of 

a human arm, but also cases in which an additional load (e.g., carrying a 0.5 or 1 kg load 

for resistive training) is held by the patient. To achieve this, a test that estimates how well 

the mechanical stoppers perform was designed and presented in this section. The results 

were compared with the performance of the market-available mechanical brace for 

immobilization, Innovator X® (Össur) shown in Fig. 2.3. 

To assess the accuracy and repeatability of the immobilization phase with the help of the 

assembled mechanical stoppers, the elbow brace was fixed to a base as shown in Fig. 4.8. 

A forearm phantom that mimics muscle weight distribution for females and males [120], 

see Table 4.1, was used for tests. The forearm phantom was constructed from modeling 

clay (Play-Doh), metal components as shown in Fig. 4.9 and a wooden bar (0.2 kg). The 

forearm muscles were divided into three groups, see Table 4.1, and the final formed 

muscles were wrapped over a wooden bar connected to a single-axis hinge, see Fig. 3.6. 

An additional weight that corresponds to the hand weight of females and males was fixed 

to the end of the wooden bar.  The forearm phantom was covered with silicone, as shown 

in Fig. 4.10 The total weight of the females forearm phantom (1.74 kg) and the males’ 

version of the phantom (2.23 kg) mimics the lower arm weight for the 95th percentile of 

the population (see Table 3.1). 

Table 4.1. Muscle weight distribution in the forearm phantom. 

Group of muscles 
Calculated 

weight (g) 

Weight of 

modeling 

clay (g) 

Weight of 

used metal 

part (g) 

Length of the 

longest muscle 

in group (cm) 

Wrist flexors for males 

forearm phantom 
900 300 600 24.9 

Wrist flexors for females 

forearm phantom 
480 300 180 24.9 

Finger flexors for 

females/males forearm 

phantom 

430 200 230 24.5 

Wrist extensors for 

females/males forearm 

phantom 

330 100 230 22.2 
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Fig. 4.8. The setup for the assessment of the mechanical stoppers. 

Photo credits: Hilary Luo. 

 

 

Fig. 4.9. Components’ distribution in the forearm simulator. 

 

Fig. 4.10. Front view of the forearm simulator. 

The test was conducted for three loads: (1) the weight of a female or a male forearm, (2) 

the weight of a female or a male forearm plus 0.5 kg applied to the center of gravity of the 

forearm, and (3) the weight of a female or a male forearm plus 1 kg applied to the center of 

gravity of the forearm. Each test was repeated 3 times for both the elbow brace and for the 

mechanical brace.  

The angular position was recorded with the help of a motion sensor built into the Myo 

Gesture Control Armband (Thalmic Labs®). Recorded data was saved with the help of 
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open source software called Myo Capture, and later was processed in MATLAB 

(MathWorks, Inc.). The accuracy was calculated as the mean error between the initial 

position of the forearm in the brace and the measured position after a load was applied. 

Repeatability is presented as the standard deviation observed in tests for each load. The 

results are summarized in Fig. 4.11, where the mean error of angular displacement and the 

standard deviation under different conditions are shown for the prototype and the 

mechanical brace Innovator X®.  

A.  

B.  

 Fig. 4.11. Mean error ± SD of angular displacement under different loads.  – 

prototype of the wearable elbow brace,   – commercially available mechanical 

brace. A. Loads start at the weight equal to the weight of female forearm and hand 

(1.25 kg) and progress until 2.25 kg, which mimics resistive training with a 1-kg load 

in the hand. B. Loads start at the weight equal to the weight of male forearm and 

hand (1.65 kg) and progress until 2.65 kg, which mimics resistive training with a 1-

kg load in the hand. 

 



61 

 

 

 

 

Since the maximum mean error obtained for each scenario for the elbow brace (0.1° for 

conditions in Fig. 4.11A and 0.2° for conditions in Fig. 4.11B) does not exceed the mean 

error for the mechanical brace Innovator X® for the same loads (0.3° for conditions in Fig. 

4.11A and 0.5° for conditions in Fig. 4.11B), it can be concluded that the proposed device 

can be used to prevent motion beyond a certain range following nerve reconstruction 

surgery in order to protect the affected arm. 

4.3 Torque Amplifier Testing 

As it was mentioned before (Section 3.3.7.4), both belt–pulley and cable–pulley 

combinations can potentially be used in the transmission system. Hence, a test was designed 

to identify the best option for a torque amplifier, see Section 3.3.7. 

To compare the cable and the belt options, the conditions were maintained throughout the 

test. Thus, the weight of the load applied to the lower link of the device was kept constant 

(the weight of the lower link of the device, which is equal to 0.2 kg). According to the 

calculations in Section 3.3.5, the force acting on the lower link of the device 𝐹 can be found 

as 𝐹f = 6.83 · 𝐵 for females and 𝐹m = 6.04 · 𝐵 for males, where 𝐵 is the total output torque 

from the transmission. Therefore, by knowing the mass of the weight that the pulley 

moves, 𝑚 = 0.2 kg, the torque 𝐵 acting on the belt/cable–pulley transmissions can be 

found as follows: 

𝐹f = 6.83 ∙ 𝐵 = 𝑚 ∙ 𝑔 = 1.96 N, 𝐵 = 0.28 Nm, 

 𝐹m = 6.04 ∙ 𝐵 = 𝑚 ∙ 𝑔 = 1.96 N, 𝐵 = 0.34 Nm. 

As the calculated torque ranges between 0.28 Nm and 0.34 Nm, the largest number can be 

safely selected for all possible cases. Hence, torque amplifiers located on both sides of the 

device should transmit 0.17 Nm each. 

In order to minimize changes in the transmission system during the test, it was decided to 

use the same small and the large pulley, which can transmit 0.17 Nm for both cable and 

belt options, as follows:  

(1) A large Aluminum Alloy Timing Pulley with 𝑁1=25 mm, ℎ1 = 5 mm (2 mm (GT2) 

Pitch, 40 Teeth, 6mm Bore, 2 Flanges/With Hub, Aluminum Alloy Timing Pulley for 3mm 

Wide Belt, SDP/SI), and  
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(2) A small Aluminum Alloy Timing Pulley with 𝑁2=7.8 mm, ℎ2 = 5.7 mm (2 mm (GT2) 

Pitch, 14 Teeth, 3 mm Bore, 2 Flanges/With Hub, Aluminum Alloy Timing Pulley for 3 

mm Wide Belt, SDP/SI), see Fig. 4.12.  

The ratio 
𝑁1

𝑁2
=

25

7.8
= 3.2, the external diameter of the larger pulley 𝑑2 = 30.7 mm and the 

external diameter of the smaller pulley 𝑑1 = 12.80 mm satisfy the torque amplifier 

specifications outlined in Section 3.3.7. The groove depth was calculated as the difference 

between the outside diameter and the pitch (inner) diameter (Fig. 4.12). 

A.  B.  

Fig. 4.12. Selected pulleys for belt–pulley and cable–pulley transmission.  

Dimensions are in mm. A. Small pulley. B. Large pulley. 

 
 

The selected pulleys can be used with a Nylon® rope of an appropriate cross sectional area. 

The cross sectional area of a rope, 𝜋𝑅2, is directly related to its breaking strength: 𝛿~𝜋𝑅2 2. 

Therefore, the ratio of the loads and the ratio of the area for a small and a large rope should 

be equal to the following equation: 

𝑓

𝐹
=

𝑑2

𝐷2
 

where 𝑓 and 𝐹 are the loads of a small and a large ropes, 𝑑 and 𝐷 are the diameters of a 

small and a large ropes. By knowing that a ∅12.5 mm Nylon® rope has a breaking strength 

of 40 kN, the diameter of a Nylon® rope that can withstand 0.0057 kN (0.17 Nm/0.03 m as 

                                                 
2 Assuming that a cable is circular, then its cross sectional area is 𝜋𝑟2 (where r is the radius of a small cable). 

So a larger cable would have a cross sectional area of 𝜋𝑅2, (where R is the second cable's radius). This means 

that the breaking strength of two cables with the same mechanical properties is the ratio of their radii (or 

diameters) squared: 

𝛿small rope =
𝑓

𝜋𝑟2, 𝛿larger rope =
𝐹

𝜋𝑅2;   
𝛿small rope

𝛿larger rope
=

𝑓

𝜋𝑟2 ÷
𝐹

𝜋𝑅2;  
𝑓

𝐹
=

𝑟2

𝑅2 =
𝑑2

𝐷2. 
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Torque/Radius of a pulley) can be calculated. Incorporating a safety factor of 3 (non-critical 

application), yields the following relationship: 

0.0057 ∙ 3

40
=

𝑑2

12.52
 

Isolating for 𝑑, it was found that a Nylon® rope of ∅0.25 mm in diameter satisfies all 

requirements. 

A 2 mm (GT2) Pitch, 110 Teeth, 3mm wide singles Neoprene belt with Fiberglass cords 

was selected as a representative of a GT2 belt family that can be used with the selected 

pulleys shown in Fig. 4.12. The current belt–pulley configuration can generate the 

following: 

𝑇 = 0.12 Nm ∙ 0.65 ∙ 0.7 ∙ 3.2 = 0.17 Nm/side, 

where 0.12 Nm is the rated torque for the smaller pulley [113], 0.65 is the belt width factor, 

0.7 is the belt length factor, 3.14 is the torque amplifier ratio. Hence, the selected belt–

pulley combination can transmit 0.34 Nm. 

4.3.1 Setup installation 

Due to unique properties of the timing belt and the selected Nylon® rope, an appropriate 

tensioning needed to be implemented. Thus, the following sections describe the specific 

process of belt installation (Section 4.3.1.1) and cable installation (Section 4.3.1.2) that was 

done prior to testing. 

4.3.1.1 Belt Installation 

Proper tensioning of V-belts is the most important factor for a long, satisfactory operation 

of a transmission system [121]. Slippage, causing rapid belt and sheave wear, and loss of 

productivity result from insufficient tension, while excessive stress on the belts, bearings, 

and shafts and reduced efficiency are the effects of excessive tension. As a rule, belt 

deflection should not exceed t/64 per mm of span length [121], [122]. This can be checked 

using either a deflection gauge or a steel ruler [122], see Fig. 4.13.  

The required span length can be calculated as described in [121]: 
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𝑡 = √𝑎2 − (
𝐷 − 𝑑

2
)2 

where 𝑡 is a span length in inches; 𝑎  is the distance between pulley centres (83 mm); 𝐷 is 

the large pitch diameter (30.7 mm); and 𝑑 is the small pitch diameter (12.8 mm). For the 

current project, the span length is as follows: 

𝑡 = √832 − (
30.7 − 12.8

2
)

2

= 82.51 mm 

The allowed deflection distance is equal to t/64 = 82.51/2.52 =1.29 mm.  

Since the measured deflections from the belts of both transmission systems (𝑡1 =

14.18 mm and 𝑡2 = 13.28 mm) are larger than the allowed value, a tensioner needed to be 

applied. 

A B   

Fig. 4.13. Belt deflection. A. Diagram of a belt deflection measurement.  

B. Measured deflection on the belt–pulley transmission. 

 
 

A grid analysis method was used to select the tensioner type, see Table 4.2. High priority 

was assigned to the weight/size and adjustability criteria. Medium and low weight was 

given for easy installation and cost criteria.  
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Table 4.2. Grid analysis of belt tensioners. 

  

S
ca

li
n

g
 f

a
ct

o
r
 

Stationary 

roller 

tensioner 

 

Movable 

metal 

tensioner 

for a cut 

belt 

Movable 

torsion 

spring 

tensioner 

Movable  

3D printed 

tensioner 

Weight/Size 3 6 6 9 9 

Adjustability 3 6 6 3 6 

Cost  1 1 1 2 2 

Easily installed 2 2 2 4 4 

  15 15 18 21 

 

The stationary tensioner and the metal tensioner for a cut belt (Fig. 4.14) were eliminated 

based on the low score. Due to the need for an additional mechanism that connects the 

transmission housing and a roller tensioner, stationary roller tensioner requires a lot of 

space and complex assembly. 

On the other hand, movable tensioners that move with the belt and cannot travel over the 

timing pulley can be an option if the transmission only moves back and forth within a 

specific distance. A movable tensioner can be made by modifying a torsion spring, see Fig. 

4.15. However, it is hard to accurately adjust spring leg length to create a specific tension. 

Therefore, the Grid Analysis showed that the most sensible option for the current project is 

a movable 3D printed tensioner (Fig. 4.16). 

 

Fig. 4.14. Metal tensioner for a cut belt. 
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A   B   

Fig. 4.15. Torsion spring as a tensioner 

A    B     

 

C    

Fig. 4.16. Movable 3D printed tensioner. 

A. Tensioner position at full extension. B. Tensioner position at full flexion. 

C. Close up of the belt tensioner. 
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4.3.1.2  Cable Installation 

Properly tensioned closed-circuit cable drive provides good power transmission with no 

backlash [123]. Such trait is important for a system that regularly applies torque in a 

changing direction. However, to minimize changes in the drive system of the device, an 

open circuit cable–pulley transmission was selected for simplicity. The cable diameter was 

measured as 𝑑w = 0.25 mm and the groove depth was calculated as ℎ = 1.5 ∙ 𝑑w =

0.35 mm. The elastic deflection of this cable (Fig. 4.17), measured at its center, fixed from 

two sides can be calculated as follows [124]: 

𝐹 =
4∆𝐸𝐴

𝑎
, ∆=

𝐹∙𝑎

4𝐸𝐴
=

1∙83

4∙4000∙𝜋∙(
0.25

2
)2

=
83

785
= 0.11 mm 

where ∆ is the cable deflection, 𝐹 is the force acting on the center of the cable during 

measurement, 𝑎 is the measured length of the cable between the centers (Section 3.3.7), 𝐸 

is the modulus of elasticity (4 GPa) , and 𝐴 is the cross sectional area of the cable equal to 

𝜋(
𝑑𝑤

2
)2. 

 

Fig. 4.17. Cable deflection.  

 

The marine camel hitch (Fig. 4.18) was used to fix the rope in the groove of the pulleys. 

This knot is known for its ability to self-tie on cylindrical and flat objects while the load 

applied to the hitch might shift from one direction to another. 

   

Fig. 4.18. Diagram of a marine camel knot. 

Photo credit: Ingl Kiselov. 



68 

 

 

 

 

4.3.2 Torque Transmission in Rehabilitation 

The calculations in Section 4.2 showed that the selected belt–pulley and cable–pulley 

combinations can easily move the unloaded brace. In order to determine the best option, 

the brace velocity was compared with the control command (constant speed). In the best-

case scenario, the acceleration of the brace should be equal to zero:  

𝑎𝑐𝑐𝑖 =
𝑛𝑖 − 𝑛𝑖−1

∆𝑡
= 0 

where 𝑎𝑐𝑐𝑖 is the acceleration at time moment i, 𝑛𝑖  is the velocity at time moment i, ∆𝑡 is 

the time between moment i and i − 1. However, in the real world situation, the brace will 

experience deformations, stresses, disturbances and loads. Therefore, the final movement 

of the brace may not be smooth. Since jerky motions of the extremity can cause severe pain 

[125], a numerical limit of acceleration (quantitate measurement of jerky motions) was 

determined based on the findings in [126] and [127]. 

Konczak, et al. [126] showed that healthy individuals (mean age 61.1 ± 11.6 yrs.; 13 male, 

15 female) can have a 0.2° position sense threshold, i.e., humans are not able to distinguish 

elbow movements that are less than 0.2°. On the other hand, humans can respond to a 

disturbance within 5–10 Hz [127]. In other words, an individual may recognize a change 

in the elbow position only every 0.1–0.2 s (where 0.1 s corresponds to 10 Hz and 0.2 s 

corresponds to 5 Hz). As a result, any movement of the elbow made slower than 0.1-s (∆𝜏) 

or that resulted in less than 0.2° (∆𝛼) of elbow position change will be ignored by the cortex, 

and therefore no pain can be associated with such movements. As a result, the position 

change of the brace should not exceed ∆𝛼 limit (0.002°) within each ∆𝜏 moment of time 

(0.001 s = 1 ms). In this case, the frequency of sensory stimulus would not exceed the pain 

receptor’s threshold [128] and, therefore, it is speculated that it may be interpreted by the 

cortex as a non-painful motion (additional testing would be required to confirm this 

assumption). Additionally to the ∆𝛼 limits that quantify smoothness of brace movement, 

the efficiency of the speed transmission (ratio of the command speed to the brace speed) 

should be at least 95%. 
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4.3.2.1 Methods  

In order to test the designed transmission with a belt/cable–pulley combination, a closed-

loop control system that contains a PC and two EPOS 24/5 Motion Controllers (Maxon 

Motors) was designed, see Fig. 4.19.  

  

Fig. 4.19. Setup for transmission system testing. Actuators connected to the 

EPOS 24/5 controller, power supply and PC. 

The EPOS 24/5 controllers receive velocity commands (12000°/s) from the PC and actuate 

the appropriate Maxon Planetary Gearhead (Part No. 143995, Maxon Motors) through the 

coupled Maxon EC-max 22 (Part No. 283840, Maxon Motors). Once the velocity command 

is issued to the EPOS 24/5, internal PID controllers that use signals from an encoder that 

tracks the desired motor velocity. The gains for the PID controller were tuned to achieve a 

fast response of the motor for a specific velocity with the help of the Maxon software 

(P=282, I=14, D=0), where the target settling time was assigned to be 25 ms, the dead time 

5 ms, and the velocity step 2000 rpm (12000°). The final velocity of brace can be calculated 

as follows:  

𝑛brace =
𝑛motor

333∙3.14
=

12000

1045.62
= 11.47 °/s, 

where 333 is the speed reduction ratio of Maxon Planetary Gearhead and 3.14 is the speed 

reduction ratio of the torque amplifier. More details about the control system (hardware and 

software) are provided in Section 6. 
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A constant speed (2000 rpm) was used to test the belt and the cable within the entire ROM 

(0–130°). The test was repeated 10 times3 with the same conditions for each transmission. 

The brace response was recorded with the help of a motion sensor used with the 

Biosignalsplux sensing platform (Plux®). The data were saved and later converted to an 

array of angular displacements with the help of “OpenSignals” (Plux®) and MATLAB 

(MathWorks Inc.) software. 

4.3.2.2 Results and Discussion 

After a motion profile was extracted from each trial, see Fig. 4.20 green area, the average 

velocity 𝑛, the average acceleration 𝑎𝑐𝑐 and the average ∆α were calculated in MATLAB 

(MathWorks Inc.) and summarized in Table 4.3. Samples of data for the belt–pulley and 

the cable–pulley transmissions are shown in Fig. 4.20 and Fig. 4.21, respectively. The 

average velocity 𝑛 = 11.33°/s shown in Fig. 4.20 and the average velocity 𝑛 = 9.95°/s 

shown in Fig. 4.21 were calculated as a mean value of position changes within 1 ms divided 

by 1 ms across the green area. A sample of the ∆α distribution over time for the Nylon® 

cable–pulley transmission is shown in Fig. 4.22, where the maximum ∆α (0.0008°) is not 

exceeding the acceptable value (0.002°). 

A small acceleration (𝑎𝑐𝑐 = 0.25°/s2 for the cable transmission and 𝑎𝑐𝑐 = 0.31°/s2 for the 

belt combination) in both cases corresponds to a good mechanical response to a control 

signal. The test showed that the belt transmission has 98% efficiency of speed transmission 

(the ratio of output and input velocity, i.e., 11.21°/s /11.47°/s), while the Nylon® cable 

showed only 87% of speed transmission efficiency (9.96°/s /11.47°/s). Despite the low 

efficiency of the speed transmission, the cable showed better repeatability (0.1°/s vs. 

0.21°/s) and lower acceleration (0.25°/s2 vs. 0.31°/s2) throughout the tests. Moreover, the 

mean ∆𝛼 was lower for the cable transmission, as shown in Table 4.3. 

                                                 
3 The number of test repetitions with the same conditions for each transmission was limited to 10 times due 

to time constraints. 
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Fig. 4.20. Example of the response of the brace with the belt–pulley transmission to a 

constant velocity command. The average velocity 𝐧 = 𝟏𝟏. 𝟑𝟑°/s was calculated as the 

mean of position changes within 1 ms divided by 1 ms across the green area. Time 

t=0 refers to the moment at which the recording from the sensor started. 

 

Fig. 4.21. Example of the response of the brace with Nylon® cable–pulley 

transmission to a constant velocity command. The average velocity 𝐧 = 𝟗. 𝟗𝟓°/s was 

calculated as the mean of position changes within 1 ms divided by 1 ms across the 

green area. Time t=0 refers to the moment at which the recording from the sensor 

started.

 

Fig. 4.22. Example of ∆𝛂 distribution over time for the Nylon® cable–pulley 

transmission. 

Table 4.3. Belt and cable performance assessment. 

 Average  

velocity ± SD, °/s 

Average 

acceleration  

± SD, °/s2 

Mean ∆𝛼 ± SD, 

degrees 

Belt 11.21 ± 0.21 0.31 ± 0.023 0.0032 ± 0.0032 

Nylon® cable 9.96 ± 0.1 0.25 ± 0.028 0.0020 ± 0.0044 
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Both options considered above for the transmission system have advantages and 

limitations. However, the ability of Nylon® rope to perform smooth movements overweighs 

its limitation in speed efficiency.  Moreover, high rope elongation, as observed in Fig. 4.21 

explains the poor efficiency of speed transmission. Since the elongation 𝐸𝐸 at 90° (position 

where cable absorbs shock loading) is in inverse ratio to the cross sectional area of cable, 

the speed efficiency of the cable can be increased by increasing the cable diameter. 

The rope diameter was increased in 0.25 mm increments until the speed efficiency achieved 

acceptable values. The iterations were stopped when the cable was formed from six 0.25 

mm Nylon® ropes twisted as one wire. Tests with the new cable (1.5 mm diameter) were 

conducted with the unloaded brace for a speed range of 10–25°/s. The results of the cable–

pulley transmission performance are summarized in Fig. 4.23 and Fig. 4.24. The mean 

speed efficiency across all speed conditions was 95.45 ± 1.63%, while none of the mean 

∆𝛼 across all speeds exceeded the maximum allowed value of 0.002°. An example of the 

brace response to a 22.5°/s speed command and corresponding ∆𝛼 distribution are shown 

in Fig. 4.25 and Fig. 4.26, respectively.  

 

Fig. 4.23. Response of the brace with Nylon® cable–pulley transmission to different 

constant velocity commands. Each speed efficiency value is the mean value of 10 

calculated speed efficiencies for a specific speed. The mean speed efficiency across 

all speed conditions is 95.45 ± 1.63%. 
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Fig. 4.24. ∆𝛂 distribution over time for the Nylon® cable–pulley under different 

speed conditions. Each delta angle value is the mean value of 10 calculated delta 

values for a specific speed. The mean ∆𝛂 across all speeds does not exceed the 

maximum allowed value of 0.002°. 

 

Fig. 4.25. Example of the response of the brace with Nylon® cable–pulley 

transmission to a constant velocity command 𝐧 = 𝟐𝟐. 𝟓°/s. The average velocity of 

𝐧 = 𝟐𝟐. 𝟗𝟖°/s was calculated as the mean of position changes within 1 ms divided by 

1 ms. 

 

Fig. 4.26. Example of ∆𝛂 distribution over time for the Nylon® cable–pulley 

transmission when moving at a speed of 𝐧 = 𝟐𝟐. 𝟗𝟖°/s. 
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According to the results, the new cable performs smooth movements with acceptable speed 

efficiency (compared to the previous test with 0.25 mm rope). Therefore, the cable–pulley 

system was used as the torque amplifier for the current prototype. 

4.4 Prototype Costs 

Although none of the reviewed wearable elbow mechatronics-enabled devices found in the 

literature reported financial constraints, the cost of the final prototype (Table 4.4) can be 

compared with a market available MyoMo system [67] ($7,500) that provides active-

assisted motion support for the upper limb for stroke patients. The overall cost of 

machining, assembling, purchasing components and labor work resulted in $5,600 per unit. 

By adding a 20% profit to the prototype cost, the final price $6,800 is still below the $7,500 

level. Moreover, the cost can be reduced when the brace moves from the prototype stage to 

production (e.g. from $5,600 to $4,400 if components are purchased from wholesale 

companies).  

Table 4.4. Prototype costs. 

Item Cost 

ABS thermoplastic, 1 kg $40.00 

3D printing service $50.00 

Aluminum 7075 and 6061, machine shop service  $2,300.00 

Standard components  $100.00 

Gears $75.00 

Dry EMG electrodes $185.00 

Accelerometer $3.00 

Pulleys $33.00 

Cables $10.00 

Motors, gearheads, encoders $1,260.00 

Internal 12V 800mAh rechargeable NiMH battery $5.00 

Polyester for cuffs and machining $50.00 

Velcro straps and padding materials $35.00 

Control system $500.00 

Assembly $500.00 

Testing $500.00 

Profit (20%) $1,128.00 

Total $6,767.50 
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4.5 Conclusions 

A wearable mechatronic elbow brace was designed and a prototype was constructed. The 

weight of the device exceeded the design specification of 1 kg. However the 0.4 kg of 

overweight can be compensated with a shoulder strap. The extra weight resulted from a 

complex metal torque transmission that adds flexibility in the application of the device. 

Therefore, the prototype weight is a justifiable trade-off. 

The brace mimics the 2-DOF single-axes hinge type elbow motion model and employs 

electromagnetic actuators and a customized transmission system for generating 10 Nm 

distributed to both sides of the joint (device Type C, see Section 2.3.1). The elbow brace 

can be adjusted to a wide range of lengths of upper limbs. Telescopic links can be manually 

moved to a specific position according to the anthropometric length of female’s and men’s 

upper limb length. Replaceable polyester cuffs make the device more affordable and 

comfortable for patients. The prototype can be adjusted to a new user in 1–3 minutes 

depending on the skill level and experience of a user. The weight of the actuation system 

is symmetrically distributed on the backside of the upper arm. Additionally, the benefits of 

this device over existing prototypes can be summarized as follows: 

1. The drivers can be easily removed from the elbow brace by pulling a spring-loaded 

handle that decouples the transmission system from the output shafts of the gearheads, 

allowing (a) to remove transmission and actuation systems and use the device as a 

mechanical brace at the immobilization phase, (b) to use the decoupling handle as an 

emergency stopper, (c) to decrease the weight of the device in cases when the 

rehabilitation process requires active exercises only a few times a day, (d) to 

replace/test the actuation system without reassembling the construction. Other devices 

found in the literature implement stationary coupling of the actuation system to the 

device with limited or no emergency decoupling. 

2. A 2-DOF elbow motion model with active flexion–extension and passive carrying 

angle was used for the elbow brace design. Thus, the device provides natural elbow 

motion and decreases alterations in joint anatomy and limitations of elbow motions. 

Although Vaca Benitez, et al. [54] also used a “passive comfort joint” to account for 

the carrying angle, the system is limited to active rehabilitation and has no emergency 

mechanical stopper. 
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3. A shoulder strap that goes over the patient’s shoulder and underneath the arm prevents 

the slide-off effect. Such feature is critical for a wearable elbow brace since the pivot 

point of the elbow and the device should be aligned as precisely as possible through 

all the process of the rehabilitation. Failure to maintain this condition may trigger 

elbow deformation. 

The results of the transmission system tests showed that the belt transmission has 98% of 

speed efficiency, while Nylon® cable of 1.5 mm in diameter showed 95% of speed 

transmission efficiency. Moreover, the cable showed better repeatability (0.1°/s vs. 0.21°/s) 

and lower acceleration (0.25°/s2 vs. 0.31°/s2) throughout the tests.  Additionally, position 

drift of the brace ∆𝛼 was lower for cable transmission. This means that the cable-driven 

transmission may result in less muscle spasm than the belt-driven system. Therefore, it was 

decided to use a cable driven system for the torque transmission system. 

The following chapter describes the next stage of the design process, i.e., the development 

of a control system for the assistive and resistive modes of the wearable mechatronic elbow 

brace.  
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CHAPTER 5 

5   METHODS FOR DIGITAL SIGNAL 

PROCESSING OF EMG SIGNALS FOR MOTION 

PROFILE ESTIMATION   
 

The previous chapters presented the design of the wearable elbow brace that forms the basis 

of the mechatronic system. Although the device meets all of the mechanical requirements, 

it is necessary to assess how the device interacts with a user. In order to do so, a sensing 

system is required to control the actuation system of the device (as discussed in Section 

2.3.3). As the sensed data cannot be intuitively interpreted, digital signal processing 

techniques that extract useful information from the EMG signal are presented in the 

following chapter. 

5.1 Rehabilitation Strategy Overview 

A control strategy is required on the last stage of the reinnervation process, i.e. home-based 

daily exercises. At the beginning of the training program, a patient is encouraged to contract 

affected muscles and move the forearm against gravity. Since the cortex of BPI patients is 

not responding to the neural activity from the restored nerve (more details in Section 1.2, 

Section 2.1 and Section 2.2), training with EMG feedback enhances the muscle re-

education process. Such training requires the patient to contract affected muscles, while an 

EMG device activates an alarm that indicates when the EMG signal overshoots a specific 

threshold. While the alarm is on, the therapist moves the forearm in order to re-educate the 

cortex to recognize the neural activity from the new nerve. Thus, the option of operating 
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the control system in educational mode has to be included in order to mimic training 

sessions with the therapist incorporating EMG feedback to promote the healing process. 

As the affected arm starts to respond to muscle contractions, a patient is challenged to move 

his or her forearm without external support. At the moment when the patients cannot lift 

the forearm while the muscles continue to contract, the patient is instructed to help his or 

her affected arm with the non-affected one, i.e., assist the affected arm to perform the 

desired motion. Such training should be designed as the assistive mode of the control 

system of the proposed device. The training starts with unloaded exercises and progresses 

to 1-kg load exercises. 

Thus, the control system of the device should have two modes that are consequentially used 

as the BPI patient progresses from the educational stage to the assistive training stage. Each 

mode requires the implementation of a sensing system that can quantify muscle activity as 

feedback to the control system. In order to design such human-machine interface, Section 

5.2 outlines the list of goals for the two rehabilitation modes. Section 5.3 describes how the 

sensed data should be processed and used in each of two modes. 

5.2 Goals of Rehabilitation Modes 

For motion rehabilitation, the speed settings should be set to the lowest value (10–25°/s) 

for the device to avoid sudden overshoots in the achieved elbow ROM and in order to 

protect weak muscles and the reconstructed nerves from overstretching, which may result 

in pain. The device should work in one of two modes at a time. The first mode, educational, 

is aimed at detecting neural activity from restored nerves and, when the neural signal 

exceeds a specific value, the actuation system has to move the forearm in the desired 

direction with a pre-set speed. Hence, an EMG-based method that detects whether the 

desired trajectory has changed during the motion is proposed for the educational mode 

and presented in Section 5.3.2.  

After the cortex of the patient is re-educated to recognize neural activity from the 

reinnervated muscles, the next goal is to train the affected muscles to contract as naturally 

as possible. Thus, the affected arm has to perform smooth elbow flexion–extensions with 

an accuracy in limb positioning between 2° and 5°. Therefore, the goal of the device in the 

assistive mode is to convert the EMG signal from the patient’s muscles into a motion 

(speed) profile with at least 95% accuracy for a full ROM.  
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The signal flowchart is shown in Fig. 5.1, where the BioSignalPlux (EMG and/or 

accelerometer) sensors are connected to the user. Data from the sensors are used to estimate 

the trajectory of motion for the educational mode or the speed of motion for the assistive 

mode. The desired trajectory/speed is transferred to the actuation system through the 

motion controller. The loop closes on the motion sensor that verifies whether the 

mechanical system achieved the desired position/trajectory.  

 

Fig. 5.1. Architecture of the control system. 

Trajectory control is used for the educational mode.  

Speed control is used for the assistive mode. 

 

The frequency response of the control system has to be at least 5 Hz, since it will allow 

patients to use the device without noticing a delay between their intention to move and the 

brace response [127]. 

5.3 Signal Processing 

Data sensed from a patient has two major noise components: electromagnetic noise and 

motion artifact (e.g., electrode movement on the skin or movement of wire leads) [131]. 
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Once the signal is converted into a digital form, digital signal processing (DSP) is used to 

restore the signal and/or remove noise. A customized DSP technique for sensed data is 

described in the sections below.  

5.3.1 Signal Filtering 

As the raw EMG signal (Fig. 5.2) is often contaminated with direct current noise generated 

at the electrode – skin junction [132], an appropriate signal filtering is required to extract 

important EMG signal information. SENIAM’s (Surface EMG for a Non–Invasive 

Assessment of Muscles, 1999) recommendations for EMG filtering include the  use of a 

high pass filter with a 10–20 Hz cutoff frequency. Thus, the raw EMG data was high-pass 

filtered with 4th order Butterworth filter (as recommended in [78]) to remove any artifacts 

from the recorded signal. 

 

Fig. 5.2. Raw EMG data from biceps and triceps. 

 

The raw three-axes data from the accelerometer should be high-pass filtered with a 2nd 

order Butterworth filter with a cutoff frequency of 2 Hz in order to reduce the motion 

artifact, gravitational artifacts and high frequency noise (as recommended in [133]) and 

finally, converted to angular displacements, see Fig. 5.3. The angular position in Fig. 5.3 

corresponds to the EMG signal in Fig. 5.2. In order to find a method that maps information 

from the EMG sensing system to forearm’s motions, the three-axes position data was 

converted to the distance traveled by the forearm as a function of time, see Fig. 5.3B. 

 

Fig. 5.3. Angular position of a forearm (3 FE) after 2 Hz high-pass filtering. 
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5.3.2 Direction of Elbow Movement 

It was shown in the literature that the RMS of the EMG signal from the lower limb muscles 

implemented in a neuro-fuzzy modifier could be used as indicators of patient’s intension to 

change the direction of movement [76]. As mean of RMS EMG correlates with muscle 

strength (CC=0.903) [77], it was proposed to use RMS EMG peaks to detect when the 

forearm reaches desired position during flexion (i.e. maximum muscle contraction due to 

the need to deceleration the forearm) and to identify when the forearm reaches full 

extension (i.e. maximum triceps contraction due to the need to decelerate the forearm). 

Thus, a simple peak-based method was designed for the educational mode of the control 

system for detecting a moment when the direction of the forearm should be reversed. The 

RMS signal of EMG data (Fig. 5.5) was described in [77] and can be found as: 

𝐸𝑀𝐺RMS = √
1

ws
∑ 𝐸𝑀𝐺(𝑖)2

ws

i=1
 

where 𝐸𝑀𝐺(𝑖) is the raw EMG voltage signal, and i is the step number within the window 

of data (ws). A 250–500 ms window of data (ws) is recommended in [78]. An example of 

the RMS of the EMG signal that corresponds to Fig. 5.2 and Fig. 5.3 is shown in Fig. 5.5. 

The direct mapping of RMS EMG from Fig. 5.5 to the corresponding position data from 

Fig. 5.3 shows that the RMS peaks of the EMG signal imply two events: (1) when the elbow 

reaches the maximum flexion position, and (2) when the elbow extension results in full 

forearm stop, see Fig. 5.6. For this strategy, no overlapping analysis windows were used. 

 

Fig. 5.5. Sample RMS EMG signal from BB and TB. Calculation based on the EMG 

data of one individual (Fig. 5.2) that was collected during three elbow FE 

movements(Fig. 5.3). Signal filtering was done as outlined in Section 5.3.1. RMS 

EMG from TB was amplified (Gain=20). 
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Fig. 5.6. Direct mapping of RMS EMG and motion data.  

Net RMS EMG=(RMS BB – RMS TB)∙100. 

 

 

More information can be found if the RMS of the EMG signal is compared with the speed 

profile of the same motion (Fig. 5.7). The method estimates the moment when the speed 

crosses the zero line with a delay equal to a window size t. 

 
Fig. 5.7. Speed profile compared to RMS EMG. 

 

5.3.3 Speed Estimation 

The dynamics of the muscle tissue can be divided into activation dynamics and contraction 

dynamics [148] (Fig. 5.16).  

 

Fig. 5.16. Muscle activation dynamics. 

 

Neural activation u(t) is known to be a function of its recent history. A second-order 

equation that shows the relation between neural activation 𝑢(𝑡) and EMG signal 𝐸𝑀𝐺(𝑡) 

can be represented as [155], [156]: 



83 

 

 

 

 

𝑢(𝑡) = 𝛼EMG ∙ 𝑒(𝑡 − 𝐸𝑀𝐷) − 𝛽1EMG ∙ 𝑢(𝑡 − 1) − 𝛽2EMG ∙ 𝑢(𝑡 − 2), 

where 𝐸𝑀𝐷 is electromechanical delay, 𝛼EMG, 𝛽1EMG and 𝛽2EMG are coefficients defined 

as following [143]: 

𝛽1 = 𝛾1 + 𝛾2,  

 𝛽2 = 𝛾1 ∙ 𝛾2,  

 𝛼 − 𝛽1 − 𝛽2 = 1, 

where ⌊𝛾1⌋ < 1, ⌊𝛾2⌋ < 1. 

Since the normalized EMG signal 𝐸𝑀𝐺(𝑡) is out of phase with the muscle force [157], 

there is an electromechanical delay between the time of the EMG and that of the 

corresponding force. This interval is assumed to represent the propagation of the action 

potential along the muscle, the excitation–contraction coupling process, and the stretching 

of the muscle’s fibers [158]. The electromechanical delay is affected by the initial muscle 

length [160] and muscle loading [161], while fatiguing exercise lengthens the delay [162]. 

The EMD has been reported to range from 10 ms to about 100 ms [163]. Very often, a fixed 

EMD of about 70 ms is taken into account to relate EMG to muscle force [147]. The shortest 

EMD (16 ms) was recorded by testing voluntary biceps activation of elbow flexion using 

an accelerometer for motion sensing [158]. However, in general clinical practice the 

difference in timing is inconsequential [158]. Thus, for this project, EMD is assumed to be 

zero.  

Based on the EMG data of one individual (Fig. 5.2) that was collected during three elbow 

FE movements (Fig. 5.3), an example of the neural activation is shown in Fig. 5.17. 

However, despite promising results (Fig. 5.18) of pure mapping the net neural activation to 

the corresponding motion profile, a method that minimizes error was developed in the 

following section. 

 

Fig. 5.17. Neural activation from BB and TB. 
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Fig. 5.18. Pure mapping of net neural activation (BB-TB) and motion data. 

Mean error = 10.98°. RMSE= 15.97°. 

5.3.4 Kalman Filter 

Previously it was shown [79], [81], [83] that a model that uses a Kalman filter for error 

reduction could show 8.3–11.85% of error for an EMG-to-motion conversion. Therefore, a 

Kalman filter that directly maps neural activation to motion data was designed. 

5.3.4.1 Kalman Filter Design 

A Kalman filter (KF) [159] consists of two phases – signal estimation and correction, see 

Fig. 5.19. Each iteration goes through two steps: 1) the KF takes the motion 𝑋k−1 computed 

earlier and updates 𝑋′k according to the information from a motion sensor 𝑈k−2, 2) it then 

estimates the one-step-ahead signal 𝑋k of the motion profile at the correction phase 

according to the noise 𝑄KF and 𝑅KF. 

The calculated muscle activity from the BB and TB muscles was added together to create 

the first input signal (𝑋k) to the KF. Motion data from the accelerometer were used as the 

second input signal (𝑈k). Estimation of motion 𝑋′k relies on a previously corrected value 

of 𝑋k and on the history of the signal 𝑈k from the motion sensor. Two variables, 𝑃k and 𝐺k, 

are used in the process of correction. Both of them are functions of the noise. The process 

noise 𝑄KF and the measurement noise 𝑅KF were defined for each individual during manual 

calibration of the KF. The goal of the calibration was to achieve an RMSE ≤ 2.0±0.1% for 

a full FE movement that required the forearm to move from 0° to 130°. The output signal 

𝑈′k () from the KF is the estimated angular position profile (output frequency f=1000 Hz). 
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Fig. 5.19. Flowchart of data in Kalman filter, 

where 𝐗𝐤 is the sum of the neural activity from the BB and TB muscles, Q is the 

process noise, R is the measurement noise, 𝐏𝐤 and 𝐆𝐤 are function of the noise, 𝐔𝐤 is 

the data from the motion sensor, 𝐔′𝐤 is the estimated motion profile (equal to the 𝐗𝐤 

value at the correction phase), RMSEk is the error between the real motion profile 

and the estimated signal from the KF at each iteration.  

5.3.4.2 Kalman Filter Application 

Previous attempts at estimating motion using Kalman filters could not achieve errors lower 

than 8.3% [79], [81], [83]. Thus, such methods cannot be used in the BPI motion restoration 

trainings due to high possibility of overstretching weak muscles and reconstructed nerves. 

Alternatively, a method proposed in Section 5.3.3 combined with a customized Kalman 

filter from Section 5.3.4.1, may be a possible way to achieve high accuracy of EMG-to-

motion conversion. Hence, below is described an example of the proposed speed estimation 

method, the goal of which is to achieve an error of position estimation of no more than 5° 

for each flexion–extension movement across all subjects and across different elbow ROMs, 

i.e., achieve at least 95% accuracy for the proposed EMG-to-motion estimation method.  

The DSP starts from data filtering, as outlined in Section 5.3.1. The filtered EMG signal 

should be rectified (taking the absolute value of the EMG signal), see Fig. 5.20.  
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Fig. 5.20. Filtered and rectified EMG signal. 

 

 

Then, the EMG signal should be individually normalized for each subject according to the 

prerecorded maximum and minimum EMG value from the BB and TB muscles, Fig. 5.21.  

 

Fig. 5.21. Normalized EMG signal from BB and TB. 

(max EMG from BB=0.5 mV, min EMG from BB=0.013 mV,  

max EMG from TB=1 mV, min EMG from TB=0.00213 mV). 
 

 

The normalized EMG signal e(t) was used to calculate the neural activation [148], u(t), as 

follows: 𝑢(𝑡) = 𝛼EMG ∙ 𝑒(𝑡) − 𝛽1 ∙ 𝑢(𝑡 − 1) − 𝛽2 ∙ 𝑢(𝑡 − 2), where 𝛼EMG, 𝛽1EMG and 

𝛽2EMG are coefficients (the coefficients used were calculated following the method outlined 

in [148], as: 𝛼EMG=0.0021, 𝛽1EMG=-1.78 and 𝛽2EMG=0.7821). A preliminary result of 

mapping the neural activation to the motion profile shows a mean error of 0.65° and 

RMSE=0.8°, see Fig. 5.22. 
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A.  

B.  

Fig. 5.22. Kalman Filter mapping of neural activation and motion data.  

Mean error = 0.32°. RMSE= 0.44°. Kalman filter gains: R=750, Q=0.1. 

A. Real motion data vs. predicted motion. B. Error distribution. 

 

Therefore, the proposed DSP technique has to be analyzed on a database of signals from 

healthy individuals in order to evaluate how accurate the method estimates forearm motion 

profile. 

5.4 Conclusions 

This chapter showed how a simple DSP technique can be used in motion trajectory and 

speed estimation. As outlined in Section 2.3.3, surface EMG recordings provide a safe 

noninvasive method of muscle activity quantification. Once the EMG data is converted into 

a digital form, digital filtering and mathematic processing allows mapping the resulting 

signal to a motion profile for trajectory/speed estimation. Hence, two methods for 

educational and assistive modes for BPI rehabilitation were proposed:  

1. Educational training. RMS peaks of the EMG signal from the affected muscles can be 

used as an estimator of a moment when a forearm changes the direction of motion.  

2. Assistive training. The difference of neural activation from the biceps and triceps can 

be mapped directly to the history of motion with the help of a customized Kalman filter. 

This allows estimating the speed profile of the forearm one step ahead. 
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The next chapter describes the prototype assessment under different rehabilitation scenarios 

that involved the mechatronic system, as well as the developed software and hardware of 

the control system.  
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CHAPTER 6 

6   PROTOTYPE PERFORMANCE ASSESSMENT 
 

The previous chapters have dealt with the design, development and construction of the 

wearable mechatronic elbow brace. For BPI rehabilitation, two modes of the system were 

proposed and described in Chapter 5. The following chapter focuses on evaluating the 

performance of the elbow brace under the two rehabilitation scenarios (educational mode 

and assistive mode), based on data collected from healthy volunteers. 

6.1. Rehabilitation Modes Assessment 

As mentioned in Chapter 5, motion practice and training repetition with appropriate 

feedback is necessary for successful sensorimotor reeducation. Thus, in order to provide 

BPI patients with an appropriate amount of training sessions, the control system of the 

developed elbow brace can be switched to the educational mode to be used at the stage 

when the patient’s brain does not recognize signals from the new nerves, and to the assistive 

mode used at the stage when patients start to involve the affected arm in everyday activities. 

Therefore, an assessment of the brace performance under two rehabilitation scenarios was 

performed. The proposed methods presented in Section 5.3.2 and Section 5.3.3 of forearm 

direction/position estimation that corresponds to the educational/assistive mode were 

implemented in MATLAB and duplicated in C++ Visual Studio project, which 

communicates with the actuation system of the brace. In order to evaluate how the elbow 

brace responds to a control command during a simulated rehabilitation scenario, the 

proposed modes were evaluated for an ideal case (simulated in MATLAB) and then 

compared with the real world brace response to a control command, which involves the 
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same methods of the arm position/direction estimation (EPOS-based application). EMG 

and motion data that correspond to elbow flexion–extension movements were collected 

from healthy volunteers. The following section summarizes the methods of data collection 

and processing and the description of the setup used.  

6.1.1. Data Collection 

Thirty-five healthy volunteers that did not have any neural or musculoskeletal disorders 

associated with elbow, shoulder or neck were recruited for the trial. The study was reviewed 

and approved by the Western University Health Science Research Ethics Board. The study 

was conducted in the Wearable Biomechatronics Laboratory after each participant signed 

the Consent Form. 

Prior the experiment, the following information was collected from each participant: age, 

dominant hand, gender, weight and height. According to geometrical and mass–inertial 

characteristics of the upper human limb in [82], the forearm and hand weight were 

calculated. The population of study included 35 participants with a mean age 25±5 years 

old. 32 were right handed and 3 left handed. There were a total of 20 males and 15 females. 

The mean height of the participants was 174 ± 11 cm, their mean weight was 74.91 ± 17 

kg, their mean forearm weight was 1.27 ± 0.25 kg, and their mean hand weight was 0.35 ± 

0.08 kg. 

Each participant was seated comfortably on a chair and asked to put his/her arm in an 

adjustable mechanical brace (Innovator X®) (see Fig. 2.3). The participant’s arm was then 

secured to the linkage of the brace using straps. The brace restricts the movement of the 

limb to the sagittal plane when the upper limb is in the neutral position (upper arm against 

torso).  

Two pairs of surface EMG electrodes were placed on the skin overlying the BB and TB 

muscles. A reference electrode was placed on the bony area (at the proximal head of ulna). 

The skin was prepared only in those areas where the EMG electrodes were placed. 

According to the SENIAM’s (Surface EMG for a Non–Invasive Assessment of Muscles, 

1999) recommendations for skin preparation, the skin was cleaned with alcohol pads. As 

the alcohol vaporized, EMG electrodes were placed parallel to the muscle fibers (2 cm 

apart), over the muscle belly, two thirds of the distance between the shoulder and the elbow, 

see Fig. 6.1. An accelerometer was placed on the inside of the forearm to track actual 
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motion profiles, 17 cm distal to the elbow joint (Fig. 1, distance between point A and point 

B).  

 

 

Fig. 6.1. Example of placement of the EMG sensing system 

and the mechanical brace. 

 

Filtered data from the motion sensor were later compared with the estimated signal from 

the model. The root mean square error (RMSE) and the Pearson correlation coefficient 

(CC) between the estimated and the measured forearm motion profiles were used to 

estimate the accuracy and correlation between the model results and the observations. The 

correlation coefficients range from –1 to 1 where values close to 1 or -1 represent a high 

correlation. 

Muscle activity and forearm acceleration data were tracked at a sampling rate of 1000 Hz 

with the help of a Wearable Body-Sensing Platform “Biosignalsplux” (Plux®). The sensed 

data were stored in a temporary file with the help of the “OpenSignals” software (Plux®).  

Each subject performed six sets of FE movements. For each set of movements, a unique 

ROM was selected: 1) 0 º –45º, 2) 0º –60º, 3) 0º–90º, 4) 0º–120º, 5) 45º–105º and 6) 90º–

120º. Subjects were instructed to complete three elbow FE repetitions for each ROM. In 

order to eliminate the effects of muscle fatigue, subjects rested 2–5 minutes between each 

set. Stored data from the EMG electrodes and accelerometer were used as inputs to the 

MATLAB-based scripts that simulate the educational mode and assistive mode, and later 

as inputs to the EPOS-based control system for each mode at a time. 
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6.1.2. Setup Installation 

The equipment used to assess brace performance in real time is shown in Fig. 6.2. The 

personal computer (HP ProBook 6560b with an Intel Core i5-2520M CPU at 2.50 GHz 

Processor, 8 GB RAM, and running Windows 7 Pro) was used for data acquisition and 

display. The control system of the device uses customized software developed in C++, two 

EPOS 24/5 Motion Controllers (Maxon Motors) and a sensing system (BioSignalPlux 

platform). The elbow brace was loaded with forearm (described in Section 4.2) that 

simulates naturally the distributed weight of a lower arm. An average weight of the lower 

arm across all participants equal to 1.65 kg was used for all tests. 

 

Fig. 6.2. Experimental setup. 

 

Each component of the system is described below: 

Sensing system     The accelerometer and two pairs of EMG sensors of the BioSignalPlus 

system were used for data collection. Sensed data were stored in a 

temporary file, and then read by the C++ Visual Studio project or by 

the MATLAB script. 

Software              A MATLAB script was developed for both methods of simulation and 

assessment. Customized software was developed in C++ to duplicate 

the MATLAB script. The C++ Visual Studio project uses EPOS-driver 
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communication functions developed by a graduate research student. 

The detailed algorithms are presented in the following sections. 

Speed Command The EPOS 24/5 motion controllers receive velocity commands from the 

Visual Studio project via RS232 and actuate the appropriate Maxon 

Planetary Gearhead (Part No. 143995, Maxon Motors) through the 

coupled Maxon EC-max 22 (Part No. 283840, Maxon Motors). Once 

the velocity command is issued to the EPOS 24/5, internal PID 

controllers track the desired motor velocity via the encoder. The final 

velocity of brace can be calculated as 

𝑛brace =
𝑛motor

333∙3.14
 °/s, 

where 333 is the speed reduction ratio of Maxon Planetary Gearhead 

and 3.14 is the speed reduction ratio of the torque amplifier. 

PID Controller     The gains were derived by minimizing the absolute error between the 

set value (“target” black line) and the system response (“response” 

green line) for the speed mode of the EPOS controller, while the target 

response values of the system were tuned to a velocity step response of 

2000 rpm with the following goals: maximum settling time of 25 ms 

and maximum presiding (i.e., dead) time of 5 ms. The computation of 

the PID parameters was done with the help of the Maxon software, 

which only allows the velocity step value, dead time and settling time 

to be varied. Based on the results of the tuning process, the gains of the 

controller were assigned as folows: P=402, I=56, D=0. 

 

As mentioned earlier, the experimental setup was tested in two modes: the educational 

mode, which is described in Section 6.2 and the assistive mode, which is described in 

Section 6.3. 

6.2. Educational Mode 

To simulate the educational mode and test it on collected data, a MATLAB script and a 

Visual Studio project were developed to read and process the data according to the method 

outlined in Section 5.3. An example of the signal flow for the EPOS-based educational 

mode is shown in Fig. 6.4. Data acquisition, computational process and decision-making 

are done within one frame equal to 250 ms as recommended in [78]. After the 250 EMG 

data samples are read from the storage file, the RMS of the data is calculated for the 

window. Three conditions are checked within a frame. First, if the RMS EMG value is 

below a threshold (equal to the RMS of the EMG during a rest period), the 𝑈′ value is the 
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same as for the previous frame (i.e. 𝑈′k = 𝑈′k−1). Otherwise, a second condition is 

checked. If the RMS EMG of the current frame is greater than the RMS EMG of previous 

frame (in order to calculate the slope of the 𝑈′signal), then a constant value, ∆, is added to 

the 𝑈′ value. If the second condition is not satisfied, a constant value, ∆, is subtracted from 

the 𝑈′ value. After the 𝑈′ slope is updated, the system makes the decision of whether or not 

to change the direction of the motion based on the results from the last condition. If the 𝑈′ 

value crosses the zero line (i.e., changes the sign from positive to negative or vice versa), 

the sign of the speed command sent to the motion controller is changed (i.e., the brace 

changes the direction of motion). 

 

Fig. 6.4. Schematic representation of the signal flow for educational mode. 

The results were analyzed based on the following criteria: if the estimated 𝑈′ value crosses 

the zero line no later than time 𝑡𝑖𝑚𝑒 = 𝑡 + 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒, where 𝑡 is the moment when the 

real speed profile crosses the zero line, and 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 is a pre-set value of 250 ms, then 

the elbow brace direction needed to be changed and the system properly identified the 

change (True), otherwise, the system did not properly identify the change (False). The 
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overall mode performance was calculated as a percentage ratio of correctly estimated 

directions (True) to incorrect estimations (False). 

6.2.1. Results 

The mode was able to identify 86% of the forearm direction changes for the MATLAB-

based application and 84% of the forearm direction changes for the EPOS-based 

application. The errors in detecting the direction of motion were a combination of the false 

negative and the false positive estimations of the forearm direction changes. An example 

of mode analysis is shown in Fig. 6.5. The first step (Fig. 6.5A) represents the results of 

EMG reading, filtering and calculation of the RMS of the EMG signals corresponding to 

the biceps and the triceps. The defined triceps RMS EMG is subtracted from the biceps 

RMS EMG in order to estimate the net RMS EMG signal (see Fig. 6.5B). Based on the net 

RMS EMG value, the method shown in Fig. 6.4 calculates the 𝑈′ value for each frame (see 

Fig. 6.5C). Finally, the specific times at which the real speed and the estimated 𝑈′ signal 

cross the zero line were compared, as shown in Table 5.1. 

It was observed that the MATLAB-based educational mode estimates the change in 

trajectory 0.25–1.75 s before the actual motion performs the same change, while the EPOS-

based mode predicts 0.25–0.75 s ahead. Such prediction ability, explained by the fact that 

the EMG signal peaks prior to the intended action [78], shows an advantage of this method. 

This prediction ability can be used to compensate for the delay that a mechatronic system 

may have due to a complex combination of hardware and software.  
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Fig. 6.5. Sample of data (ROM 0–90°) for the MATLAB-based forearm trajectory 

estimation. A) RMS EMG from BB (black) and TB (blue) muscles,  

B) Resulting RMS EMG (RMS EMG BB – RMS EMG TB) compared with the 

corresponding speed, C) Measured speed profile (black) compared with the 

estimated speed based on RMS EMG (blue).  

 

Table 5.1. Sample performance of the education mode. 

Moment when real speed 

crosses the zero line (s) 
Moment when estimated 𝑈′ 

signal crosses the zero line (s) 

Detected change in 

direction, True/False 

8.5 7.25 True 

13.75 11.5 True 

19.25 18 True 

23.75 23.25 True 
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6.2.2. Additional interpretation of the results 

The results of this experiment have shown that the proposed educational method can 

replicate BPI rehabilitation sessions with 84% accuracy for EPOS-based tests, see Fig. 6.6. 

Although, the therapist may perform the training with 92% accuracy [149] (see Fig. 6.6 

Reference case), this experiment is limited to pre-recorded data. Contrary to the performed 

tests, real training sessions are based on the EMG signal from a patient that has direct visual 

feedback of the forearm position and, therefore, can self-correct the muscle contraction in 

order to amplify the EMG signal for better performance. Reichenbach, et al. [150] showed 

that the error of the hand positioning was reduced by about 10% when a constant visual 

feedback of the hand was provided. Thus, the results of the educational mode can be 

improved by testing on subjects that have constant visual feedback of the brace position 

(e.g., the system may achieve 92.4% of accuracy by applying the 10% increase rule to the 

current results, see Fig. 6.6 Result with feedback case).  

 

Fig. 6.6. Accuracy of training educational sessions for different cases.  

MATLAB Result case is the measured accuracy of the educational mode simulated 

in MATLAB. EPOS Result case is the measured accuracy of the educational mode 

during elbow brace tests with the EPOS-based control system. Reference case is the 

reported accuracy of quantifying joint angle for physiotherapists. Result with 

feedback case shows a possible accuracy of training session when a patient has 

constant visual feedback. 

6.3. Assistive Mode with PID Control 

The proposed assistive mode was implemented and computed using MATLAB and later 

duplicated in Visual Studio, see Fig. 6.7. As described in Section 5.3.4, the proposed 
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method relies on the neural activation of the muscle 𝑋k (calculated from the EMG signal) 

that is 1 frame behind, as well as on the angular position 𝑈k (measured from the 

accelerometer) that is 2 frames behind the actual moment of estimation 𝑈′k. The process of 

obtaining speed values in the Kalman filter is outlined in Section 5.3.4. The angular position 

based on the estimated speed was compared with the real angular data from the participant. 

The accuracy of position prediction and correlation coefficient across all data were 

calculated for both applications, as outlined in following sections. 

In addition to the collected data (Section 6.1.1), each volunteer was asked to perform a 

maximal BB contraction. The EMG signal from the BB and the TB were recorded for 3 s 

of rest and 3 s of maximum contraction. The average EMG values during one full rest and 

one full contraction phase were used to identify the minimum and maximum values of the 

EMG signals for normalization purposes. The normalized EMG data (represented as a 

percentage) shows the strength of the signal from the muscles with respect to the maximum 

value for each subject. Hence, calculations of neural activations are unitless. 

 

Fig. 6.7. Schematic representation of the signal flow for assistive mode. 
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6.3.1. Results  

The error between the estimated motion in the MATLAB-based application and the real 

motion (1.4–2.6%), as well as the error between the estimated motion in the Visual Studio 

project (i.e., the command signal) and the real motion (1.74–3.51%) were within the 

required tolerance (0–4%), while the error between the brace positioning (as a response to 

a command speed) compared to the real motion was out of the acceptable range (4.78–

8.29%). The assistive mode replicates the subjects’ motion trajectory with high correlation 

(CC=0.97–1.00) for both applications. An example of a recorded EMG signal from the BB 

and TB muscles and their corresponding calculated neural activation calculated with the 

MATLAB script is presented in Fig. 6.8.A and Fig. 6.8.B, respectively. After the neural 

activity passes the Kalman filter, the forearm motion trajectory is estimated with an 

RMSE=1.67% (see Fig. 6.8.C) for the sample of data shown in Fig. 6.8.A. Despite the low 

error between the estimated motion (used as a command speed to the system) and the real 

motion, the error accumulates from the point at which the command speed is sent through 

the controller to the point at which the elbow brace responds to the command signal. As 

shown in Fig. 6.9, the final response of the system has an RMSE=6.58% (command speed 

vs. real speed) due to a quick change in speed direction. The same trend in error 

accumulating was found across all tests: from the stage when the command signal is 

estimated with an RMSE=1.74–3.51% to the stage when the elbow brace responds to the 

command signal with an RMSE=4.78–8.29%. 

 

 

 

 

 

 

 



100 

 

 

 

 

A.  

B.  

C.  

D.  

Fig. 6.8. Sample of data (ROM 0–60°) for the MATLAB-based application.  

A) EMG signal from BB (black) and TB (blue) muscles, B) Resulting neural 

activation (sum of BB and TB neural activation), C) Measured motion profile (black 

solid line) compared with estimated motion from model (blue line). RMSE=1.67 %, 

CC=1, D) Error distribution (maximum error is 2.82°). 

 

 

Fig. 6.9. Brace response to an estimated speed profile for a sample of data. 
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6.3.2. Discussion 

The results for the EPOS-based mode assessment have shown that the system cannot reach 

the desired position by following a velocity profile. The same result was found by-Karlsson 

[151], where he concluded that velocity control does not guarantee that the system will 

reach the set position under all conditions. Alternatively, the system performance can be 

improved by adding additional loops of control, such as: (1) switching speed/position 

control [153], (2) incremental position control [154] and (3) cascade control, which controls 

the velocity and the position simultaneously [151]. The downside of approach (1) is that 

the settling time of the system for each unit of command will be increased, while approach 

(2) does not control the velocity directly. To decrease the error between the desired and the 

actual brace dynamics, approach (3) was implemented in the assistive mode, as described 

in next section. 

6.4. Assistive Mode with Cascade Control 

In addition to the initial inner PID loop that controls the velocity (as shown in Fig. 6.7), an 

outer loop that estimates the position error (multiplied by a gain) for each frame was added, 

see Fig. 6.10, in order to improve the ability of the elbow brace to follow the desired 

trajectory. The PID loop makes sure that the desired motion profile is followed, while the 

outer position loop compensates for any mismatch of position that occurs. Thus, the cascade 

control [151] of the assistive mode treats the transmission of the system as a black box that 

has a nonlinear relation between the input speed and the output speed of the transmission. 

The combination of the two feedback loops for the assistive mode of the brace position was 

implemented in C++ Visual Studio. Data from a motion sensor for the outer loop of the 

cascade control were acquired and stored with the help of the BioSignalPlux. The improved 

EPOS-based assistive mode was tested on the subject data collected as described in 

Section-6.1.1.  

6.4.1. Results  

The error between the brace positioning and the real motion (2.04–4.32%) was found to be 

within the required tolerance (0–4%) across all tests. Samples of data that show 

comparisons between the brace response to a command for the assistive mode with the PID 



102 

 

 

 

 

control and with the cascade control are shown in Fig. 6.11 and Fig. 6.12. For the PID 

control (Fig. 6.11A), the system follows the command speed with an RMSE=5.58% (brace 

speed vs. real speed). Finally, the brace positioning compared to the real positioning of a 

forearm (Fig. 6.11B) results in an RMSE of 6.11%. Although the command speed is 

estimated accurately, the system cannot follow the desired trajectory of the forearm motion 

with high precision (as described in [151]). 

 

 

Fig. 6.10. Schematic representation of the improved signal flow for assistive mode. 

 

For the cascade control, the command speed is constantly corrected by the outer control 

loop within the same frame where it was estimated and, thus, the brace speed is not expected 

to match the real speed profile (RMSE of 10.56% for the brace speed vs. the real speed), 

see Fig. 6.12A. By correcting the command signal, the resulting positioning of the brace 

follows the desired motion trajectory with an RMSE of 1.38%, see Fig. 6.12B. Results 
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show that by using cascade control, the error of the brace positioning can be decreased from 

4.78–8.29% (the results of the brace response with PID control to a command signal) to 

2.04–4.32% (the results of the brace response with cascade control to a command signal) 

without any hardware modifications, see Fig. 6.13.  

 

  

Fig. 6.11. Sample brace response to an estimated speed profile while the PID control 

was used. A. Speed comparison for the assistive mode (RMSE = 5.58%) between the 

real forearm motion and the brace response to the estimated motion. B. Position 

comparison for the assistive mode (RMSE = 6.11%) between the real forearm 

motion and the brace response to the estimated motion.  
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Fig. 6.12. Sample brace response to an estimated speed profile while the cascade 

control was used. A. Speed comparison for the assistive mode (RMSE = 10.56%) 

between the real forearm motion and the brace response to the estimated motion.  

B. Position comparison for the assistive mode (RMSE = 1.38%) between the real 

forearm motion and the brace response to the estimated motion.   
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Fig. 6.13. Error accumulation at different stages of the assistive mode. 

MATLAB case is the calculated error in the MATALB script that simulates the 

estimation of the command speed. Visual Studio case is the calculated command 

speed in the control system of the elbow brace. Brace with PID refers to results of 

assistive mode assessment measured while the velocity of the actuators was 

controlled with the PID controller. Brace with cascade case shows the measured 

error of the brace positioning while the cascade control was used. The Red line 

represents the maximum acceptable error. 

6.4.2. Discussion 

Thus, the results of the experiments have validated that using EMG data from the biceps 

and triceps muscles provides better prediction accuracy than using only the biceps muscle 

data as in [81], and that a KF is a powerful tool for correcting the EMG-to-motion mapping 

technique (compared to the pure mapping strategy presented in [91]).  

The accuracy requirements for the forearm positioning based on the literature review were 

set to be between 96.0 and 98.0%. However, during the training sessions with health care 

professionals, the joint position angle was quantified with 92% accuracy for angles greater 

than 100° and with 67% accuracy for angles less than 75° [149]. Thus, the achieved 

accuracy (97.4–98.6% for the MATLAB simulation and 95.68–97.96% for the real world 

EPOS-based tests across all subjects) of the proposed assistive mode was shown to be more 

accurate than manual limb positioning by the health care professionals [149] and than the 

previous efforts defined in the literature. The lower accuracy gathered for the elbow brace 

tests (4.32%) exceeds the upper bound by 0.32%. Nevertheless, the overall accuracy of the 

assistive mode provides a position error that lies within the acceptable range. 
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The variability of EMG signals caused by a vast amount of conditions and non-voluntary 

shoulder motions created a different error distribution for all subjects. Although no control 

was implemented for some subject-related parameters (posture, mental state and 

temperature), the model was able to make predictions with the desired accuracy. 

6.5. Sources of Error and Limitations 

The principal frequency of the EMG signal is concentrated in the 30–500 Hz range [134]. 

On the other hand, the main energy of the EMG signal is concentrated in the range of 0–

500 Hz [171]. Thus, filtering of the EMG signal may cut down useful information that 

corresponds to the smallest force produced by the muscle and, therefore, decrease the 

accuracy of motion trajectory/speed estimation for small joint angles. 

Using optimization techniques, a smaller accuracy error may have been attained when 

compared to using a manual model parameter calibration. However, optimization 

techniques are computationally expensive. In addition, optimized parameters can take 

longer to compute than the entire time devoted to the trials of one subject depending on 

which optimization technique is used. Lastly, EMG signals fluctuate naturally due to 

fatigue, temperature, environment and other factors. Therefore, the optimization would 

need to occur for every usage of the device that incorporates the proposed modes. The time 

constraints these factors place on parameter optimization are the reasons why manual 

calibration was chosen for the experiments. 

6.6. Conclusions 

A control system for the wearable mechatronic elbow brace was designed and tested. The 

control strategy consists of (1) the educational mode that moves the brace at a pre-set speed 

in the desired direction and (2) the assistive mode that estimates the desired speed of the 

forearm and moves the brace with respect to the desired position. Both modes were tested 

on the data collected from 35 healthy participants.  The results of the brace movements 

were compared with the actual movements recorded from the participants. 

The experiments have shown that the educational mode can achieve 86% of accuracy in 

trajectory estimation, while the brace control with a constant visual feedback may result in 

95% accuracy (by considering the fact that the visual feedback increases limb positioning 
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accuracy by 10%). The assistive mode was tested with a PID controller and later with a 

cascade controller. The combined speed-position (cascade) control reduces the error 

between the desired motion and the brace movement by 3–4%. Therefore, the assistive 

mode with cascade control can achieve 2.04–4.32% error, which is within the required error 

tolerance (0–4%). The results of the tests demonstrate the potential to achieve robust device 

operation under different rehabilitation scenarios. Due to the limitations of the data, further 

assessment of the device with the help of data from the BPI patients is required to improve 

the control strategy.  
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CHAPTER 7 

7   CONCLUSIONS AND FUTURE WORK 
 

The work presented in this thesis was aimed at adapting robotic technology for home-based 

muscle training as part of the BPI postoperative rehabilitation process. A literature review 

was performed to identify whether the prior art in portable rehabilitation robotics for the 

upper limb could be applicable for maintaining muscle tropism after the nerves of the 

affected muscle are surgically repaired. It was found that there are currently no robotic 

prototypes or commercially available devices designed specifically for BPI patients that 

undergo a long-term postoperative process. 

The wearable mechatronic elbow brace presented herein is an example of a device that can 

provide an automated 24/7 method of controlling muscle training outside of the clinical 

environment. A complex design of the device included the mechanical structure that 

maintains natural motions of an elbow and the control system that converts sensed EMG 

data to a profile of a desired movement. Based on the defined specifications, the prototype 

was built and tested in two modes, educational and assistive. Each mode was specifically 

designed to mimic the two types of training sessions with the therapist.  

The experiments performed with the elbow brace have shown that EMG data can be 

successfully used for estimating the direction of the desired motion and moreover for 

estimating the speed profile of the intended movement. Although the assessment of the 

device was performed for the pre-recorded data from healthy participants, the device met 

the goals of the project. 
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7.1. Contributions 

This work describes the design and control of a wearable elbow brace for BPI patients and 

outlines the application in which the device can be used during home-based muscle 

training. The specific contributions of this work are as follows: 

1. A customized actuation system that can be adapted to each stage of the BPI 

rehabilitation process was developed. The drivers can be easily removed from the 

elbow brace by pulling a spring-loaded handle that decouples the transmission system 

from the output shafts of the gearheads, achieving the following goals:  

(a) To remove the transmission and actuation systems and use the device as a 

mechanical brace at the immobilization phase,  

(b) To use the decoupling handle as an emergency stopper,  

(c) To decrease the weight of the device in cases when the rehabilitation process 

requires active exercises only few times a day,  

(d) To replace/test the actuation system without reassembling the construction.  

Other devices found in the literature practice stationary coupling of the actuation 

system to the device with limited or missing emergency decoupling. 

2. A 2-DOF elbow motion model with active flexion–extension and passive carrying 

angle was used for the elbow brace design. In contrast to existing prototypes, the 

proposed device provides natural elbow motion and decreases alterations in joint 

anatomy and limitations of elbow motions.  

3. The reliability of the device was increased by integrating mechanical stoppers into the 

system for limiting the ROM and by selecting critical components with rated life equal 

to the time of a full recovery. The results of the prototype assessment showed that the 

ability of this device to fix the forearm in a certain position is greater than that of 

commercially available static elbow braces. 

4. Although, three types of torque transmission (chains, belts and cables) are commonly 

used in rehabilitation robotics, experiments have presented evidence towards the 

effectiveness of using cable driven transmissions for precise positioning of a forearm 

over other types.  

5. Finally, a customized control system that consists of two modes was designed: 

(1) The educational mode that moves the brace at a pre-set speed in the desired 

direction, and  
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(2) The assistive mode that estimates the desired speed of the forearm and moves 

the brace with respect to the desired position.  

The experiments have shown that the educational mode can achieve 86% of accuracy in 

trajectory estimation, while the brace control with a constant visual feedback may have up 

to 95% accuracy. The assistive mode was tested with PID control and later with cascade 

control. The combined speed–position (cascade) control allows an error reduction between 

the desired motion and the brace movement by 3–4%. Therefore, the assistive mode with 

cascade control achieved 2.04–4.32% error that is within the required error tolerance (0–

4%). The results of the tests demonstrate the potential to achieve robust device operation 

under different rehabilitation scenarios. 

7.2. Future Work 

While the results of the work presented herein proved that the developed prototype of the 

wearable elbow brace can be used in a BPI rehabilitation program, further work is needed 

to improve the device appearance and functionality as presented below: 

1. Weight of the device. Although the overweight of the prototype was compensated by 

the shoulder strap and detachable actuation system, further weight optimization of heavy 

components should be done. For example, the preferred mechanical design can be refined 

if use one motor with a spur gear splitter and one emergency decoupling button. 

2. Calibration process. The current calibration process for the control modes was done 

manually, and, thus, requires further improvement. As the muscles become stronger, the 

system should be recalibrated properly daily or weekly. A possible improvement can result 

from the development of an automated method of control that determined whether the 

recalibration should take place. Additionally, the control system should be updated with a 

new automated method of calibration based on the calibration process that was performed 

manually. 

3. EMG data from BPI patients. An in-depth study that analyzes how EMG signals from 

affected muscles in BPI patients differ from the EMG signal of healthy individuals, as well 

as how to quantify the progress of BPI rehabilitation should be done. Moreover, such 

research will increase the knowledge of EMG signals and how they can be used for 

rehabilitation goals. 
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4. Clinician interface with the device. A system that stores all movements through the 

entire day (24/7) and automatically uploads collected data to a database can become a 

powerful tool for clinicians, as a comprehensive analysis of progress may be done. For 

instance, an alert for the LNU phenomenon can be implemented in the analysis software. 

Moreover, by knowing exactly what training exercises were done and how the patient uses 

the affected arm during the day, the therapist can conclude what rehabilitation strategies 

work or which ones are more effective.  

5. User interface with the device. A system that provides continuous visual/audio 

feedback and guidance to patients to improve quality of motion performance and adherence 

to instructions can increase the patient’s motivation to perform all of the prescribed training 

exercises, as the healing process will be accelerated. Moreover, 24/7 access to a database 

that stores progress and therapist’s comments is necessary to involve patients in the 

rehabilitation process. By having all of the changes tracked and summarized by a clinician, 

a patient can set personal goals for training exercises and constantly check whether he or 

she achieved the goal. 

6. Appearance. Appropriate cover for the elbow brace has to be designed in order to meet 

aesthetical and cosmetic user requirements, e.g., Fig. 7.1. Moreover, the cover will isolate 

moving components and increase the user’s safety by limiting access to the mechanical 

structure and the electrical components of the device. 

 

 
Fig. 7.1. Elbow brace housing. 

A significant amount of work is still required in order to improve BPI robotic rehabilitation 

for home training, as discussed above. Future research will include how to create a self-

tuning wearable elbow brace that a clinician can remotely adjust. 
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Appendix A 

Rated Life of Bearings 
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Prior the seven-step process of rated life calculation is done, the basic dynamic radial load 

rating of the bearing (Cr), ball diameter of the bearing (Dw), number of balls in the bearing 

(Z), speed of bearing operation in rpm (n), radial (R) and axial load (T) on the bearing 

should be determined. Below is a bearing specification used at the last iteration of bearing 

selection: 

Table A.1. Bearing specification. 

Basic dynamic radial load rating (Cr) 733 N 

Ball diameter (Dw) 4.32 mm 

Number of balls (Z) 10 

Speed in rpm (n) 1142 

Radial load (R) 40 N 

Axial load (T) 28 N 

 

1. Calculate the relative axial load: 

T

Z ∙ Dw
2

=
30 N

9 ∙ 18.66𝑚𝑚2
= 0.178 

𝑁

𝑚𝑚2
 

 

2. Calculate e value to the relative axial load [111]: 

e = 0.19 +
0.178 − 0.172

0.345 − 0.172
∙ (0.22 − 0.19) = 0.191 

3. Calculate the ratio of radial and axial load: 

T

R
=

28 N

40 N
= 0.7 

4. Compare the load ratio and e value according the table in [111]: 

T

R
> e 

5. Determine X and Y according tables in [111]: 

X = 0.56 

Y = 2.30 −
0.178 − 0.172

0.345 − 0.172
∙ (2.30 − 1.99) = 2.19 

6. Calculate dynamic equivalent load: 
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Pr = X ∙ R + Y ∙ T = 0.56 ∙ 40N + 2.19 ∙ 28N = 83 N 

7. Calculate life hours: 

L10 =
106

60 ∙ n
∙ (

Cr

Pr
)

3

=
106

60 ∙ 1142 rpm
∙ (

733 N

83 N
)

3

= 14.59𝑟𝑝𝑚−1 ∙ 689 N = 10056 h 

 

 

  



128 

 

 

 

 

 

 

 

Appendix B 

Motor–Gearbox selection 
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This Appendix presents the summary of motor–gearbox selection according to actuation 

system specification in Section 3.3.4. 

The best option for a single motor–gearbox combination that generates 3.6 Nm is Gearhead 

No. 2 and Motor No. 2, see Table B.3. The total weight of the most optimal motor–gear 

box combination is 400g plus a 10 g Encoder, while the cost is $417.00 per combination. 

Table B.1. Gearhead selection for 3.6 Nm. 

Part N 

Max. 

continuous 

torque 

Ratio 

and 

efficiency 

Weight 
US 

dollars 

Required 

torque from 

Motor 

(1) Planetary gearhead 

GPX 32 C Ø32 mm, 2-

stage, 16:1–35:1 

3.8 Nm 35:1 and 

75% 

180 g 184.00 0.145 Nm 

(145 mNm) 

(2) Planetary gearhead 

GPX 32 LN Ø32 mm, 

3-stage, 62:1–231:1 

4 Nm 231:1 and 

75% 

230 g 207.00 0.023 Nm 

(23 mNm) 

 

Table B.2. Motor selection for gearhead 3.6 Nm. 

Part N 
Continuous 

torque 
Weight 

Max.    

efficiency 

US 

dollars 

Motor for GH1     

(1) DCX 32 L Ø32 mm, Graphite 

Brushes, ball bearings 

128 mNm 320 g 895 and 60V 264.00 

Motor for GH2     

(2) DCX 26 L Ø 26mm, CLL 

precious metal brushes, sintered 

bearings 

32.6 mNm 170 g 88% and 9V 210.00 

(3) DCX 26 L Ø 26mm, CLL 

precious metal brushes, ball 

bearings 

32.9 mNm 170 g 89% and 9V 223.00 

  

Table B.3. Motor–gearhead selection chart for 3.6 Nm. 

Gearhead No. Motor No. Weight  Cost, US dollars 

1 1 180g +320g = 500g $184.00 + $264.00 = 

$448.00 

2 2 230g +170g = 400g $207.00 + $210.00 = 

$417.00 

2 3 230g +170g = 400g $207.00 + $223.00 = 

$430.00 

 

An alternative option can be a stronger driver, e.g. a driver that can produce 17 Nm. The 

best option among single motor–gearbox combination that generates 17 Nm is Gearhead    
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No. 3 and Motor No. 6, see Table B.6. The total weight of the most optimal motor–gearbox 

combination is 350g plus a 10 g Encoder, while the cost is $336.00. 

Table B.4. Gearhead selection for 17 Nm. 

Part N 

Max. 

contin

uous 

torque 

Ratio and 

efficiency 
Weight 

US 

dollars 

Required 

torque 

from 

Motor 

(1) Maxon Planetary Gearhead 

GP 32 C Ø32 mm, 1.0– 6.0 Nm, 

Ceramic Version 166 

6 Nm 1093 : 1 

and 60% 

220 g 230.00 0.009 Nm 

(2 mNm) 

(2) Maxon Planetary Gearhead 

GP 32 C Ø32 mm, 1.0– 6.0 Nm, 

Ceramic Version 166949 

6 Nm 246 : 1 

and 60% 
220 g 213.00 0.041 Nm 

(41 mNm) 

(3) Maxon Planetary Gearhead 

GP 32 C Ø32 mm, 1.0– 6.0 Nm, 

Ceramic Version 166979 

6 Nm 6285 : 1 

and 50%  

250 g 250.00 0.002 Nm 

(2 mNm) 

 

Table B.5. Motor selection for gearhead 17 Nm. 

Part N 
Continuous 

torque 
Weight 

Max. 

efficiency 

Cost, US 

dollars 

Motor for GH1 

(1) Maxon RE-max 29 Ø29 mm, 

Precious Metal Brushes CLL, 15 Watt, 

with terminal 226749 

9.78 mNm 150 g 90 % and 

9V 

144.00 

(2) Maxon RE-max 29 Ø29 mm, 

Precious Metal Brushes CLL, 9 Watt, 

with terminal 226767 

9.81 mNm 160 g 89 % and 

6V 

145.00 

Motor for GH2 

(3) Maxon EC-4pole 22 Ø22 mm, 

brushless, 90 Watt 323220 

42.6 mNm 120 g 88% and 

48V 

516.00 

(4) Maxon A-max 32 Ø32 mm, 

Graphite Brushes, 20 Watt, with cables 

353237 

43.1 mNm 240 g 80% and 

9V 

188.00 

Motor for GH3 

(5) Maxon A-max 26 Ø26 mm, 

Precious Metal Brushes CLL, 7 Watt, 

with terminals 110181 

4.45 mNm 110 g 84% and 

4.5V 

105.00 

(6) Maxon A-max 26 Ø26 mm, 

Precious Metal Brushes CLL, 4 Watt, 

with terminals 110192 

5.42 mNm 100 g 76% and 

3.6V 
86.00 

 

 

 

 



131 

 

 

 

 

 

Table B.6. Motor–gearhead selection chart. 

Gearhead No. Motor No. Weight Cost, US dollars 

1 1 220 g+150 g =370 g $230+$144=$374.00 

1 2 220 g+160 g =380 g $230+$145=$375.00 

2 3 220 g+120 g =330 g $213+$516=$729.00 

2 4 220 g+240 g =460 g $213+$188=$401.00 

3 5 250 g+110 g =360 g $250+$105=$355.00 

3 6 250 g+100 g =350 g $250+$86=$336.00 

 

 One more solution may be two motor–gearbox combinations that move each side of the 

device separately: 

Table B.7. Dual option for gearhead 17 Nm. 

Part N 

Max. 

continuous 

torque 

Ratio 

and 

efficiency 

Weight Cost 

Required 

torque from 

Motor 

Maxon Planetary 

Gearhead GP 22 C Ø22 

mm, 0.5–2.0 Nm 

143995 

1.8 Nm 333:1 and 

49% 

81 g 137.00 0.011 Nm 

(11 mNm) 

 

Table B.8. Dual option for motor - gearhead 17 Nm. 

Part N 
Continuous 

torque 
Weight 

Max. 

efficiency 
Cost 

Maxon EC-max 22 Ø22 mm, 

brushless, 12 Watt, with Hall 

sensors 283840 

10.8 mNm 83 g 65% and 

24V 

168.00 
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Appendix C 

Motor Specification 
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Information: Drawings are not to scale. 

Values at nominal voltage 

 Nominal voltage 24 V 

 No load speed 12100 rpm 

 No load current 77.3 mA 

 Nominal speed 8250 rpm 

 Nominal torque (max. continuous torque) 10.8 mNm 

 Nominal current (max. continuous current) 0.657 A 

 Stall torque 35.1 mNm 

 Stall current 1.94 A 

 Max. efficiency 65 % 

Characteristics 

 Terminal resistance 12.4 Ω 

 Terminal inductance 0.488 mH 

 Torque constant 18.1 mNm/A 

 Speed constant 526 rpm/V 

 Speed / torque gradient 
360 

rpm/mNm 
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Mechanical time constant 8.47 ms 

 
Rotor inertia 2.25 gcm² 

Thermal data 

 Thermal resistance housing-ambient 13.5 K/W 

 Thermal resistance winding-housing 1.72 K/W 

 Thermal time constant winding 1.84 s 

 Thermal time constant motor 567 s 

 Ambient temperature 
-40...+100 

°C 

 Max. winding temperature +155 °C 

Mechanical data 

 Bearing type ball bearings  

 Max. speed 18000 rpm 

 Axial play 0 - 0.14 mm 

 Max. axial load (dynamic) 3.5 N 

 Max. force for press fits (static) 53 N 

 (static, shaft supported) 1400 N 

 Max. radial load 
16 N, 5 mm 

from flange  

Other specifications 

 Number of pole pairs 1  

 Number of phases 3  

 Number of autoclave cycles 0  

Product 

 Weight 83 g 
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Appendix D 

Bearing Specification 
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